125
Model-Based Hand Tracking Using A Hierarchical Bayesian Filter Bj¨ orn Dietmar Rafael Stenger St. John’s College March 2004 Dissertation submitted to the University of Cambridge for the degree of Doctor of Philosophy

Model-Based Hand Tracking Using A Hierarchical Bayesian

Embed Size (px)

Citation preview

Model-Based Hand Tracking UsingA Hierar chical Bayesian Filter

BjornDietmarRafaelStenger

St. John’sCollege

March2004

Dissertationsubmittedto theUniversityof Cambridge

for thedegreeof Doctorof Philosophy

Model-BasedHandTracking UsingA Hierarchical

Bayesian Filter

BjornStenger

Abstract

This thesisfocuseson theautomatic recoveryof three-dimensionalhandmotionfrom

oneor moreviews. A 3D geometrichandmodel is constructedfrom truncatedcones,

cylindersandellipsoids andis usedto generatecontours,which canbe comparedwith

edgecontoursandskin colour in images. The handtrackingproblemis formulatedas

stateestimation, where the model parametersdefinethe internal state,which is to be

estimatedfrom imageobservations.

In the first approach,an unscentedKalmanfilter is employed to updatethe model’s

posebasedon local intensityor skin colouredges.Thealgorithmis ableto tracksmooth

handmotion in front of backgroundsthat areeitheruniform or containno skin colour.

However, manualinitializationis requiredin thefirst frame,andno recovery strategy is

availablewhentrackis lost.

Thesecondapproach,tree-basedfiltering, combinesideasfromdetectionandBayesian

filtering: Detectionis usedto solve the initialization problem,wherea single imageis

given with no prior informationof the handpose. A hierarchicalBayesianfilter is de-

veloped,which allows integration of temporalinformation. This is moreefficient than

applyingdetectionat eachframe,becausedynamicinformation canbeincorporatedinto

the search,which helpsto resolve ambiguities in difficult cases.This thesisdevelops a

likelihoodfunction,whichis basedonintensity edges,aswell aspixel colourvalues.This

functionis obtainedfrom asimilarity measure,whichis comparedwith anumberof other

costfunctions. Theposteriordistribution is computedin a hierarchicalfashion,theaim

beingto concentratecomputationpower on regionsin statespacewith larger posterior

values. The algorithmis testedon a numberof imagesequences,which includehand

motionwith self-occlusionin front of aclutteredbackground.

Ackno wledg ements

First andforemost,I wish to thankmy supervisorsRobertoCipolla andPhilip Torr who

havebothcontinuously sharedtheirsupportandenthusiasm. Workingwith themhasbeen

agreatpleasure.

OverthepastyearsI havealsoenjoyedworkingwith anumberof fellow PhDstudents,

in particularPauloMendonca andArasanathanThayananthan,with whomthesharingof

authorship in severalpapersreflectstheclosenessof ourcooperation.Presentandformer

colleaguesin the vision grouphave madethe lab an excellentplaceto work, including

Tom Drummond, Paul Smith,Adrian Broadhurst,KennethWong,Anthony Dick, Dun-

canRobertson,YongduekSeo,Bjorn Johansson,Martin Weber, Oliver Williams, Jason

McEwen,George Vogiatzis,JamieShotton,RamananNavaratnam,andOgnjenArand-

jelovic.

Thefinancialsupportof theEngineeringandPhysicalSciencesResearchCouncil,the

Gottlieb-DaimlerandKarl-BenzFoundation, theCambridgeEuropeanTrust,andToshiba

Researchhave mademy stay in Cambridgepossible. I also thankSt. John’s College

andthe Departmentof Engineeringfor supporting my participationin conferencesand

seminarsandfor providing afine work environment.

A very big ‘thank you’ goesto SofyaPogerfor helpwith thedataglove, to Nanthan,

Ram,Ollie, Martin, Oggie,Phil, Bill GibsonandSimonRedheadfor thetime andeffort

put into proof-reading,to Rei for theOmamoricharm,andto Dani for thebinding.

Finally, heartfeltthanksgo to my family andfriendsfor their immensesupportalong

theway.

BjornStenger

Contents

1 Intr oduction 2

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Limitationsof existingsystems . . . . . . . . . . . . . . . . . . 3

1.1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Limiti ng thescope . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Thesisoverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Thesisoutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Related Work 8

2.1 Handtracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 2D handtracking . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Model-basedhandtracking. . . . . . . . . . . . . . . . . . . . . 10

2.1.3 View-basedgesturerecognition . . . . . . . . . . . . . . . . . . 14

2.1.4 Single-view poseestimation . . . . . . . . . . . . . . . . . . . . 16

2.2 Full humanbodytracking. . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Objectdetection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Matchingshapetemplates . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Hierarchicalclassification . . . . . . . . . . . . . . . . . . . . . 24

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 A 3D Hand Model Built From Quadrics 27

3.1 Projectivegeometryof quadricsandconics . . . . . . . . . . . . . . . . 27

3.2 Constructingahandmodel . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Drawing thecontours . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Handlingself-occlusion. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

iii

4 Model-Based Tracking Using an Unscented Kalman Filter 40

4.1 Trackingasprobabilistic inference . . . . . . . . . . . . . . . . . . . . . 40

4.2 TheunscentedKalmanfilter . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 ObjecttrackingusingtheUKF algorithm . . . . . . . . . . . . . . . . . 45

4.4 Experimentalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Limitationsof theUKF tracker . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Similarity Measures for Template-Base d Shape Matching 55

5.1 Shapematchingusingdistancetransforms. . . . . . . . . . . . . . . . . 56

5.1.1 TheHausdorff distance. . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Shapematchingaslinearclassification. . . . . . . . . . . . . . . . . . . 61

5.2.1 Comparisonof classifiers. . . . . . . . . . . . . . . . . . . . . . 62

5.2.2 Experimentalresults . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Modelling skincolour . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 Comparisonof classifiers. . . . . . . . . . . . . . . . . . . . . . 71

5.3.2 Experimentalresults . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Combiningedgeandcolourinformation . . . . . . . . . . . . . . . . . . 75

5.4.1 Experimentalresults . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Hand Tracking Using A Hierar chical Filter 82

6.1 Tree-baseddetection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Tree-basedfiltering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.1 Therelationto particlefiltering . . . . . . . . . . . . . . . . . . 87

6.3 Edgeandcolourlikelihoods . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4 Modelling handdynamics. . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.5 Trackingrigid bodymotion . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.5.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.6 Dimensionality reductionfor articulatedmotion . . . . . . . . . . . . . . 94

6.6.1 Constructinga treefor articulatedmotion . . . . . . . . . . . . . 96

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Conc lusion 103

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

iv

0 Contents 1

7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3 Futurework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

1 Intr oduction

But findinga hand-detectorcertainlydid notallow usto programone.

David Marr (1945– 1980)

1.1 Motiv atio n

Theproblemaddressedin this thesisis theautomaticrecovery of the three-dimensional

handposefrom asingle-view videosequence.Additionally, extensions to multipleviews

areshown for a few cases.An example imagefrom an input sequenceis given in fig-

ure1.1,alongwith a3D handmodelin therecoveredpose.

Trackingobjectsthroughimagesequencesisoneof thefundamentalproblemsin com-

puter vision, and recovering articulatedmotion hasbeenan areaof researchsincethe

1980s[59, 102]. Theparticularproblemof handtrackinghasbeeninvestigatedfor overa

decade[29,30,109],andcontinuesto attractresearchinterestasthepotentialapplications

areappealing:A visionof computersor robotsthatareableto makesenseof humanhand

motion hasinspiredresearchers andfilm directorsalike [15, 31, 88, 127, 128]. At the

centreof interestis thedevelopmentof humancomputerinterfaces(HCI), wherea com-

putercan interprethandmotion andgesturesandattachcertainactionsto them. Some

examplesare the manipulation of virtual objects,andthe control of a virtual hand(an

avatar)or a mechanicalhand.If theposeof a pointinghandis recoveredaccurately, this

canbe interpretedby the computeras“selecting”a particularobject,eitheron a screen

or in theenvironment, andanactioncanbeeasilyassociated.A “digital desk”[146] may

bea usefulinput device in museums or otherpublic places,andtouch-freeinput is also

interesting for computergames,whereit is alreadycommerciallyavailablein a relatively

simple form (e.g.theEyeToy systemfor theSonyPlaystation 2).

2

1 Introduction 3

(a) (b) (c)

Figure1.1: The problemaddressedin this thesis.Thethree-dimensional poseof a handis recovered froman input image. (a) Theinput image of a handin front ofcluttered background, (b) with the projectedmodelcontours superimposed,and(c) thecorresponding3D modelin therecoveredpose.

1.1.1 Limitations of exi sting sys tems

Given the complexity of the task,mostapproachesin the pasthave madea numberof

assumptions that greatly simplify the problemof detectingor trackinga hand. These

includethefollowing restrictions:

• Uniform or static background: The useof a simpleuniform background(e.g.

blackor blue)allows cleanforegroundsegmentationof thehand[5, 113, 134]. If

the camerais static,backgroundsubtractioncanbe used,assumingthat the fore-

groundappearanceis sufficiently differentfrom the background[90, 136]. In the

caseof edge-basedtrackers,the featuredetectionstageis maderobustby the ab-

senceor eliminationof backgroundedges[109, 110]. However, usinga uniform

backgroundis consideredtoo restrictive for a generalsystem,andthetechniqueof

backgroundsubtractionis unreliablewhentherearestrongshadows in the scene,

whenbackgroundobjectsmoveor if theilluminationchanges[136].

• Cleanskin colour segmentation:Thegoalof skincoloursegmentation is to obtain

thehandsilhouette,whichcanthenbeusedfor shape-basedmatching[88, 119]. It

hasbeenshown that in many settingsskin colourhasa characteristicdistribution,

whichcanbedistinguishedfrom thecolourdistributionof backgroundpixels[74].

However, onedifficulty of this methodis thatnot only handregionsareobtained,

but alsootherskin colouredregions,suchasthearm,the face,or backgroundob-

jects,for examplewoodensurfaces.Thesegmentation quality canbesignificantly

improvedwhenspecialhardwareis available suchasinfraredlights [119].

4�

1 Introduction

• Delimitation of the wrist: Often it is assumedthat the handin the imagecan

be easilysegmentedfrom thearm. If a personis wearinglong non-skincoloured

sleeves,the extractionof the handsilhouetteis muchsimplified [113, 119, 134].

Lockton andFitzgibbon[88] make this assumption explicit by requiringthe user

to weara wristband. If suchan “anchorfeature” is supplied,the handshapecan

beprojectedinto a canonicalframe,thusobtainingtheorientation, translationand

scaleparameters.

• Manual initialization: If a three-dimensionalmodelis usedfor poseestimation,

it is oftenassumedthatthemodelis correctlyalignedin thefirst frame[109, 110].

The problemcan thenbe posedas an optimization problem,whereinthe model

parametersareadaptedin eachframein orderto minimize an error function. For

userinterfaces,however, it is desirableto maketheinitialization processautomatic.

• Slow hand motion: Giventhat thehandis moving slowly, a sequentialoptimiza-

tion approachcanbe taken in which the parametersof a handmodelareadapted

in eachframe. Thesolutionfrom theprevious frameis usedto initialize theopti-

mizationprocessin thecurrentframe[109, 110]. However, dueto thenumberof

localminimathisapproachdoesnotwork whenhandmotionis fastor whenfeature

associationis difficult dueto self-occlusion.

• Unoccludedfingertips: If thefingertipscanbelocatedin theimage,thehandpose

canbe reconstructedby solving an inversekinematicsproblem[149]. However,

extracting the fingertip positionsis not an easytask, and in many posesnot all

fingersarevisible.

Eventhoughtheseassumptionshold in certaincases,they areconsideredtoo restric-

tive in thegeneralcase.For example,whena singleinput imageis given, no knowledge

of thebackgroundscenecanbeassumed.Similarly, it is notguaranteedthatnootherskin

colouredobjectsarein thescene.Usuallypeopleareableto estimatetheposeof a hand,

evenwhenviewedwith oneeye. This fact is proof of the existenceof a solutionto the

problem.However, theunderlying mechanismsof biological visualinformation process-

ing, particularlyathigherlevelsof abstraction,arecurrentlynot fully understood[81]. In

1972Grosset al. [53] discoveredneuronsin theinferotemporalcortex of macaquemon-

keys that showed the strongestresponsewhena handshapewaspresentin their visual

field. However, the fact thatsuchcellsshouldexist doesnot tell usanything abouthow

they do it. This is thecontext of David Marr’s quoteat thebeginningof thischapter.

1 Introduction 5

1.1.2 Appr oach

In this thesisa model-basedapproachis taken. By “model” we a meangeometricthree-

dimensionalhandmodel,whichhastheadvantagesof compactrepresentation,correspon-

dencewith semantics,andtheability to work in continuousspace.In themoregeneral

sense,our “model” encodesinformation aboutthe shape,motion andcolour that is ex-

pectedin an imagecontaininga hand. Statevariablesareassociatedwith thegeometric

model,which areestimatedby a filter allowing integration of temporalinformation and

imageobservations. In the caseof hands,edgecontoursandskin colour featureshave

beenusedasobservations in thepast[5, 90, 110,119] andbothof thesefeaturesareused

in thiswork.

Two solutionsaresuggestedfor theestimationproblem.Thefirst solution is basedon

recursiveBayesianfiltering usinganextension of theKalmanfilter, theunscentedKalman

filter [78]. This approachmakesuseof a dynamicmodelto predictthe handmotion in

eachframeandcombinesthepredictionwith anobservationto obtaina poseestimate.It

is shown thatthisapproachworksundercertainassumptions,but it is toorestrictivein the

generalsetting.

Thesecondapproachcombinesideasfrom detectiontechniquesandBayesianfilter-

ing. A detectionapproachis usedto solvetheinitializationproblem,whereasingle image

is givenwith noprior informationof thehandpose.This is a hardtaskandraisesa num-

berof issues,suchashow to find thelocationof a handandhow to discriminatebetween

differentposes.Perhapsthemoreimportant question is whetherthesetwo tasksshould

beseparatedatall. In thiswork, templatematchingis usedto solve thisproblem:A large

numberof templatesaregeneratedby the 3D modelanda similarity function basedon

edgeandcolourfeaturesscoresthequalityof amatch.This is shown to work for asingle

frame,but usingdetectionin every frameis not efficient. Furthermore,in certainhand

poses,e.g.if a flat handis viewedfrom theside,thereis little imageinformation thatcan

be usedfor reliabledetection.Thus,the ideais to usetemporalinformation in orderto

increasetheefficiency, aswell asto resolveambiguitiesin difficult cases.This leadsto a

hierarchicalBayesianfilter. Theproposedalgorithmis shown to successfullyrecover the

handposein challenginginputsequences,whichincludehandmotionwith self-occlusion

in front of aclutteredbackground,andassuchrepresentsthecurrentstate-of-the-art.

1.1.3 Limiting the scope

Two importantapplicationsareexplicitly not consideredwithin this thesis. The first is

marker-basedmotion capture,widely usedfor animationpurposesin the film or games

6� 1 Introduction

industry, or for biomechanicalanalysis.Commercialmotion capturesystemsusemarkers

on theobjectin orderto obtainexactpoint locations.They alsowork with multiple cam-

erasto resolveambiguities,whichoccurin asingleview. Theuseof markerssolvesoneof

themostdifficult tasks,whichis thefeaturecorrespondenceproblem.Thenumberof pos-

siblecorrespondencesis reduceddrastically, andoncethesearefound,3D poserecovery

becomesrelatively easy. In this thesisonly thecaseof markerlesstrackingis considered.

Thesecondapplication,which we do not attemptto solve, is thatof automaticsign lan-

guageinterpretation.Eventhoughrecovering3D posereliablycouldbeusedto interpret

fingerspelling,sucha level of detailmaynot berequiredfor theseapplications.For ex-

ample,theAmericanSignLanguagerecognition systemby Starneret al. [128], relieson

temporalinformation andonly recoversthehandpositionandorientation. Also thefinger

spelling systemof LocktonandFitzgibbon[88], which canrecognize46 differenthand

poses,doesnotattemptto recover3D information.

1.2 Thesis overview

This sectionstatesthe main contributionsof this thesis,andgivesa brief outline of the

following chapters.

1.2.1 Contrib utions of this thesis

Themaincontributionsof this thesisare:

• a hierarchicalfiltering algorithm, which combinesrobust detectionwith temporal

filtering;

• the formulation of a likelihoodfunction that fusesshapeandcolour information,

significantlyimproving therobustnessof thetracker.

Minor contributionsinclude:

• the constructionof a three-dimensionalhandmodel using truncatedquadricsas

building blocks,andtheefficientgenerationof its projectedcontours;

• the applicationof theunscentedKalmanfilter to three-dimensional handtracking

in singleanddualviews.

1 Introduction 7

1.2.2 Thesis outline

Chapter 2. This chapterpresentsa literaturereview of handtracking,wherethemain

ideasof model-basedtracking,view-basedrecognitionandsingleview poseestimation

are discussed.The similarities and differencesto full humanbody tracking are made

explicit. Finally, it givesabrief introductionto objectdetectionmethods,whicharebased

onhierarchicalapproaches.

Chapter 3. A methodto constructa three-dimensionalhandmodel from truncated

cones,cylindersandellipsoids is presentedin this chapter. It startswith an introduction

to thegeometryof quadricsurfacesandexplainshow suchsurfacesareprojectedinto the

imageplane. The handmodel,which approximatesthe anatomyof a real humanhand,

is thenconstructedusingtruncatedquadricsasbuilding blocks. It is alsoexplainedhow

self-occlusionscanbehandledwhenprojectingthemodelcontours.

Chapter 4. This chapterfirst formulatesthe taskof trackingasa Bayesianinference

problem.TheunscentedKalmanfilter is introducedwithin thecontext of Bayesianfilter-

ing andis appliedto 3D handtracking.Experimentsusingsingleanddualviews demon-

stratetheperformanceof thismethod,but alsorevealits limitations.

Chapter 5. In this chaptersimilarity measuresare examined,which canbe usedin

orderto find a handin imageswith clutteredbackgrounds.Thesuggestedcostfunction

integratesbothshapeandcolour information. Thechamferdistancefunction [9] is used

to measureshapesimilarity betweenahandtemplateandanimage.Thecolourcostterm

is basedonastatisticalcolourmodelandcorrespondsto thelikelihood of thecolourdata

in animageregion.

Chapter 6. This chapterdescribesoneof themaincontributions of this work, which

is thedevelopmentof analgorithm, which combinesrobustdetectionwith Bayesianfil-

tering. This allows for automatic initialization and recovery of the tracker, as well as

theincorporationof a dynamic model. It is shown how thedimensionality of articulated

handmotion canbereducedby analyzingjoint angledatacapturedwith adataglove,and

examplesof 3D poseestimationfrom asingleview arepresented.

2 Related Work

Studythepastif youwoulddefinethefuture.

Confucius(551BC–479BC)

Thischaptergivesanoverview of thedevelopmentsandthecurrentstate-of-the-artin

handtracking. Earlier reviews have beenpublishedby Pavlovic et al. [105] andWu and

Huang[150, 152]. The next sectionintroducesthe ideasbehindmodel-basedtracking,

view-basedrecognition,andsingle-view poseestimation,highlighting themerits,aswell

asthe limits of eachapproachfor handtracking. In section2.2 the commongroundas

well asthedifferencesto full humanbody trackingarepointedout. Finally, section2.3

givesa brief introduction to generalobjectdetectionmethods, which have yieldedgood

resultsfor locatingdeformableobjectsin images.

2.1 Hand trac kin g

For a long time thework onhandtrackingcouldbedividedinto two streamsof research,

model-basedandview-basedapproaches[105]. Model-basedapproachesusean articu-

latedthree-dimensional (3D) handmodelfor tracking. The model is projectedinto the

imageandanerrorfunctionis computed,scoringthequalityof thematch.Themodelpa-

rametersarethenadaptedsuchthatthis costis minimized. Usuallyit is assumedthatthe

modelconfigurationat theprevious frameis known, andonly a smallparameterupdate

is necessary. Therefore,modelinitializationhasbeena big obstacle.In mostcasesthe

modelis alignedmanuallyin thefirst frame. Section2.1.2reviews methodsfor model-

basedhandtracking.

In the view-basedapproach,the problemis formulatedasa classificationproblem.

A setof handfeaturesis labelledwith a particularhandpose,anda classifieris learnt

8

2 RelatedWork 9

Model-based3D tracking View-basedposeestimation

Estimation of continuous3D parameters Discretenumberof poses

Initialization required Estimationfrom asingleimage

Singleor multipleviews Singleview

Trackingfeaturesreliably is difficult Estimatingnonlinear3D–2Dmappingisdifficult

Table2.1:Comparisonof model-basedand view-basedapproaches.

from this training data. Thesetechniqueshave beenemployed for gesturerecognition

tasks,wherethe numberof learntposeshasbeenrelatively limited. Section2.1.3gives

anoverview of methods for view-basedgesturerecognition.A summaryof propertiesof

thetwo approachesis listedin table2.1.

More recently, the boundariesbetweenmodel-basedandview-basedmethodshave

beenblurred.In severalpapers[4, 5, 6, 113, 119] 3D modelshave beenusedto generate

a discretesetof 2D appearances,which arematchedto the image. Theseappearances

areusedto generateanarbitraryamountof trainingdata,anda correspondencebetween

3D posevectorand2D appearanceis givenautomaticallyby themodelprojection.The

inversemappingcanthensimply befoundby view-basedrecognition,i.e. theestimated

poseis givenby the2D appearancewith thebestmatch.Thesemethodshavethepotential

to solvemany of theproblemsinherentin model-basedtracking.

A numberof trackingsystemshavebeenshown to work for 2D handtracking.In the

following section,someof thesemethodsarereviewed.

2.1.1 2D hand trac king

Trackingthehandin 2D canbeuseful in a numberof applications, for example simple

userinterfaces.In thiscontext 2D trackingrefersto methods,whichuseasinglecamerato

trackahand,possibly with somescalechanges,anddonot recover3D informationabout

out-of-image-planerotationor fingerconfiguration.This is amuchsimpler problemthan

full 3D trackingfor anumberof reasons.Firstof all, thedimension of thesearchspaceis

muchsmaller, i.e. thereareonly four degreesof freedom(DOF) for globalmotion,which

aretranslation,scaleandrotationin the imageplane,whereas3D trackinghassix DOF

for rigid bodymotion. Anotherfactoris thathandposescanbeeasilyrecognizedwhen

10 2 RelatedWork

thehandis fronto-parallelto thecamera,becausethevisible areais relatively large and

self-occlusionbetweendifferentfingersis small.

Oneexampleof a humancomputerinterface(HCI) applicationis the vision-based

drawing systempresentedby MacCormickandIsard[90]. Thehandshapewasmodelled

usinga B-spline, anda particlefilter wasusedto trackthehandcontour. Thestatespace

waspartitionedfor efficiency, decouplingthemotionsof index fingerandthumb. Back-

groundestimationwasusedto constrainthesearchregion,andsevenDOF weretracked

in real-time. The tracker was initializedby searchingregionswhich wereclassifiedas

skin colour [67]. A limitation of this methodis the fact that the contouraloneis not a

reliablefeatureduringfasthandmovements.

Laptev andLindeberg [84] andBretzneretal. [20] presentedasystemthatcouldtrack

anopenhandanddistinguishbetweenfivedifferenthandstates.Scale-spaceanalysiswas

usedto find intensityor colour blob featuresat differentscales,correspondingto palm

andfingers.Likelihoodmapsweregeneratedfor thesefeaturesandwereusedto evaluate

fivehypothesizedhandstatesthatcorrespondedto certainfingersbeingbentor extended.

Trackingwaseffectedusinga particlefilter, and the systemoperatedat 10 framesper

second.It wasusedwithin avision-basedtelevision remotecontrolapplication.

Von Hardenberg andBerard [143] showedtheuseof anefficient but simplefingertip

detectorin someHCI applications.Thesystemadaptively estimatedthebackgroundand

searchedtheforegroundregion for finger-like shapesat a singlescale.This methodonly

worksfor applicationswith asteadycameraandreliesoncleanforegroundsegmentation,

whichis difficult to obtainin ageneralsetting[136]. However, it requiresnoinitialization

andallows for fasthandmotion.

To summarize,a numberof 2D trackingsystems have beenshown to work in HCI

applicationsin realtime. However, they aredifficult to extendto 3D trackingwithout the

useof a geometrichandmodel.Thefollowingsectiondealswith 3D tracking,whichhas

many morepotentialapplications,but at thesametime is averychallengingtask.

2.1.2 Model-base d hand trac king

A model-basedtrackingsystemgenerallyconsistsof anumberof components,asdepicted

in figure 2.1. The geometrichandmodel is usuallycreatedmanually, but canalsobe

obtainedby reconstructionmethods.Modelsthathavebeenusedfor trackingarebasedon

planarpatches[153, 155],deformablepolygonmeshes[57] or generalizedcylinders[36,

108, 109,110,118,120,121]. In someworks thehandshapeparametersareestimated

togetherwith themotionparameters,thusadaptingthehandmodelto eachuser[118,120,

2 RelatedWork 11

Input Image

Feature Extraction Model Projection

Error Function Computation

Optimization of ModelParameters / Filtering

3D Model

Figure2.1: Componentsof a model-basedtracking system. A model-basedtrackingsystememploysa geometric3D model,which is projectedinto theimage. Anerror functionbetweenimagefeaturesandmodelprojectionis minimized,andthemodelparametersareadapted.

121, 149].

Theunderlying kinematicstructureis usuallybasedon thebiomechanicsof thehand.

Eachfinger canbe modelled asa four DOF kinematic chainattachedto the palm, and

the thumbmay be modelledsimilarly with eitherfour or five DOF. Togetherwith rigid

bodymotion of thehand,thereare27 DOF to beestimated.Working in sucha high di-

mensional spaceis particularlydifficult becausefeaturepointsthatcanbetrackedreliably

aresparse:thetextureon handsis weakandself-occlusionoccursfrequently. However,

the anatomicaldesignplacescertainconstraintson the handmotion. Theseconstraints

have beenexploited in differentwaysto reducethesearchspace.Onetypeof constraint

arethe joint anglelimits, definingthe rangeof motion. Anothervery significanttype is

thecorrelationof joint movement.Anglesof thesamefinger, aswell asof differentfin-

gers,arenot independent.Theseconstraintscanbeenforcedin differentways,eitherby

parametercouplingor by working in a spaceof reduceddimension, e.g. onefound by

PCA [57, 153,155].

Different dynamic modelshave beenusedto characterizehandmotion. Standard

techniquesincludeextendedKalmanfiltering with a constantvelocity model [120]. A

morecomplex modelis theeigendynamicsmodelof Zhu et al. [155], wherethemotion

of eachfinger is modelledasa 2D dynamicsystemin a lower dimensional eigenspace.

For 2D motionsIsardandBlake [68] haveusedmodelswitching to characterizedifferent

12 2 RelatedWork

typesof motion. However, global handmotion canbe fast in termsof imagemotion.

Eventhoughit is usuallysmooth,it maybeabruptanddifficult to predictfrom frameto

frame.Furthermore,Tomasietal. [134] pointedoutthatfingerflexion or extensioncanbe

asshortas0.1seconds,correspondingto only threeframesin animagesequence.These

considerations increasethedifficulty of modellinghanddynamicsin ageneralsetting. An

approachsuggestedin [134] is to identify anumberof key posesandinterpolatethehand

motionbetweenthem.

Arguablythe most important componentis the observation model, in particularthe

selectionof featuresthat areusedto updatethe model. Possible featuresare intensity

edges[57, 109, 110], colour edges[90] or silhouettesderived from colour segmenta-

tion [87, 153]. Identificationof certainkey pointshasbeenattempted[118, 120,121],

e.g. looking for fingertipsby searchingfor protrusionsin thesilhouetteshape.In some

cases,featureshave beenusedthat requiremorecomputational effort, suchasa stereo

depthmap[36] or opticalflow [89]. Severalsystems combine multiple cuesinto a single

costfunction[87, 89, 153, 155].

Oneof thefirst systemsfor markerlesshandtrackingwasthatof CipollaandHolling-

hurst[29, 30], who usedB-splinesnakesto tracka pointing handfrom two uncalibrated

views. In eachview the affine transformationof the snake was estimated,andwith a

groundplaneconstraintthe indicatedtarget position wasfound. The systemrequireda

simple background,but it couldoperatein real-time.

Three-dimensionalarticulatedhandtrackingwaspioneeredbyRehgandKanade[109,

110] with their DigitEyestrackingsystem. The systemuseda 3D handmodel,which

wasconstructedfrom truncatedcylindersandhadan underlyingkinematic modelwith

27 degreesof freedom. Trackingwasperformedby minimizing a costfunction,which

measuredhow well the model is alignedwith the image. Two possible cost functions

weresuggested,the first is basedon edgefeatures[109], the secondon templateregis-

tration[110]. In thefirst method,themodelcylinder axeswereprojectedinto theimage

andlocaledgeswerefound.Similarly, fingertippositionswerefound.Theerrortermwas

thesumof squareddifferencesbetweenprojectedpointsandimagefeaturepoints, andit

wasminimizedusingtheGauss-Newton algorithm.Thesecondmethodof templatereg-

istration wasusedin orderto dealwith self-occlusion.An edgetemplatewasassociated

with eachfinger segment, togetherwith a window functionmaskingthecontribution of

occludedsegments.Using two camerasanddedicatedhardware,the systemachieved a

rateof tenframespersecondwhenusinglocaledgefeatures.Off-line resultswereshown

for the caseof self-occlusion. A neutralbackgroundwas requiredfor reliable feature

2 RelatedWork 13

extraction.

HeapandHogg[57] useda 3D point distribution model[32], which wasconstructed

from a 3D magneticresonanceimagedataset. The possible handshapeswere a lin-

earcombination of thefive mostsignificanteigenvectorsaddedto themeanshape.This

reductionin the numberof parametersallowed for trackingfrom a singleview. How-

ever, naturalhandmotionwasnotmodelledaccuratelybecausethe3D shapechangesare

nonlinear. Themodelwasfirst deformed,thenrotated,scaledandtranslated,sothat the

contoursmatchedtheedgesin theimage.Thesystemtracked12DOF in a limited range

at 10 framespersecond.

DelamarreandFaugeras[36] pursueda stereoapproachto handtracking. A stereo-

correlationalgorithmwasusedto estimateadensedepthmap.In eachframea3D model

was fitted to this depthmap using the iterative closestpoints (ICP) algorithm. Using

stereoinformationhelpedsegmentthehandfrom a clutteredbackground.However, the

disparitymapsobtainedwith thecorrelationalgorithmwerenotveryaccurateasthereare

notmany strongfeaturesonahand.

Shimadaet al. [118, 120, 121] useda silhouette-basedapproachto tracking from

singlecamerainput. Thepositionsof finger-like shapeswereextractedfrom thesilhou-

ette and matchedwith the projectionof a 3D model. A set of possibleposevectors

wasmaintainedandeachone was updatedusingan extendedKalmanfilter. An opti-

mal pathwasthenfoundfor thewhole imagesequence.Thedifficulty in this methodis

to identify finger-like shapesduringunconstrainedhandmotion, particularlyin casesof

self-occlusion.

Wu andHuang[149] useddifferent techniquesto reducethe dimensionality of the

searchspace.Firstly, constraintson the finger motion wereimposed,suchaslinear de-

pendenceof finger joint angles.Furthermore,thestatespacewaspartitionedinto global

poseparametersandfingermotion parameters.Thesesetsof parameterswereestimated

in a two-stepiterative algorithm. Thelimitation of this methodis thatthefingertipshave

to bevisible in eachframe.

In anotherapproach,Wu, Lin andHuang[87, 153] learntthecorrelationsof joint an-

glesfrom datausingadataglove. It wasfoundthathandarticulationis highly constrained

andthata few principalcomponentscapturemostof themotion. For thetrainingdatathe

statespacecouldbereducedfrom 20 to sevendimensions with lossof only five percent

of the information, andfinger motion wasdescribedby a unionof line segments in this

lower dimensional space.This structurewasusedfor generatinga proposaldistribution

in aparticlefilter framework.

14 2 RelatedWork

ZhouandHuang[155] analyzedhandmotionin moredetail,andintroducedaneigen-

dynamicsmodel.As previously, thedimensionality of joint angledatawasreducedusing

PCA.Eigendynamicsaredefinedasthemotionof asinglefinger, modelledby a2D linear

dynamic systemin thislowerdimensional eigenspace,reducingthenumberof parameters

from 20 to 10. As in previouswork [149], theglobalposeandfingermotion parameters

wereestimatedseparatelyin aniterativescheme.By usingacostfunctionbasedoninten-

sity edgesaswell ascolour, therobustnesstowardsclutteredbackgroundswasincreased.

Lu et al. [89] suggestedthattheintegrationof multiple cuescanassisttrackingof ar-

ticulatedmotion. In theirapproach,intensityedgesandopticalflow wereusedto generate

forces,which acton a kinematic handmodel. Onelimitationof themethod,however, is

theassumption thatilluminationdoesnotchangeover time.

To summarize,3D handtrackinghasbeenshown to work in principle, but only for

relatively slow handmotionandusuallyin constrainedenvironments,suchasplainback-

groundsor controlledlighting. Theproblemis ill-posedin asingleview, becausein some

configurationsthemotionis verydifficult to observe[15,100]. In orderto dealwith these

ambiguities,mostsystemsusemultiple cameras.

A further issueis the initializationof the3D model. Whenstartingto trackor when

trackis lost,aninitializationor recoverymechanismis required,aspresentedby Willi ams

et al. for region-basedtracking[147]. This problemhasbeensolved eitherby manual

initializationor by findingthehandin afixedpose.Generally, thistaskcanbeformulated

asahanddetectionproblem,whichhasbeenaddressedby view-basedmethods.Thenext

sectiongives ashortreview of thisapproach.

2.1.3 View-base d gesture recognition

View-basedmethodshave traditionallybeenusedfor gesturerecognition.This is often

posedasa patternrecognitionproblem,which maybepartitionedinto componentssuch

asshown in figure2.2. Thesemethodsareoftendescribedas“bottom-up” methods, be-

causelow-level featuresareusedto infer higherlevel information. Themainproblems,

whichneedto besolved in thesesystemsarehow to segmentahandfrom ageneralback-

groundsceneandwhich featuresto extractfrom thesegmentedregion. Theclassification

itself is mostlydoneusinga nearestneighbourclassifieror otherstandardclassification

methods [42]. Generally, the classifieris learntfrom a setof training examplesandas-

signstheinput imageto oneof thepossible categories.In thefollowing paragraphsonly

a few selectedpapersin gesturerecognitionaredescribed.More thoroughreviewscanbe

foundin [105,152].

2 RelatedWork 15

Classification

Segmentation

Feature Extraction

Input Image

Figure2.2: Componentsof a view-basedrecognitionsystem.View-basedrecognitionis oftentreatedasa patternrecognitionproblemanda typicalsystemconsistsof componentsasshownabove. At thesegmentation stage thehandis sepa-ratedfromthebackground. Featuresare thenextracted,andbasedon thesemeasurementstheinput is classifiedasoneof manypossiblehandposes.Theclassifieris designedusinga setof training patterns.

Cui andWeng[34,35] presentedasystemfor handsignrecognition,whichintegrated

segmentation andrecognition. In an off-line process,a mappingwas learnt from local

handsubwindows to a segmentation mask. During recognition, regionsof imagemo-

tion wereidentified,andlocal subwindows of differentsizeswereusedto hypothesizea

numberof segmentations.Eachhypothesiswasthenverifiedby usinga classifieron the

segmentedregion. Featureswereselectedbydiscriminantanalysisandadecisiontreewas

usedfor classification.Thesystemrecognized28 differentsignswith a recognitionrate

of 93%.Thesegmentationstepwasthecomputational bottleneckandtookapproximately

oneminute per frameon anIndigo workstation,whereastheclassificationrequiredonly

about0.1seconds.Anotherlimitationof this approachis theassumption thatthehandis

theonly moving objectin thescene.

TrieschandVon derMalsburg [137] built a handgestureinterfacefor robotcontrol.

Elastic2D graphmatchingwasemployedto comparetwelvedifferenthandgesturesto an

image.Gaborfilter responsesandcolourcueswerecombinedto makethesystemwork in

front of clutteredbackgrounds.Thissystemachieveda recognitionrateof 93%in simple

backgroundsand86%in clutteredbackgrounds.

Wu andHuang[151] introduceda methodbasedon theEM algorithmto combinela-

belledandunlabelledtrainingdata.Usingthisapproach,they classified14differenthand

posturesin differentviews. Two typesof featurevectorswerecompared:a combination

of texture andshapedescriptors,anda featurevectorobtainedby principal component

analysis(PCA) of thehandimages.Thefeaturesobtainedby PCA yieldedbetterperfor-

16 2 RelatedWork

mance,andacorrectclassificationrateof 92%wasreported.

LocktonandFitzgibbon[88] built a real-timegesturerecognitionsystemfor 46 dif-

ferenthandposes,including letterspellingsof AmericanSignLanguage.Their method

is basedon skin colour segmentationandusesa boosting algorithm[46] for fastclassi-

fication. Theuserwasrequiredto weara wristbandsothat thehandshapecanbeeasily

mappedto acanonicalframe.They reporteda recognition rateof 99.87%;this is thebest

recognitionresultachievedso far, however, a limitation of the systemis that controlled

lighting conditionsareneeded.

Tomasiet al. [134] useda classificationapproachtogetherwith parameterinterpola-

tion to track handmotion. Imageintensity datawasusedto train a hierarchicalnearest

neighbour classifier(24 posesin 15 views), classifyingeachframeasoneof 360views.

A 3D handmodelwasthenusedfor visualizing the motion. The parametersfor the 24

poseswereroughlyfixedby handandthemodelparameterswereinterpolatedfor transi-

tionsbetweentwo poses.Thesystemcouldhandlefasthandmotion, but it reliedonclean

skin colour segmentationandcontrolledlighting conditions,in a mannersimilar to that

of LocktonandFitzgibbon.

It mayalsobenotedthatmany otherpapersin gesturerecognition,suchasthesign

languagerecognitionsystemby Starneret al. [128], make heavy useof temporalinfor-

mation. AmericanSign Languagehasa vocabulary of approximately 6,000 temporal

gestures,eachrepresentingoneword. This is differentfrom fingerspelling, whichis used

for dictatingunknown wordsor propernouns.Thehandtrackingstagein [128] doesnot

attemptto recover detail; it recoversonly a coarsedescriptionof thehandshape,aswell

asits positionandorientation.Methodsfrom automatedspeechrecognition,suchashid-

denMarkov models,canbeusedfor thesetasks.Starneretal. reportedarecognitionrate

of 98%usingavocabularyof 40words.

To summarize,view-basedmethodshavebeenshown to beeffectiveatdiscriminating

betweenacertainnumberof handposes,whichissatisfactoryfor anumberof applications

in gesturerecognition. Oneof themainproblemsin view-basedmethods is thesegmen-

tationstage.This is oftendoneby skin coloursegmentation, which requirestheuserto

wearlongsleevesor awristband.Anotheroptionis to testseveralpossible segmentations,

which increasetherecognitiontime.

2.1.4 Single-view pose estim ation

More recently, a numberof methodshave beensuggestedfor handposeestimation from

a singleview. A 3D handmodelis usedto generate2D appearances,which arematched

2 RelatedWork 17

Input Image 3D Model

Segmentation

Feature Extraction Database of Views

Model Projection

Error Function Computation

Classification / Ranking

Figure2.3: Componentsof aposeestimationsystem.Thisfigureshowsthecomponentsof a systemfor poseestimation froma singleframe. A 3D geometricmodelis usedto generate a large numberof 2D appearances,which are storedin adatabase. At each frame, the input image is compared to all or a numberoftheseviews. Either a single poseor a rankingof possible posesis returnedbasedona matchingerror function.

to the image,andthemappingbetween3D poseand2D appearanceis givendirectly by

projectingthemodelinto theimage,seefigure2.3.

Shimada,KimuraandShirai[119] presentedasilhouette-basedsystemfor handpose

estimation from a singleview. A shapedescriptorwasextractedandmatchedto a num-

ber of pre-computedmodels,which weregeneratedfrom a 3D handmodel. A total of

125 poses,eachin 128 views wasstored,giving a total of 16,000shapes.In order to

avoid exhaustive searchat eachframe,a transition network betweenmodelshapeswas

constructed.At eachtimestepa setof hypotheseswaskept,andonly theneighbourhood

of eachhypothesiswassearched.Real-timeperformancewasachievedon a 6 personal

computer(PC)cluster. Infra-red illuminationanda correspondinglensefilter wereused

to improvecoloursegmentation.

Rosaleset al. [113] alsoestimatedthe 3D handposefrom the silhouettein a single

view. The silhouette was obtainedby colour segmentation, and shapemomentswere

usedas features. The silhouette wasmatchedto a large numberof models,generated

by projectinga 3D modelin 2,400differentconfigurationsfrom 86 viewpoints (giving a

total of 206,400shapes).Themappingfrom featurespaceto statespacewaslearntfrom

18 2 RelatedWork

example silhouettesgeneratedby a 3D model.A limitationof thetwo previousmethods

is that thesilhouette shapeis not a very rich feature,andmany differenthandposescan

give riseto thesamesilhouetteshapein casesof self-occlusion.

Athitsos andSclaroff [4, 5] followed a databaseretrieval approach.A databaseof

107,328imageswas constructedusinga 3D model (26 posesin 4128views). Differ-

entsimilarity measureswereevaluated,includingchamferdistance,edgeorientationhis-

tograms,shapemomentsanddetectedfingerpositions.A weightedsumof thesewasused

asaglobalmatchingcost.Retrieval timesof 3-4secondsperframeona1.2GHzPCwere

reportedin thecaseof aneutralbackground.In [6] theapproachwasextendedto cluttered

backgroundsby including a line matchingcosttermin thesimilarity measure.Processing

time increasedto 15 secondsperframe.Retrieval efficiency wasaddressedin [3], where

thesymmetricchamferdistancewasusedasasimilarity measure.Fastapproximationsto

thenearestneighbourclassifierwereexploredto reducethesearchtime. This wasdone

by learninganembeddingfrom theinput datainto Euclideanspace,wheredistancescan

berapidlycomputed,while trying to preserve therelativeproximity structureof thedata.

Poseestimation techniquesfrom asingleview areattractive,becausethey potentially

solve the initializationproblemin model-basedtrackers. In fact, if they wereefficient

enough,they couldbeusedfor poseestimationin eachinput frameindependently. The

observation modelis a key componentwhenadoptinga database-retrieval method.Ide-

ally, the similarity function shouldhave a global minimum at the correctpose,and it

should also be smooth aroundthis minimum to toleratesomediscretizationerror. As

in view-basedrecognition,segmentation is a difficult problem. The methodspresented

above requireeithera cleanbackground[4, 5, 113, 119] or a roughsegmentation [6] of

thehand.

The following sectiongives a brief review of the relatedfield of full humanbody

tracking.

2.2 Full human body trac king

Bothhandtrackingandfull humanbodytrackingcanbeviewedasspecialcasesof track-

ing non-rigid articulatedobjects. Many of the techniquesfor humanbody trackingde-

scribedin the literaturecanbe appliedto handtrackingaswell. Thereforethis section

givesa brief review of methodsusedfor trackingpeople,which is still a very active re-

searcharea.For moreextensive reviews thereaderis referredto thepapersby Aggarwal

andCai [1] andMoeslundandGranum[98].

Despitetheobvioussimilaritiesbetweenthetwo domains,therearea number of key

2 RelatedWork 19

differences.First of all, the observation model is usuallydifferent for handand body

tracking.Dueto clothing,full bodytrackershaveto handlealargervariability, but texture

or colourof clothingprovidemorereliablefeatures,whichcanbeusedfor tracking[107].

Anotheroption is to find peoplein imagesby usinga facedetector. In handtracking,

it is difficult to find featuresthat canbe tracked reliably due to weak texture andself-

occlusion.On theotherhand,skin colouris a discriminative feature,which is oftenused

to segmentthehandfrom thebackground.

Anotherdifferenceis thesystemdynamicsin bothcases.In humanbodymotion, the

relative imagemotion of the limbs is usuallymuchslower thanfor hands.Globalhand

motioncanbeveryfastandalsofingermotion mayonly takeafractionof asecond[134].

Thesefactorsmake thedynamicsof thehandmuchharderto modelthanregularmotion

patternssuchaswalkingor running.However, handtrackingisusuallydonein thecontext

of HCI, andfeedbackfrom higherlevelscanbeusedto interpretthemotion, for example

in signlanguagerecognitionsystems.

As pointedout by Moeslund andGranum[98], mostbody motion capturesystems

makevariousassumptionsrelatedto motionandappearance.Typicalassumptionsarethat

thesubjectremainsinsidethecameraview, that therangeof motion is constrained,that

lighting conditionsareconstant,or thatthesubjectiswearingtight-fitting clothes.Mostof

theseconditions canbemadeto hold in controlledenvironments,e.g. for motion capture

applications. For robustnessin lessrestrictiveenvironments,suchasHCI or surveillance

applications, aninitializationandrecoverymechanismneedsto beavailable.

Trackersbasedon 3D modelshave a relatively long tradition in humanbody track-

ing. The first model-basedtrackerswerepresentedby O’Rourke andBadler [102] and

Hogg[59]. Thesystemof Hoggalreadycontainedall theelementsof figure2.1,namely

a 3D geometricalmodelwith body kinematics,an observation model,anda methodto

searchfor the 3D parameters,which optimally align the modelwith the image. These

issuesneedto beaddressedin everymodel-basedtracker.

Thefirst geometricalmodel,suggestedby Marr andNishihara[92], is a hierarchical

structurewhereineachpart is representedby a cylinder. This model is usedin Hogg’s

trackingsystem[59]. Otherprimitiveshave beenusedsuchasboxesor quadrics,which

includecylinders,conesandellipsoids [19, 48, 95], deformablemodels[79] or implicit

surfaces[106]. Theunderlyingkinematical modelis arrangedin a hierarchicalfashion,

the torsobeingthe root frameof reference,relative to which the coordinatesystemsof

thebodylimbsaredefined.

A numberof differentobservation modelshave beensuggestedto matchthe model

20� 2 RelatedWork

projectionto the image. Examplesof observations usedare: edgecontours[41, 48,

59, 125], foregroundsilhouettes [37, 106], optical flow [19, 125], densestereodepth

maps[54, 106], or multi-view voxel data[95]. Severalworkscombineanumberof these

featuresinto onecostterm.

In somecases,a modelwith weakor no dynamicsis used,andthemodelparameters

areoptimized at eachframe,suchthat they minimize a costfunctionbasedon observa-

tions[37,59,106,125]. Whenadynamicmodelis used,themotion in consecutiveframes

canbepredictedandintegratedwith theobservationwithin a filtering framework. Possi-

ble choicesareextendedKalmanfiltering [79, 95], or versionsof particlefiltering [38].

Thehumanbodydynamicshave beenmodelledwith constantvelocity or constantaccel-

erationmodels[48, 79], switchedlinear dynamicmodels[104] or example-basedmod-

els[122].

Themajority of model-based3D bodytrackersrequiremultiple views in orderto re-

duceambiguity. Thehighdimensionalityof thestatespace,togetherwith self-occlusions

anddepthambiguity make trackingin asingleview anill-posedproblem[100]. Thecost

functionin themonocularestimationproblemis highly multi-modalandthereexist many

possible inversekinematic solutions for oneobservation. Choosingthewrongminimum

leadsto lossof track,thereforereliabletrackingrequiresthemaintenanceof multiple hy-

potheses.SminchisescuandTriggs[125] addressthis problemby usinga costfunction,

which includesmultiple cues,suchas edgeintensityand optical flow, and adopting a

sophisticatedsampling andsearchstrategy in the 30 dimensional statespace.Another,

complementarystrategy to resolvethisambiguity is to learndynamicpriorsfrom training

dataof motions[18, 60,122].

For simple HCI applicationsblob trackersmaybeadequate,for example thePfinder

system[148]. Typically a personis modelledby a numberof ellipsoids, which are

matchedfrom frameto frameusinganappearancedescriptor, suchasacolourhistogram.

IsardandMacCormick[69] combinedblobtrackingwith particlefiltering in theirBraMBLe

system. The body shapewasmodelled asa single generalizedcylinder, andthe system

could track the position of multiple peoplein a surveillanceapplication,wherea static

camerawasassumed.

Therehave beenonly few paperson 3D body poseestimationfrom a single image.

Oneexampleis the methodof Mori andMalik [99] who useda shapecontext descrip-

tor [11] to matchtheinput imageto anumberof exemplar2D views. Theexemplarswere

labelledwith key points, andafter registeringthe input shape,thesepointswereusedto

reconstructa likely 3D pose.This estimation algorithmwasappliedto eachframein a

2 RelatedWork 21

videosequenceindependently.

Anothermethodwaspresentedby Shakhnarovich et al. [117] who generateda large

numberof exampleimagesusing3D animationsoftware. The techniqueof parameter

sensitive hashingwasintroducedto learna hashfunction in orderto efficiently retrieve

approximatenearestneighbourswith respectto bothfeatureandparametervalues.This

approachis verysimilar to themethodof AthitsosandSclaroff [4] for handposeestima-

tion, wheretheproblemwassolved by a fastnearestneighboursearchin theappearance

domain.

In a parts-basedapproachto peopledetection,suchastheoneby Felzenszwalb and

Huttenlocher [44], “bottom-up” and “top-down” methodsare combined. The body is

representedby a collectionof bodyparts,e.g. torso,headandlimbs, andeachof these

is matchedindividually. The body poseis found by optimizing a cost function which

takes the global configurationinto account. Thesemethodsare promising as they re-

ducethesearchcomplexity significantlyandthey have recentlybeenextendedto three-

dimensionalbodytrackingfrom multipleviews [123].

2.3 Objec t detect ion

Oneof themainchallengesin trackingis initializationandrecovery. This is necessaryin

HCI applications, wherethe usercanmove in andout of the cameraview, andmanual

re-initialization is nota desirableoption.Handor full bodytrackingsystemsthatrely on

incrementalestimationanddonothavearecoverymechanismhavebeendemonstratedto

trackaccurately, but notoververy long imagesequences.

Usinga filter thatsupports multiple hypothesesis necessaryto overcomeambiguous

framesso that the tracker is ableto recover. Anotherway to overcomethe problemof

losinglock is to treattrackingasobjectdetectionat eachframe.Thusif thetargetis lost

at one frame,subsequentframesarenot affected. For example, currentfacedetection

systemswork reliably andfast[141] without relying on dynamicmodels.However, de-

tectorstendto give multiple positive responsesin theneighbourhoodof a correctmatch,

andtemporalinformation is usefulto rendersuchcasesunambiguous.

The following subsectionsreview templatematchingtechniques,which have been

introducedin the context of objectdetection. Someof thesemethodshave becomeso

efficient that they canbe implementedin real time systems, e.g. automatedpedestrian

detectionin vehicles[47].

22� 2 RelatedWork

2.3.1 Matching shape templa tes

Template-basedmethodshave yieldedgoodresultsfor locatingdeformableobjectsin a

scenewith no prior knowledge,e.g. for handsor pedestrians[6, 47]. Thesemethodsare

maderobustandefficient by theuseof distancetransformssuchasthechamferor Haus-

dorff distancebetweentemplateandimage[9, 16,62, 64], andwereoriginally developed

for matchingasingletemplate.

Chamfermatchingfor asingleshapewasintroducedby Barrow etal. [9]. It is a tech-

niquefor finding thebestmatchof two setsof edgepoints by minimizing a generalized

distancebetweenthem. A commonapplicationis template-to-imagematching,where

the aim is to locatea previously definedobject in the image. In mostpracticalappli-

cations,theshapetemplateis allowed to undergo a certaintransformation,which needs

to be dealtwith efficiently. No explicit point correspondencesaredeterminedin cham-

fer matching,which meansthat the whole parameterspaceneedsto be searchedfor an

optimum match. In orderto do this efficiently, the smoothnesspropertyof thechamfer

distancecanbe exploited. If the changein the transformationparametersis small, the

chamferdistancechangeis alsosmall. This motivatedthe multi-resolution approaches

of Borgeforsfor chamfermatching[16] andHuttenlocherandRucklidgefor Hausdorff

matching[65]. Borgeforsintroducedthehierarchicalchamfermatchingalgorithm[16],

wherea multi-resolutionpyramid of edgeimagesis built and matchingproceedsin a

coarse-to-finemanner. At thecoarsestlevel, thetransformation parametersareoptimized,

startingfrom points, which arelocatedon a regulargrid in parameterspace.Fromthese

optima thematchesat thenext level of resolutionarecomputed,andlocationswherethe

costincreasesbeyondathresholdarerejectedandnotfurtherexplored.Shapematchingis

demonstratedfor Euclideanandaffine transformations.However, acarefuladjustmentof

steplengthsfor optimizationandrejectionthresholdsis requiredandthealgorithmonly

guaranteesa locally optimal match.

HuttenlocherandRucklidge[65] useda similar approachto searchthe 4D transfor-

mation spaceof translationandindependentscalingof the � – and � –axis. Theparame-

ter spaceis tesselatedat multiple resolutionsandthe centreof eachregion is evaluated.

Boundsonthemaximumchangein costarederivedfor thetransformation parametersand

regionsin parameterspaceareeliminatedin acoarse-to-finesearch.Within thisparticular

4D transformation spacethemethodis guaranteednot to missany match,however, it is

notstraightforwardto extendto othertransformations,suchasrotations.

Bothmethodsweredevelopedfor matchingasingleshapetemplate.Three-dimensional

objectscanberecognizedby representingeachobjectby a setof 2D views. This multi-

2 RelatedWork 23

view basedrepresentationhasbeenusedfrequentlyin object recognition[83]. These

views, togetherwith a similarity transformationcanthenbeusedto approximatethefull

6D transformationspace.In thecasewhentheseshapesareobtainedfrom trainingexam-

ples,they areoftenreferred to asexemplars.

Breuel[21, 22] proposedanalternative shapematchingalgorithmby subdividing the

transformationspace.Thequality of a matchassignedto a transformationis thenumber

of templatepointsthatarebroughtwithin anerrorboundof someimagepoint. For each

sub-regionof parameterspaceanupperboundon this qualityof matchis computed,and

theglobaloptimumis foundby recursivesubdivisionof theseregions.

A key suggestionwasthatmultiple templatescouldbedealtwith efficiently by using

a treestructure[47, 101]. OlsonandHuttenlocher[101] usedagglomerative clustering

of shapetemplates.In eachiterationthetwo closestmodelsin termsof chamferdistance

aregroupedtogether. Eachnodeonly containsthosepoints, which the templatesin the

subtreehave in common. Duringevaluation thetreeis searchedfrom therootandateach

nodemodelpoints, which aretoo far away from an imageedgearecounted.This count

is propagatedto the childrennodesandthe searchis stopped oncea thresholdvalueis

reached.The thresholdvaluecorrespondsto an upperboundon the partial Hausdorff

distancebetweentemplates.This allows for earlyrejectionof models,however, thegain

in speedis only significant if themodelshave a largenumberof pointsin common. For

this to belikely, a largenumber of modelviews is necessaryandit is notclearwhichand

how many viewsto use.

Gavrila [47, 49] suggestedforming thetemplatehierarchyby optimizing a clustering

cost function. His idea is to groupsimilar templatesandrepresentthemwith a single

prototypetemplatetogetherwith anestimateof thevarianceof theerrorwithin thecluster,

whichis usedto defineamatchingthreshold.Theprototypeis first comparedto theimage

andonly if theerror is below thethresholdarethetemplateswithin theclustercompared

to the image.This clusteringis doneat variouslevels, resultingin a hierarchy, in which

the templatesat the leaf level cover the spaceof all possible templates.The methodis

usedin the context of pedestriandetectionfrom a moving vehicle. A three-level tree

is built from approximately4,500templates,which includesa searchover five scales

for eachtemplate.Detectionratesof 60–90%arereportedby usingthechamferdistance

alone.An extensionof thesystemincludesafurtherverificationstepbasedonanonlinear

classifier[47].

An approachto embedexemplar-basedmatchingin a probabilistic tracking frame-

work wasproposedby ToyamaandBlake [135]. In this method,templatesareclustered

24� 2 RelatedWork

usinga � -medioidclusteringalgorithm.A likelihoodfunctionis estimatedasa Gaussian

mixturemodel,whereeachclusterprototypedefinesthecentreof amode.Thedynamics

areencodedastransitionprobabilitiesbetweenprototypetemplates,anda first orderdy-

namicmodelis usedfor thecontinuoustransformation parameters.Theobservation and

dynamic modelsareintegratedin a Bayesianframework andtheposteriordistribution is

estimatedwith a particlefilter. A problemwith templatesetsis that their sizecangrow

exponentially with objectcomplexity.

2.3.2 Hierar chica l class ification

Thissectionpresentsanotherline of work in theareaof objectdetection,whichhasbeen

shown to besuccesfulfor facedetection.Thegeneralideais to slidewindowsof different

sizesover the imageand classifyeachwindow as faceor non-face. Alternatively, by

scalingthe image,a window of the samesize, typically of size ������� pixels, canbe

used.

Thetaskthusis formulatedasa patternrecognitionproblem,andthemethodsdiffer

by which featuresandwhich type of classifierthey use. Most of the papersdealwith

thecaseof singleview detection.Multiple views canbe handledby separatelytraining

detectorsfor imagestaken from otherviews. Variationin lighting andcontrastis either

handledby a normalizationstepduringpre-processing,or by explicitly includinga large

number of trainingexamplesin differentlightingconditions.

Rowley, BalujaandKanade[114] useda neuralnetwork-basedclassifier. After pre-

processing,the sub-window were fed into a multi-layer neuralnetwork, which returns

a real value between �� , correspondingto a face,and ��� , correspondingto no face.

The outputsof different filters were then combinedin order to eliminateoverlapping

detections.

SchneidermanandKanade[115] learnttheappearanceof facesandof non-facepatches

in frontal andside-view by representingthemashistogramsof waveletcoefficients.The

detectiondecisionfor eachwindow wasbasedon themaximumlikelihoodratio.

Romdhaniet al. [112] introduceda cascadeof classifierswhereregionswhich are

unlikely to befaceswerediscardedearly, andmorecomputationalresourceswasspentin

theremainingregions(seefigure2.4).Thiswasdoneby sequentialevaluation of support

vectorsin anSVM classifier.

Viola andJones[141] introducedrectanglefeatures,which aredifferencesof sums

of intensitiesover rectangularregionsin the imagepatch. Thesecanbe computedvery

efficiently by usingintegral images[33, 141]. A cascadeof classifierswasconstructed,

2 RelatedWork 25

C ( )3 I

C ( )2 I

C ( )1

I

Subwindow

Reject

Reject

Reject0

1

0

0

1

1

I

Further Processing

Figure2.4: Cascadeof classifiers. A cascadeof classifiers ��� , ��� , and ��� , with in-creasingcomplexity. Each classifierhasa highdetectionrateanda moderatefalsepositiverate. Subwindows� which are unlikely to containan objectarerejectedearly, and more computational effort is spenton regionswhich aremoreambiguous.

arrangedin successively morediscriminative, but alsocomputationally moreexpensive,

order. Featureselectionand training wasdoneusinga versionof the AdaBoostalgo-

rithm [46].

Li et al. [86] extendedtheapproachof Viola andJonesto multi-view detection.The

rangeof headrotationwaspartitionedsuccessively into smallersub-ranges,discriminat-

ing betweensevendistinct headrotations.An improvedboosting techniquewasusedin

orderto reducethenumberof necessaryfeatures.

It is difficult to comparetheperformanceof themethodspresented,asin somecases

differenttestingdatawasused,in othercasesonly thedetectionrateat a fixed falsede-

tectionratewasreported.Thedetectionratesof all systemsarefairly comparable,how-

ever, thebestperformancehasbeenreportedfor theSchneiderman-Kanadedetector. The

Viola-Jonesdetectoris thefastestsystemfor single-view detection,runningin real-time.

Thequestionariseswhetherthesemethodscouldbeappliedfor detectingor tracking

a hand.An importantdifferencebetweenhandsandfacesis thathandimagescanhave a

muchlargervariationin appearancedueto thelargenumberof differentposes.It would

besurprising to find thatonly a few simple featurescouldbeusedto discriminate hands

from other imageregions. Thus it is necessaryto searchover differentposesas well

as over views. This also meansthat a very large training set is necessary;Viola and

26� 2 RelatedWork

Jonesusednearly 5,000 faceimagesfor single-view detection[141]. There is also a

large variationin handshape,andin mostposes,a searchwindow containingthe hand

will include a larger numberof backgroundpixels. It may be necessaryto usemore

discriminative featuresthanrectanglefilters basedon intensity differences.For example,

Viola et al. [142] includedsimple motion featuresto applytheir framework to pedestrian

detection.If shapeis to beusedasa feature,thenthis framework becomesverysimilar to

thehierarchicalshapematchingmethodsdescribedin section2.3.1.

2.4 Summar y

This chapterhasintroduceda numberof differentapproachesto detecting,trackingand

interpretinghandmotionfrom images.Accurate3D trackingof handor full bodyrequires

ageometricmodel,aswell asaschemeto updatethemodelgiven theimagedata.A range

of handtrackingalgorithmshave beensurveyed, usingsingleor multiple views. The

problemis ill-posed whenusinga singlecamera,anda numberof methodshave been

suggestedto reducethenumberof parametersthatneedto beestimated.A shortcoming

of thesemethodsis the lack of an initialization andrecovery mechanism.View-based

methods couldbeusedto solve this problem. However, view-basedgesturerecognition

systems generallyassumethat the segmentation problemhasalreadybeensolved, and

most of them discriminatebetweena few gesturesonly. Single-view poseestimation

attempts to recover thefull 3D handposefrom a singleimage.This is doneby matching

the imageto a large databaseof model-generatedhandshapes.However, the mapping

from asingle2D view to 3D poseis inherentlyambiguous,andmethodsthatarebasedon

detectionaloneignoretemporalinformation, whichcouldresolveambiguous situations.

In orderto beableto accuratelyrecover3D informationaboutthehandposea3D ge-

ometrichandmodelis essential,andthefollowing chapterpresentsamethodto construct

suchamodelusingtruncatedquadricsasbuildingblocks.

3 A 3D Hand Model Built FromQuadrics

Treatnaturebymeansof thecylinder, thesphere, thecone, everythingbrought

into properperspective.

PaulCezanne(1839–1906)

In thiswork amodel-basedapproachis pursuedto recoverthethree-dimensionalhand

pose.The modelis usedto encodeprior knowledgeaboutthehandgeometryandvalid

handmotion. It alsoallows theposerecovery problemto be formulatedasa parameter

estimation taskandis thereforecentralto this work. In chapter4 the model is usedto

generatecontoursfor trackingwith anunscentedKalmanfilter, andin chapters5 and6 it

is usedto generatetemplates,whichareusedfor shape-basedmatching.

This chapterexplainshow to constructa three-dimensionalhandmodelusingtrun-

catedquadricsasbuildingblocks,approximatingtheanatomyof arealhumanhand.This

approachusesresultsfrom projective geometryin orderto generatethemodelprojection

asa setof conics,while handlingcasesof self-occlusion.As a theoreticalbackground,a

brief introductionto theprojectivegeometryof quadricsis givenin thenext section.For

textbookson this topic, thereaderis referredto [28, 56,116].

3.1 Projec tive geometr y of quadric s and conics

A quadric � is a seconddegreeimplicit surfacein 3D space. It canbe representedin

homogeneous coordinatesasa symmetric���� matrix � . The surfaceis definedby the

points � , whichsatisfytheequation� �!�"� # �%$ (3.1)

27

28� 3 A 3D HandModelBuilt FromQuadrics

x

y

z

d

h

w

(a)

x

y

z

h

dw

(b)

x

y

z

dw

(c)

y0

y1

π0

π 1

x

y

z

(d)

Figure3.1: Examplesof quadratic surfaces. Thisfigure showsdifferentsurfacescor-respondingto the equationsin the text: (a) ellipsoid, (b) cone, (c) ellipticcylinder, (d) pair of planes.

where �&#(' �*)+�,)+-.)/�10 � is a homogeneousvectorrepresentinga 3D point. A quadrichas

9 degreesof freedom.Equation(3.1) is simply thequadraticequation:2 �435�6� � 2 �73 �8� � 2 �73 �,- � 9� 2 �43 �:�8�! 9� 2 �43 �;�<-8 9� 2 �73 �<�=-8 >� 2 �43 ?;�@ >� 2 �73 ?8�! 9� 2 �73 ?A-8 2 ?+3 ?B#C�(3.2)

Differentfamiliesof quadricsareobtainedfrom matrices� of differentranks.Figure

3.1 shows examplesof their geometricinterpretation.Theseparticularcasesof interest

are:

• Ellipsoids, representedby matrices� with full rank. Thenormalimplicit form of

anellipsoidcentredat theorigin andalignedwith thecoordinateaxesis given by� �DE� � �F � - �G � #H��) (3.3)

andthecorrespondingmatrix is givenby

�I# JKKL �M;N � � �� �O N � �� � �P N �� � � ���QSRRT $ (3.4)

Otherexamplesof surfaceswhichcanberepresentedby matriceswith full rankare

paraboloidsandhyperboloids. If thematrix � is singular, thequadricis saidto be

degenerate.

3 A 3D HandModelBuilt FromQuadrics 29

• Conesand cylinders, representedby matrices� with U+V�W:X,YZ�>[�#C\ .Theequationof a conealignedwith the � -axisis givenby� �DE� � � �F � - �G � #]�^) (3.5)

andthecorrespondingmatrix is givenby

�I# JKKL �M:N � � �� � �O N � �� � �P N �� � � �QSRRT $ (3.6)

An elliptic cylinder, alignedwith the � -axis, is describedby� �D � - �G � #H��) (3.7)

andthecorrespondingmatrix is givenby

�I# JKKL �M;N � � �� � � �� � �P N �� � � �_�QSRRT $ (3.8)

• Pairs of planes `ba and `c� , representedas �I#C`dae` � � f`��g` �a with U7V�W:X,Y4�9[h#C� .For example, a pair of planes,which areparallelto the �<- -planecanbedescribed

by theequation: Yi���j��ak[dYl�m�n�o�p[q#]�^) (3.9)

in whichcasesrt#"'u�.)1�v)e�.)/�b��aw0 � and `bxB#y'u�=)/�v)e�.)1�E�o�Z0 � .Thecorrespondingmatrix is given by

�y# JKKL � � � �� � � �{z}|g~g�.|+�l��� � � �� ��z�|g~g�.|+�l�� � ��a8�6�QSRRT $ (3.10)

Coor dinate transf ormations Undera Euclideantransformation� the shapeof a

quadricis preserved,but thematrix representationchanges.Givena point � on quadric� , the equationof quadric �� , on which the transformedpoint �� # ��� lies can be

30� 3 A 3D HandModelBuilt FromQuadrics

derivedasfollows: � � �^� #]� (3.11)� � � Y�� � �%� � [<�]Y��^� � ��[.� #]� (3.12)� Yl�_�{[ � Yl�%� � �9�^� � [�Y����[q#]� (3.13)� �� � �� �� #]�^$ (3.14)

Thusthe matrix � is mappedto a matrix ���#�� � �!�>� � � . The matrix � representsa

Euclideantransformation, and � and � � � canbewritten in homogeneouscoordinatesas�H#��{� �� � ��� and � � � #�� � � � � � �� � � � $ (3.15)

Equivalently, this implies that any quadricmatrix �� , representingan ellipsoid, coneor

cylindercanbefactoredinto components representingits shape,givenin normalimplicit

form asin section3.1,andmotion in form of aEuclideantransformation.

Truncated quadrics By truncatingquadrics,they canbeusedasbuilding blocksfor

modelling morecomplex shapes[109, 130]. For any quadric � thetruncatedquadric �{�canbeobtainedby findingpoints � satisfying:� �!�^��#]� (3.16)

and � �8� �����%) (3.17)

where� is amatrixrepresentingapairof clippingplanes,seefigure3.2. It canbeensured

that ��� � � ��� for pointsbetweentheclipping planes,by evaluatingthisequationfor

a point at infinity in thedirectionof oneof theplanenormalvectors,andif it is positive,

thesignof � is changed.

Projecting a quadric In orderto determinethe projectedoutline of a quadricfor a

normalizedprojectivecamera�� #"'w�m� � 0 , thequadricmatrix � is writtenas�I# ��� �� � � � $ (3.18)

Thecameracentre�

andapoint   in imagecoordinatesdefinearay �¡Y�¢6[q#£'5 �)e¢v0 � in 3D

space.Theinversedepthof apointontheray is determinedby thefreeparameter¢ , such

that thepoint �fY��¤[ is at infinity and �¡Y�¥¦[ is at thecameracentre(seefigure3.3). The

pointof intersectionof theray with thequadric � canbefoundby solvingtheequation�fYl¢6[ � ���fY�¢6[§#]�^) (3.19)

3 A 3D HandModelBuilt FromQuadrics 31

Π

-

-

+

Q

Figure3.2: A truncated ellipsoid. Thetruncatedquadric �>¨ , e.g. a truncatedellipsoid,canbeobtainedbyfindingpointsonthequadric � which satisfy � � � �&��� .

O

x

C

Q

0

X( ) ζ ζX( )

Figure3.3: Projecting a quadric. Whenviewedthrough a normalizedcamera, thepro-jectionof a quadric � ontothe image planeis a conic © . Theray �¡Yl¢=[ de-finedby theorigin anda point   on theconicis parameterizedby theinversedepthparameter¢ , andintersectsthecontourgenerator at �fY�¢�ak[ .

whichcanbewrittenasaquadraticequationin ¢ [28]:� ¢ � ª� � �  �¢� � !� �  &# �^$ (3.20)

Whentherayrepresentedby �fY�¢6[ is tangentto � , equation(3.20)will haveauniquereal

solution ¢/a . Algebraically, thisconditionis satisfiedwhenthediscriminantis zero,i.e. !��Y �«� � � � � [= ¬#]�^$ (3.21)

Therefore,thecontourof quadric � is given by all points   in theimageplanesatisfying  � ©� ­#®� , where ©£# � � � �@� � $ (3.22)

32� 3 A 3D HandModelBuilt FromQuadrics

The \§b\ matrix © representsaconic,whichis animplicit curvein 2D space.For points on theconic © , theuniquesolutionof equation(3.20)is¢¯as#H� � �  � ) (3.23)

which is theinversedepthof thepointon thecontourgeneratorof quadric � .

The normal vector to a conic Thenormalvector ° to aconic © atapoint   canbe

computedin astraightforwardmanner. In homogeneouscoordinatesa line is represented

by a \ –vector ± , andis definedasthesetof points   satisfying±8�8 ²#C�%$ (3.24)

By writing ±³#�'u°�)/� G 0 � , the line is definedin termsof its normalvector ° , andG, the

distanceto theorigin.

Theline ´ which is tangentialto theconicat thepoint  ¶µ·© is given by´A#¸©� ·) (3.25)

for a proof see[56]. For ´E#¹'»ºi�k)eº¼�/)+º¼�+0 � its normalin Cartesiancoordinatesis given as°­#y'»ºl�½)eº¼�p0 � andis normalizedto lengthone.

Projection into multipl e cameras A world point � is mappedto animagepoint  by the \%¬� homogeneouscameraprojectionmatrix

�: ²# � ��#®¾�'w�m� � 0;��) (3.26)

where ¾ is the cameracalibrationmatrix andthe camerais locatedat the origin of the

world coordinatesystem,pointing in the direction of the positive - -axis. If thereare

multiple cameras,the first cameracanbe usedto definea referencecoordinateframe.

All othercamerapositions andorientationsarethengivenrelative to this view, andcan

be transformedinto the normalizedcameraview by a Euclideantransformation¿ . For

example,assumethat� �À#Á¾�'w�%� � 0 is thenormalizedprojectivecamera,anda second

camerais definedas� ��# � �p¿ . Thenprojectingtheworld point � with camera

� � is

thesameasprojectingthepoint ¿Â� in thenormalizedview: &# � �e� # � �p¿]�&$ (3.27)

As seenpreviously, coordinatetransformationsfor quadricscanbehandledeasily. It may

bethecasethata point is not visible in all views, thusocclusionhandlingmustbedone

for eachview separately.

3 A 3D HandModelBuilt FromQuadrics 33

(a) (b)

Figure3.4: The geometric hand model. The27 DOF handmodelis constructedfrom39 truncatedquadrics.(a) Frontview and(b) explodedview areshown.

3.2 Cons tructing a hand model

Thehandmodelis built usinga setof quadricsÃv��ÄÆÅÈÇ8ÉÄSÊ � , approximately representingthe

anatomyof a real humanhand,asshown in figure 3.4. A hierarchicalmodelwith 27

degreesof freedom(DOF) is used:6 for theglobalhandposition, 4 for theposeof each

fingerand5 for theposeof thethumb. TheDOF for eachjoint correspondto theDOF of

a realhand.Startingfrom thepalmandendingat thetips, thecoordinatesystemof each

quadricis definedrelative to thepreviousonein thehierarchy.

The palm is modelledusinga truncatedcylinder, its top andbottomclosedby half-

ellipsoids. Eachfinger consistsof threeconesegments,one for eachphalanx. They

areconnectedby truncatedspheres,representingthe joints. Hemispheresare usedfor

the tips of fingersandthumb. The shapeparametersof eachquadricaresetby taking

measurementsfrom arealhand.

Joining quadrics – an example Figure3.5 illustrateshow truncatedquadricscan

be joined togetherin order to designpartsof a hand,suchasa finger. Theremay be

several ways in which to definethe modelshape.However, it is desirableto make all

variablesdependenton a smallnumberof valuesthatcanbeeasilyobtained,suchasthe

34� 3 A 3D HandModelBuilt FromQuadrics

θ

H

h

w

1f H

rcy1

yc0

0

(a)

θr

0

y1

y0s

s

(b)

Figure3.5: Constructing a finger model fr om quadrics. This figure shows “fingerblueprints” in a sideview. Conesare usedfor finger segments (a) and thejoints (b) are modelled with spheres.Figure (b) is a close-upview of thebottomjoint in (a).

height,width anddepthof a finger. Thesevaluesarethenusedto settheparametersof

thequadrics.Eachfinger is built from conesegmentsandtruncatedspheres.Thewidth

parameterD of the conein figure 3.5 (a) is uniquelydeterminedby the heightof the

segmentF

andtheradiusË of thesphere,whichmodelsthebottom joint:D # F ËÌ F � �nË � $ (3.28)

In orderto createacontinuoussurface,theparameter�.� of thebottomclippingplane(see

figure 3.5b) for thesphereis foundas � Í� # Ë �F ) (3.29)

andfrom this theclippingparametersfor theconearefoundas�6Î� # F �n� Í� and �=Îa #®�6Î� �³Ïv�wй) (3.30)

3 A 3D HandModelBuilt FromQuadrics 35

whereÐ is thesumof thelengthof all threeconesegments, and Ï.� is therationbetween

thelengthof thebottomsegmentto thetotal length.

The projectionof an ellipsoid is an ellipse,andthe projectionof a coneor cylinder

is a pair of lines. The following sectiondescribeshow to obtaintheequationsfor these

projectionsfrom ageneralconicmatrix © in orderto graphthemin theimageplane.The

readerfamiliarwith thesedetailsmayskip thissectionandcontinuewith section3.4.

3.3 Drawing the contour s

Theideawhenplottingageneralconicis to factorizetheconicmatrix © in orderto obtain

its shapein termsof a diagonalmatrix Ñ anda transformationmatrix Ò . Thematrix ©is realandsymmetricandthereforecanbefactorizedusingeigendecomposition:©H#®Ò�Ñ(Ò{�²) (3.31)

where Ò is anorthogonal matrix, i.e. Ò{Ò¬�n#I� and Ñ is a diagonalmatrix containing

the eigenvaluesof © . If a point   lies on the conic representedby Ñ , the transformed

point Ò{  liesonconic © :   � Ñ   #C� (3.32)�  !�ÓYÔÒ � Ò¬[wѶYÔÒ � Ò­[4 ²#C� (3.33)� YiÒ{ «[ � © YiÒ{ «[ #C�%$ (3.34)

Thematrix Ñ representstheconic in its normalizedform, i.e. centredat theorigin and

alignedwith thecoordinateaxes.A generalconic © canthereforebeplottedby findinga

parameterizationfor thenormalizedconicandthenmapthepointsto Ò{  .

• Drawing ellipsoids

A normalizedellipseisplottedbyusingtheparameterization hYiÕp[�#y'»ÖÀׯØvÙ:Õk)hÚtÙ7ÛÜW�Õk)E�10 � .

Fromtheequation   � Ñ  f#H� theradii Ö and Ú canbefoundfrom theelements

in Ñ as Ö^#ÞÝ � G �4�G �4� and Úd#yÝ � G �4�G �4� $ (3.35)

In order to checkwhetherthe ellipse pointsarebetweenthe clipping planes,one

canplot only thepoints � on thecontourgeneratorfor which �²� � ���£� holds.

However, it is moreefficient to explicitly find the endpoints of the archesto be

drawn. For this thecontourgeneratoris intersectedwith theclippingplanes�a and

36� 3 A 3D HandModelBuilt FromQuadrics`�� , andthesepointsprojectedinto theimage.In orderto computetheintersection,

thefollowingparameterizationof thecontourgeneratoron � is used�fYiÕp[ # �  �YiÕp[½)¢<YiÕp[ß� ) (3.36)

where¢,YÔÕp[ is obtainedfrom equation(3.23)as ¢<YiÕp[q# � �Óà   z�áâ�Î . Oneof theclipping

planes is given by `®# � °«ã� G ã¬� $ (3.37)

Thepointsof intersectionof thecontourgeneratorandthis clippingplanearethen

givenby thesolutionsof theequation� �ÓYÔÕp[ ` # � (3.38)� �Ô  � YÔÕp[ �d  � YiÕp[ �� � � °*ã� G ã¬� # � (3.39)� ä  !�ÓYiÕp[ åAæ # � (3.40)� Ö��=�s×1ØvÙ:Õ ªÚA�¤�EÙ7ÛÜW�Õ �v� # �^) (3.41)

wherethe3-vector å is definedasåÂ#]°�ãb � G ã� $ (3.42)

Thesolutions to (3.41)canbefoundusingthesineadditionformula.

• Drawing conesand cylinders

The projectionof conesandcylindersis a pair of lines ´p� and ´i� . Oncethey have

beenfound,they canbeusedto obtaina parameterizationof thecontourgenerator

on � , seefigure 3.6. This contourgeneratoris thenintersectedwith the clipping

planesEa and `t� to find theendpointsof eachline.

Theline equationsareobtainedfrom thematrix Ñ . In thecaseof conesandcylin-

ders,thematrix Ñ hasU+V�W:XB� andbycolumnandrow permutationsit canbebrought

into theform �# JL G � � �� � G ���� � �QT ) (3.43)

whereG � and

G � arepositive. Theequation   � Ñ  ­#®� canalsobewrittenasY+ç � G �/�4�!�� Áç � G ���Z�8�½[èY+ç � G �é�Z�!�@�]ç � G �È�4�8�k[�#]�^) (3.44)

3 A 3D HandModelBuilt FromQuadrics 37

x(t)

π0

π1

Q

l1

l2

C

X= (t)x (t)ζ

Figure3.6: Projecting conesand cylinders. The projectionof a cone(shown here)orcylinder is a pair of lines ´g� and ´i� . In orderto plot them,their endpointsarefoundastheprojectionsof theintersectingpointsof thecontourgeneratorsonthequadric � andtheclippingplanes� � and � � .

which correspondsto thetwo lines � ´4� and� ´i� , representedin homogeneous coordi-

natesas� ´4�§#"'¼ç � G �é��)@ç � G ����)8��0 � and � ´i��#£'êç � G �/��)*�^ç � G ���}),�È0 � $ (3.45)

The two contourlines correspondingto © are then ´7�{#�Ò � ´Z� and ´l�¡#�Ò � ´i� .It canbe verified that if   is on line � ´Æ� , thenthe transformedpoint Ò{  lies on ´w�(analogously for line ´l� ): � ´ � �   #C� (3.46)� � ´ � � YiÒ{�;Ò¬[= &#C� (3.47)� YÔÒ � ´4�p[ � YiÒ{ «[�#C�%$ (3.48)

Usingthenotationfor a line in theimageplane ´�#y'5ë��½)+ëA�1)/� G 0 � , aparameteriza-

tion is given by  hYiÕp[q# JL �Eë,�+Õ� ìë«� Gë«�ZÕ* ³ë,� G�QT ) (3.49)

38� 3 A 3D HandModelBuilt FromQuadrics

where°¡#£'»ë*�½)+ë,�70 � is theunit normalto theline andG

is thedistanceto theorigin.

This canbe verified by showing that the line equation   � YiÕp[:´�#�� holds. The

correspondingcontourgeneratoron � is parameterizedasin equation(3.36),and

oneof the clipping planesasin equation(3.37). The endpoint of the line in the

imageplaneis theprojectionof thepoint in which thecontourgeneratorintersects

oneof the clipping planesasshown in figure 3.6. This meansthat the equation� � YÔÕp[.`�#�� hasto hold andthe valueof Õ at the intersectioncanbe found by

solving � � YiÕp[ ` # � (3.50)� �Ô  � YiÕp[ �b  � YÔÕp[ �� � � °�ã� G ã¬� # � (3.51)� Õ # G YÆ�=�gë«�� í�v�+ë,�½[� í�v��=�gë,�À�³�v�+ë*� ) (3.52)

wherethe3-vector å is definedasin (3.42).By solving thisequationfor theplanes`�� and `b� both line endpointsareobtained.Theendpointsfor line ´w� arefound

analogously.

3.4 Handlin g self-oc clusion

Thenext stepis thehandlingof self-occlusion,achievedbycomparingthedepthsof points

in 3D space.As in equation(3.23), thedepthof a point  hY�¢Èae[ on thecontourgenerator

of a quadric � is obtainedby computing ¢îam#&��Y � �  «[pï � . In orderto checkif  hYl¢¯ak[ is

visible, equation(3.19) is solved for eachof the otherquadrics � Ä of the handmodel.

In orderto speedup thecomputation, it is first checkedwhetherthe2D boundingboxes

of the correspondingconic segmentsoverlap in the image. If this is not the case,the

calculationof theray andconicintersectioncanbeomitted.In thegeneralcasethereare

two solutions ¢ Ä� and ¢ Ä� , yieldingthepointswheretheray intersectswith quadric ��Ä . The

point  hYl¢1ak[ is visible if it is closerto thecamerathanall otherpoints, i.e. ¢�aE�®¢ Äð ñ,ò )4ó ,in which casethepoint   is drawn. Figure3.7 shows examplesof theprojectionof the

handmodelwith occlusionhandling.

The requiredtime for projectingthemodeldependson thenumberof pointsplotted

and the numberof conic sectionsoverlapping in the imageplane. Using 500 contour

points, it takesapproximately10 ms to graphoneprojection,wherethemodelparame-

ter updatetakes1 ms, the generationof 2D imagepoints takes6 ms,andthe occlusion

handling 3 ms. Themeasurementsweremadeon a 1.4 GHz machinewith an Athlon 4

processor.

3 A 3D HandModelBuilt FromQuadrics 39

Figure3.7: Projectedcontoursof the hand model. Thisfigureshowsfour examplesofthe3D model(left) andthecorrespondinggeneratedcontour(right).

3.5 Summ ary

In this chapterit was shown how to constructa three-dimensional handmodel from

truncatedquadrics.For geometricmodelsthat areusedin tracking,thereis typically a

trade-off betweenaccuracy andefficiency. More sophisticatedmodelshave beenused

to modelthe full humanbody, e.g. deformablesuper-quadrics[130] or smoothimplicit

surfaces[106]. Thispermitsmoreaccurateposeandshaperecoveryat thecostof amore

complex estimationproblem.

Varioushandmodelshave beenusedin computergraphicsfor animation purposes.

Commercialsoftwareproducts,suchasVirtualHandandPoser, includepolygonalmesh

modelsof a humanhand,which canbe texturemapped.Even though this softwarehas

beenoriginally developedfor visualizationpurposes,it canalsobe usedfor the taskof

poseestimation[4, 6, 117]. Albrechtet al. [2] recentlypresentedananatomicallybased

handmodel,which incorporatesdetailssuchasmusclecontractionandskindeformation.

The handmodel,which wasdescribedin this chapteris far lessaccuratein that it does

not modellocal deformations.This impliesthatwhenthemodelandthehandarein the

samepose,a residualerrorbetweenmodelprojectionandhandimageremains.However,

it maybeassumedthat this error is not significantfor thepurposeof poserecovery, and

maybetoleratedgiven theefficient contourprojection.

4 Model-Based Tracking Using anUnscented Kalman Filter

We love to expect,andwhenexpectationis eitherdisappointedor gratified,

wewantto beagainexpecting.

SamuelJohnson(1709–1784)

This chapterpresentsa methodfor 3D model-basedhandtrackingbasedon the un-

scentedKalmanfilter (UKF). TheunscentedKalmanfilter is anextension of theKalman

filter to nonlinearsystems.In thehandtrackingapplicationnonlinearityis introducedby

theobservationmodel,which involvesprojectingthe3D modelinto theimage.

Thenext sectiongivesa brief review of Bayesianstateestimationandmotivatesthe

Kalmanfilter for linearsystemsfrom aprobabilistic pointof view. TheunscentedKalman

filter is thenintroducedandappliedto 3D handtracking. Experimentsfrom singleand

dualcameraviewsdemonstratetheperformanceof thismethod.

4.1 Trackin g as probabil istic inf erence

Thissectiongivesabrief introduction to recursiveBayesianestimation, which is thethe-

oreticalplatformfor therestof this thesis.For a morethoroughtreatmentof probability

andestimationtheorythereaderis referredto anumberof textbooks[71, 94,103].

The internalstateof theobjectat time Õ is representedasa setof modelparameters,

which aremodelledby therandomvariable ô á . Themeasurementobtainedat time Õ are

valuesof the randomvariable õ á . Trackingcanbe formulatedasan inferenceproblem:

Givenknowledgeabouttheobservations up to andincluding time Õ , ö*�4÷ á #øÃîö Ä Å áÄSÊ � , the

40

4 Model-BasedTrackingUsinganUnscentedKalmanFilter 41

aim is to find thedistributionof thestateô á :ù YÆô á � ö6�4÷ á [s$ (4.1)

wherethe notationù Ylö á [ is usedasa shorthandfor ù Y�õ á #øö á [ . Two independenceas-

sumptionsaretypically made,whichyield significantsimplifications.

• The first order Markov assumption statesthat the stateat time Õ only dependson

thestateat theprevioustime instantÕ§�è� :ù YÆô á �5ô á � �e)/$/$/$¯)kôE�p[j# ù YÆô á �5ô á � �7[B$ (4.2)

• Thesecondassumption statesthatthemeasurementat time Õ is conditionally inde-

pendentof all pastmeasurementsgiven ô á :ù Y�õ á �5ô á )7ö=�4÷ á � �7[·# ù Ylõ á �5ô á [B$ (4.3)

Stateestimationis typically expressedas a time-orderedpair of recursive equations,

namelya predictionstepanda updatestep. For initialization it is assumedthat ù YÆô%�w[is given, which is the statedistribution in the absenceof any measurement.Whenthe

observation ö;� is obtained,thedistribution is updatedusingBayesrule:ù Y�ôc�«�wõt�p[·# ù Ylö6�î�»ôE�p[ ù YÆôE�p[ú ù Ylö=�î�5ôc�w[ ù YÆôE�p[ G ôc� $ (4.4)

In the predictionstepat time Õ , it is assumedthat the estimate of ù YÆô á � �î� ö6�4÷ á � �7[ from

theprevious time stepis given. The statedistribution givenall previousmeasurements,ù YÆô á � ö.�4÷ á � �7[ , is thencomputedasù YÆô á � ö=�4÷ á � �7[·# û ù YÆô á �5ô á � �7[ ù Y�ô á � �é� ö.�4÷ á � �7[ G ô á � ��$ (4.5)

This relationis alsoreferredto astheChapman-Kolmogorov equation[71]. After obtain-

ing theobservationat time Õ , thedistribution is updatedasfollowsù YÆô á � ö=�4÷ á [¶# � � �á ù Ylö á �»ô á [ ù YÆô á � ö=�4÷ á � �7[�) (4.6)

wherethepartitionfunctionis givenby� á # û ù Yiö á �»ô á [ ù Y�ô á � ö=�4÷ á � �7[ G ô á $ (4.7)

Equation4.6canbeinterpretedasweightinga prior distribution ù Y�ô á � ö=�4÷ á � �7[ , computed

in thepredictionstep,with the likelihood ù Ylö á �»ô á [ . Theposteriordistribution ù YÆô á � ö.�4÷ á [is obtainedby normalizationandis usedin thenext predictionstep.

42�

4 Model-BasedTrackingUsinganUnscentedKalmanFilter

Algorithm 4.1TheKalmanfilter equationsDynamic model:   á # ü á � �g  á � �* ný á � � (4.10)ö á # ¿ á   á ìþ á (4.11)

with ý á!ÿ�� Y � )������Æ[½) þ á!ÿ�� Y � )�� O ��[�$ (4.12)

Initiali zation:   �� )�� �� aregiven. (4.13)

Prediction step:   �á # ü á   �á � � (4.14)� �á # ü á � �á � � ü �á ����� (4.15)

Updatestep: ¾ á # � �á ¿{�á ¿ á � �á ¿{�á � O ��� � � (4.16)  �á #  @�á �¾ á ö á �ì¿ á  @�á � (4.17)� �á # Yi���ì¾ á ¿ á [�� �á (4.18)

Solving the filtering equationsanalyticallyinvolvessolving several integrals, which

areintractablein thegeneralcase.A prominentexceptionis theGaussianprobabilitydis-

tribution function. This is exploitedby theKalmanfilter [80], which is theoptimalfilter

for systemswith lineardynamicsandobservationfunctionwith additive white noise. In

thiscasethedistributionsinvolved areGaussianandthey canberepresentedby their first

andsecondordermoments.TheKalmanfilter is optimal in thesensethat is minimizes

expectedmeansquarederrorof thestateestimate[8]. Usingthenotationfrom [45, 50]ù Y�ô á � ö=�4÷ á � �7[ ÿ� Y  @�á )�� �á [ (4.8)

and ù Y�ô á � ö=�4÷ á [ ÿ� Y   �á )�� �á [ (4.9)

theKalmanfilter equationsaregiven in algorithm4.1. Thesuperscriptsindicatewhether

valuesarecomputedbefore(-) or after(+) thenew measurementö á is obtained.

Thefiltering problembecomesnonlinearif eitherthesystemfunction Ï in  á # Ï á � �1Yi  á � �7[� ný á � � (4.19)

4 Model-BasedTrackingUsinganUnscentedKalmanFilter 43

or theobservationfunctionF

in ö á # F á Yi  á [� nþ á (4.20)

arenonlinear. The vectorsý á � � and þ á representthe systemandobservation noise,re-

spectively. A commonapproachto dealingwith nonlinearityis to linearizetheequations

andapplythestandardKalmanfilter. For example,theextendedKalmanfilter (EKF) [70]

usesa first orderTaylor approximation to the systemandobservation function, assum-

ing that the secondandhigherordererrorsarenegligible. The unscentedKalmanfilter

(UKF) [75, 77,85,138, 144] is basedonstatisticallinearization,andtransformsapproxi-

mationsof thedistributionsthroughthesystemandobservation functions.TheUKF has

shown betterresultsthantheEKF for anumberof estimation problems[75, 139]. A short

motivationandoverview of thealgorithmis givenin thefollowingsection.

4.2 The unsc ented Kalma n filter

TheunscentedKalmanfilter (UKF) is analgorithmfor recursivestateestimation in non-

linearsystems. As in thestandardKalmanfilter, thestatedistribution is representedby a

Gaussianrandomvariable. TheUKF extendstheKalmanfilter to nonlinearsystems by

transformingapproximations of the distributionsthroughthe nonlinearsystemandob-

servationfunctions.This transformationis usedto computepredictionsfor thestateand

observation variablesin thestandardKalmanfilter. Thedistributionis representedby aset

of deterministically chosenpoints, alsocalledsigmapoints[139]. Thesepointscapture

themeanandcovarianceof therandomvariableandarepropagatedthroughthenonlinear

system. This transformationhasalsobeentermedunscentedtransformation [76, 145],

andcanbesummarizedasfollows.

Let ô be an ë -dimensional randomvariablewith mean �  andcovariancematrix � .

First,asetof ��ës ¬� weightedsamplesor sigmapoints, Ã=Yi  Ä ) D Ä [eÅ ���Ä Ê a , with thesamemean

andcovarianceas ô arecomputed.Thefollowing schemesatisfiesthis requirement:  Ä # � q) D Ä #��8ï:Yië9 �8[ for ò #®�  Ä # � Â��� ç Ylë9 �8[���� Ä ) D Ä #£�îï.YÆ�:Yië% �8[7[ for ò #¸�v)/$/$/$¯)+ë  Ä # �  � ç Ylë> ��<[�� � Ä ) D Ä #£�îï.YÆ�:Yië% �8[7[ for ò #�ë9 ®�v)/$1$/$1)k�Èë )(4.21)

where �¶µ�� is a scalingfactorand Y ç Yië9 �8[��d[ Ä denotesthe ò th columnof thematrixç Ylë> �8[�� . The squarerootÌ �

of a positive definitematrix�

is definedsuchthatÌ � Ì � � # �and it can be computedusingCholesky decomposition [77]. These

44�

4 Model-BasedTrackingUsinganUnscentedKalmanFilter

sigma pointshave the samemeanandcovarianceasthe randomvariable ô [75]. Each

point   Ä is thentransformedby thenonlinearfunction Ï� Ä #]ϧYi  Ä [ ) ò #]�.)1$/$/$½)k��ë (4.22)

andthemeanandcovarianceof thetransformedrandomvariableareestimatedas�� # ���� Ä Ê a D Ä � Ä )� | # ���� Ä Ê a D Ä Y � Ä � �� [1Y � Ä � �� [4�²$It canbe shown that theseestimatesareaccurateto the secondorderof the Taylor ex-

pansion[75]. A generalizationto theunscentedtransformhasbeenintroducedrecently,

which addressesthe question of how to set the scalingparameter� andintroducesdif-

ferentweightsfor computing themeanandcovariance[78, 139]. TheunscentedKalman

filter is anapplicationof theunscentedtransformation to recursiveestimation. Thetrans-

formationis usedto computethe predictedstateandcovariancematrix, aswell as the

expectedobservation. In orderto includenoiseterms,thestaterandomvariableis aug-

mentedby thenoisevectors,ensuringthat thesystemnoiseon themeanandthecovari-

anceareintroducedwith thesameaccuracy astheuncertaintyin thestate.An overview

of theUKF algorithmis givenin algorithm4.2.

The UKF hasshown betterperformancethan the EKF in a numberof estimation

tasks[75, 139]. In addition the UKF hasthe advantagethat no Jacobianmatricesneed

to becomputedandthat it is applicablealsoto non-differentiable functions. Recently, it

hasbeenpointedout thattheUKF canalsobederivedusingstatistical linear regression,

wheretheexpectedlinearizationerror is minimized[50, 85,139], which is in contrastto

usingthefirst orderTaylorapproximationata singlepointasin theEKF.

By usingonly thefirst two moments, theUKF still assumesaunimodal statedistribu-

tion. This is inadequatewhenthedistributionsaremulti-modalanda differentrepresen-

tationis neededin thiscase,for examplethesample-basedrepresentationusedin particle

filtering (CONDENSATION) [52, 66]. Bothmethodscanbethoughtof asrepresentingdis-

tribution functionsusingweightedparticlesets. The key differencesare that this set is

chosendeterministically in theUKF andthenumberof pointsrequiredis fixedat ��ë^ í� ,where ë is thestatespacedimension. Particle filters typically usemany moreparticles,

which areobtainedusinga samplingmethod. However, the conceptsof the unscented

Kalmanfilter andparticlefilters canbe usedin a complementaryway, for example the

unscentedtransformhasbeenappliedto generatingproposaldistributionswithin a parti-

clefilter framework [138].

4 Model-BasedTrackingUsinganUnscentedKalmanFilter 45

...

...

COORDINATESTRANSFORM

QUADRICSPROJECT

OCCLUSIONHANDLE DETECT

EDGES

QUADRICSPROJECT

OCCLUSIONHANDLE DETECT

EDGES

COORDINATESTRANSFORM

QUADRICSPROJECT

OCCLUSIONHANDLE DETECT

EDGES

3D MODEL

SHAPEPOSE AND

PROJECTIONMODEL

PROCESSINGIMAGE

PROJECTIONMODEL

PROJECTIONMODEL

PROCESSINGIMAGE

PROCESSINGIMAGE

INPUTIMAGE

INPUTIMAGE

INPUTIMAGE

DYNAMICMODEL

UPDATESTATE

STATEPREDICT

COMPUTEKALMANGAIN

OBSERVATIONPREDICT

REFERENCE CAMERA 2nd CAMERA

GETOBSERVATION

n th CAMERA

KALMANFILTERING

f

t

_x +

t

__x tz

K t

t

__zUNSCENTED

Figure4.1: Flowchart of the UKF tracker. This diagram showsthe processflow forthe tracker during a single time step. The model is projectedinto one ormore camera views and is usedto find local edges. TheUKF computesthepredictedstate !#"$ , aswell asthepredictedobservation %&"$ in ordertocomputetheKalmangainmatrix ' $ . Thesetermsare thenusedto updatetheestimateof thestate !)($ giventhenew observation% $ .

4.3 Objec t trac king using the UKF algorith m

Thissectionoutlinestheapplicationof theunscentedKalmanfilter to model-basedtrack-

ing. A flowchartof thecompletetrackingsystemis givenin figure4.1.

Two dynamic modelsareusedin theexperiments,a constantvelocity anda constant

accelerationmodel. The systemnoiseis modelledasadditive Gaussiannoise. Assume

thattheparameters,whicharetobeestimatedarewrittenasan * -vector +-,/.1032�4656565�4�087:9<; .

A constantvelocity modelassumesthat + $ ,=+ $ " 2?>A@ $)B+ $ " 2 , where @ $ is the difference

betweenCEDGF and C . By stackingtheparametervectorandthevelocityvectorinto asingle

statevector ! $ ,/.H+ ; 4 B+ ; 9 ; , thedynamicequationcanbeconveniently writtenas! $ ,JI ! $ " 2)>LK $ " 2�4 (4.36)

46M

4 Model-BasedTrackingUsinganUnscentedKalmanFilter

where IN,PORQ @ $ QS QUT 5 (4.37)

Similarly the constantaccelerationmodel can be written as a linear systemby aug-

menting the statevector by the accelerationvector suchthat the statevector is given

as ! ,V.1+ ; 4 B+ ; 4)W+ ; 9 ; . In thiscasethesystemmatrix is givenbyIJ, XY Q @ $ Q SS Q @ $ QS S QZ[

(4.38)

All of theabovedynamicmodelsaredescribedby lineartransformations. Nonlinearityis

introducedby theobservation function.Theobservationvector% isobtainedby projecting

themodelinto eachcameraview andfinding local featuresalongvectorsnormalto the

contour. Two differenttypesof featuresareused:

• The input sequencesin the first set of experimentsconsistof greyscaleimages.

In theseexperiments the featuresareedgesin theneighbourhoodof theprojected

contour. Let \:]6^_a` 76bc_ed 2 bea setof contourpointsin theimageof cameraf . For each

point ] ^_ thenormalvector g ^_ is obtainedasexplainedin section3.1andalongeach

normalvectorthestrongestlocaledgeis detected[15, 27, 55]. For thistheintensity

valuesalongthenormalvectorareconvolvedwith aGaussiankernelandthelargest

absolutevalueis labelledasedgelocation hjik] ^_8l .• In asecondsetof experiments,coloursequencesareusedandtheextractedfeatures

arelocal skin colouredges[90]. A colourhistogramin RGB spaceis usedto clas-

sify pixelsinto skinandnon-skinpixels.For thissetof experimentsmeasurements

areonly takenfrom pointsonthesilhouette,andthepointof transition from skinto

non-skincolouris usedastheobservation hji�] ^_ l .Theobservationvector % is constructedby stackingtheinnerproductshmi�] ^_ l ; g ^_ n ,JF34656565�4o* ^ p 4 fR,NF34656565�4o* ^ (4.39)

into a singlevector. The sigmapointscorrespondto pointsin the statespace,symmet-

rically distributed aroundthe currentstateestimate.After transformingthemusingthe

dynamic model, the momentsof the predictedstate, qr"$ and s "$ are computed. Each

sigma point correspondsto a parametervector, which is usedto projectthe modelin a

particularposein order to obtain t% _ . The predictedobservation vector %&"$ at time C in

theUKF algorithmis obtainedby projectingthe handmodelcorrespondingto the state

4 Model-BasedTrackingUsinganUnscentedKalmanFilter 47

Figure4.2: Tracking a pointing hand using local edgefeatures. This figure showsframesfrom a sequence(of 210 frames)while the motionof an openhand.Themotiontracked has4 DOF, including q 4ouv4 and w -translation as well asrotation aroundthe w -axis. Theobservedfeaturesare local intensity edgesanda constantvelocitymodelis used.

vectors t! _ into eachimageandaveragingtheseobservationvectors.Let \ t] ^_a` 76bc_ed 2 denote

thepointsof this predictedobservationin eachview f , thentheentriesin theinnovation

vector i % Dx % " l have theform iyhmi t] ^_ lrD t] ^_ l ; g ^_ 5 (4.40)

A componentof the innovationis thedistancebetweentheaveragecontourpoint t] ^_ and

thecorrespondingfeaturepoint hzi t] ^_ l . Thustheinnovationcanbeinterpretedastheerror

in pixels betweenthe projectionof the handmodelin eachimageandthe edgesin that

image. In order to be scale-invariant it is normalizedby the numberof pointson the

contour.

Therearedifferentoptionsof determiningthesetof contourpoints,whichareusedto

obtaintheobservations. Onepossibility is to keepthenumberof pointsperquadricfixed.

Alternatively, thedistancebetweenthepointscanbekeptconstant.This is theapproach

taken in the experiments, as this hasthe effect that the numberof pointschangeswith

the sizeof the handin the image. If the handis closerto the camera,morepointsare

usedin theobservation thanwhenit is furtheraway. This complieswith theobservation

that thereis a lot of edgedatawhen the handis close,which canbe usedfor a more

accurateestimateof the handpose. Furthermore,differentweight canbe given to the

edgemeasurementatdifferentpartsof thehand.In theexperimentsthesamplerateat the

fingertips is increasedin orderto obtainamoreaccuratemodelfit at theselocations.

48M

4 Model-BasedTrackingUsinganUnscentedKalmanFilter

Figure4.3: Tracking a pointing hand usingtwo calibrated cameras.Thisfigureshowssuccessfultrackingof 6 DOF motionof a pointing hand.Local edge featuresare usedasobservations. Top andmiddle row: Modelprojectedon imagesfrom camera 1 and2, respectively. Bottom row: corresponding 3D poseasseenin view 2.

4.4 Experime ntal results

Theproposedtrackingmethodwastestedin a numberof experiments. Thehandmodel

parametersaremanuallyadustedto matchtheposeof thehandin thefirst frameof each

sequence.

In thefirst setof experimentstheinput imagesaregreyscaleimages,takenin front of

dark background.The first testsequencedemonstratessingle view trackingof a point-

ing handover a sequenceof 210 frames. The tracked handmotion hasfour degreesof

freedom:translationin q , u and w -directionsandrotationaboutthe w -axis. Thedynamics

of thehandis modelledusinga first orderprocess,i.e. usingposition andvelocity. The

handmotionis trackedsuccessfullyover thewholesequence,andtypical framesshown

with themodelcontourssuperimposedareshown in figure4.2. For a singlecamerathe

4 Model-BasedTrackingUsinganUnscentedKalmanFilter 49

Figure4.4: Tracking a pointing hand with thumb extension. This figure showssuc-cessfultracking of 7 DOF motion of a pointing hand using local intensityedges as observations.Top and middle row: Model projectedon imagesfromcamera 1 and2, respectively. Bottom row: corresponding3D poseasseenin view 2.

tracker operatesat a rateof 3 framesper secondon a Celeron433MHz machine. The

computationalcomplexity grows linearlywith thenumberof cameras.

To demonstratetheuseof multiple views two stereosequencesof eighty {3|3}�~L�:�3�greyscaleimagesof a handin front of a dark backgroundwereacquired.The cameras

were calibratedbeforehandusing a calibrationgrid, and the Euclideantransformation

betweenthe two cameraviews wasdeterminedin order to project the model into both

views. Six degreesof freedomweregiven to the handmotion, allowing for full rigid

bodymotion. Thedynamicsof thehandandthumbweremodelledusinga secondorder

process,i.e. usingposition,velocityandacceleration.Thequality of theestimationof the

3D positionandorientationof themodelis demonstratedin figure4.3.Thebottom row of

thefigureshows thecorrespondingposeof the3D model. In a secondexperimentusing

two cameraviews,anadditionaldegreeof freedomwasgivento thumbmotion,allowing

50� 4 Model-BasedTrackingUsinganUnscentedKalmanFilter

frame1 frame300 frame500 frame900 frame1000

frame1300 frame1400 frame1417 frame1418 frame1419

Figure4.5: Tracking an openhand usinglocal edgefeatures.Thisfigureshowsframesfrom a sequence(of 1810frames)while themotionof anopenhand.Themo-tion trackedhas4 DOF, including q 4ouj4 and w -translation aswell asrotationaround the w -axis. Local edge features are usedas observedfeatures andconstantvelocityis assumedfor thedynamicmodel. Track is lost in the lastframes,where thehandundergoesa fastrotationandsuddenlystops,whereasthemodelcontinuesto move.

for themodelling of arbitraryrigid bodymotionplustheflexion of thethumb,simulating

a “point andclick” interface.Figure4.4shows typical framesfrom thetrackedsequence

anddemonstratescorrectestimationof thethumbmotion.

In orderto testthe robustnessof intensity edgefeatures,a sequenceof 1810colour

framesof size {3|�}�~��:��} wascaptured.In thefirst experiment,only local intensity edges

areusedwithout usingany colour information. Thehandis trackedaccuratelyfor 1400

frames,seefigure4.5.At thispoint in thesequencethehandrotatesaroundthe w -axisand

comesto a suddenhalt. This leadsto lossof track,becausethedynamicmodelpredicts

continuedrotation,leadingto incorrectfeatureassociation.It canbeobservedthatwhen

thefinger tips areslightly misaligned,no edgescanbe foundalongthe normalat these

contourpoints. However, themeasurementsat the tips areimportant, asthey arestrong

cuesfor motion componentsin certaindirections. In the secondexperimentthe same

inputsequencewassuccessfullytrackedusingskin-colouredgefeaturesasobservations.

For this an RGB skin-colour histogramwas estimatedfrom the first 10 framesof the

sequence.Usingskin-colour informationhelpsto avoid incorrectfeatureassociation.For

this sequencethe handposition error was measuredagainstmanuallylabelledground

truth. The RMS error for the skin-colourfeatureswas 2.0 pixels, comparedto a 3.1

pixel errorfor intensityedgesmeasuredonthefirst 1400frames,whichweresuccessfully

trackedin bothcases.Figure4.6showstheerrorperformanceoverthecompletesequence.

In anotherexperimenthandmotion of 6 DOF is tracked from a single view using

4 Model-BasedTrackingUsinganUnscentedKalmanFilter 51

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 18000

5

10

15

20

Frame

Pos

ition

Err

or [p

ixel

]

intensity skin−colour

Figure4.6: Err or comparison for differ ent features. Thisfigure showstheerror per-formanceof theUKF filter usinglocal intensity edges(black) or skin-colouredges(red)onthesequencein figure4.5.Errorsweremeasuredagainst man-ually labelledground truth. Skin-colouredgesimprovetrackingperformancebymore robust featureassociation.

frame1 frame15 frame201 frame312 frame480 frame600

frame627 frame720 frame963 frame1308 frame1309 frame1310

Figure4.7: Tracking a pointing hand using skin colour edges. This figure showsframesfrom a sequencetracking 6 DOF usinga singlecamera. Thehandmotionis trackedaccuratelyover1400frames,until thehandis loweredwithhighvelocity, shownin thelast threeimages,which areconsecutiveframesinthesequence.

skin-colour edges,asshown in figure 4.7. The handmotion is tracked accuratelyover

1400frames,until thehandis loweredwith highvelocity, shown in thelastthreeimages.

Theconstantvelocity modelis unableto predictthis motion andthe tracker needsto be

re-initializedbeforetrackingcanresume.

Theexperimentshave demonstratedsuccessfultrackingof smooth handmotion with

limited articulation, namelythumbarticulationin a “point andclick” sequence.Never-

theless,thetracker hasanumberof draw-backs,limiti ng its practicaluse.

4.5 Limit ations of the UKF trac ker

Thissectionbriefly summarizeslimitationsof theapproachpresentedin thischapter.

52� 4 Model-BasedTrackingUsinganUnscentedKalmanFilter

Initiali zation and reco very The tracker usesincrementalestimation andtherefore

requiresmanualinitializationof theposeparametersin thefirst frame.In theexperiments

this is solved by roughlyaligning themodelandstartingthetracker from this initial pose.

However, in an interactive application,possiblywith fasthandmotionor with thehand

leaving thecameraview, it is notdesirableto hold thehandin aparticularposeeachtime

trackhasbeenlost.

Ambig uous poses Whenusinga single view, thereareseveralposeswherea subset

of stateparametersbecomeunobservable,e.g. dueto self-occlusion[15, 39]. In such

casesthe underlying distributionsbecomemultimodalanda tracker, which canhandle

multi-modality hasto beused.SincetheUKF assumesunimodaldistributions,it cannot

handlesuchcases.Theuseof multiple camerascanhelpto resolvesomeof theambigui-

ties.

Feature robustness For thegreyscalesequenceslocal edgesareused,which could

only bereliablydetectedin front of neutralbackground.As soonasbackgroundclutteris

introduced,trackingbecomesunstable. Skincolouredgeshaveshown to bemorereliable.

However, only pointson the silhouettecanbe usedto obtain thesemeasurements,and

thereforeinformation from the internalregion of thehandis not included.Furthermore,

skincolourclassificationis noisyin general,andthefeaturesdisappearcompletelywhen

askin-colouredbackgroundis introduced.

4.6 Summar y

In this chaptera model-basedhandtrackingsystembasedon theunscentedKalmanfil-

ter waspresented.Theobservedfeaturesareintensity edgesor skin-colouredges,found

by local searchalongthecontournormals.Skin-colouredgeshave beenshown to make

trackingmorerobust by improving featurecorrespondence,however, they rely on suc-

cessfulskin-coloursegmentation.Chapter5 examineshow bothedgeandcolourfeatures

canbeintegratedto yield abetterobservationmodel.Thedynamicmodelsusedarecon-

stantvelocity andconstantaccelerationmodels.Thesearereasonablemodelswhenthe

trackedmotion is smooth, but they fail to capturevery fastor abrupthandmotion. The

systemscalesfrom singleto multiple viewsandexperimentsusingsingleanddualcamera

views wereshown. Themain limitationsof theapproacharethat it requiresmanualini-

tialization anddoesnothavea recoverystrategy whentrackis lost. Also, theassumption

4 Model-BasedTrackingUsinganUnscentedKalmanFilter 53

of theUKF of unimodality doesnotholdin severalcases,astherecanbeambiguity when

trackingahandin asingleview.

54� 4 Model-BasedTrackingUsinganUnscentedKalmanFilter

Algorithm 4.2UnscentedKalmanfilter (UKF)Dynamic model: ! $ ,���i ! $ " 2�4�K $ " 2�4�CrD�F�l (4.23)% $ ,��)i ! $ 4�� $ 4�C�l (4.24)

Initiali zation: !r"2 4�s "2 aregiven. (4.25)

Prediction step:

(a) Compute sigma points \�i ! _$ " 2 4o� _ l�`�� 7_ed�� as in (4.21) from the estimateattime C#D�F .

(b) Transform the points ! _$ " 2 and compute moments of the predicted statevariable: t! _$ , ��i ! _$ " 2 4�K $ " 2�4�CrDF�l (4.26) ! "$ , � _ � _ t! _$ (4.27)s "$ , � _ � _ i�t! _$ D� ! "$ l8i�t! _$ D� ! "$ l ; (4.28)

(c) Computemomentsof thepredictedobservation variable:t% _$ , �)i�t! _$ 4�� $ 4�C�l (4.29) % "$ , � _ � _ t% _$ (4.30)s "���o� $ , � _ � _ i�t% _$ Dx % "$ l8i�t% _$ Dx % "$ l ; (4.31)s "����� $ , � _ � _ i�t! _$ D� !r"$ l�i�t% _$ Dx %&"$ l ; (4.32)

Updatestep: ' $ , s "���o� $ i�s "����� $ l " 2 (4.33) !�($ , !#"$ >�' $z� % $ Dx %&"$)� (4.34)s ($ , s "$ D�' $ s "���o� $ ' ;$ (4.35)

5 Similarity Measures forTemplate-Based Shape Matching

I foundI couldsaythingswith colourandshapesthatI couldn’t sayanyother

way– thingsI hadnowordsfor.

GeorgiaO’Keeffe (1887–1986)

The task of robust tracking demandsa robust observation model. In the previous

chapterintensityandcolour edgeshave beenused. Either of thesefeaturetypesis not

reliableenoughin the generalcaseof a clutteredbackground,which may alsocontain

skin-colour. It is thereforenecessaryto examinein moredetail how a handshapecan

be detectedin an arbitrary image. In this chapterthe detectiontask is formulatedasa

templatematchingproblemandit is examinedhow shapeandcolour information canbe

usedto solve it. In termsof imageregions, edgeandskin colourfeaturescanbeseenas

complementary, asthey describetheboundaryandthe internalareaof thehand.A hand

in front of acomplex, but non-skincolouredbackgroundmayberecognizedby its colour,

whereasahandin agreyscaleimagemaystill berecognizedby its shape.Thetwo feature

typesaretreatedseparatelyin thefollowing sections,andarethencombinedinto asingle

costfunctionin section5.4.

Shapecarriessignificant visual informationaboutanobject. In theabsenceof other

cues,peoplecanusuallystill recognizeobjectsby their shape,for example in line draw-

ings. A commonway to extract shapeinformation from an imageis by edgedetec-

tion [25]. Thefirst sectionthereforeexaminesmethodsfor robustshapematchingbased

on distancetransformsandcomparesthemto a numberof methodswhich couldbeem-

ployed.

55

56� 5 Similarity Measuresfor Template-BasedShapeMatching

5.1 Shape matc hing using distance transf orms

Imageedgesprovide a strongcuefor thehumanvisualsystemwhich is often sufficient

for sceneinterpretation[81, 91]. They aretypically representedby asetof featurepoints,

suchasCanny edges.A commonapproach,whentrying to locatea particularobjectin a

scenebasedon its shape,is to useaprototypeobjectshapeandsearchfor it in theimage.

Therearea numberof shapematchingalgorithms. Someof themexplicitly establish

point correspondencesbetweentwo shapesandsubsequently find a transformationthat

alignsthe two shapes.Thesetwo stepscanbe iterated,andthis is theprincipleof algo-

rithms suchas iteratedclosestpoints(ICP) [13, 26] or shapecontext matching [10]. In

orderto converge,thesemethodsrequiregoodinitial alignment,particularlyif thescene

containsaclutteredbackground.

In thiswork adifferentapproachis taken,whichis searchingthetransformationspace

explicitly usingchamferor Hausdorff matching, which are closely relatedtechniques.

Chamfermatchingis anefficient way for matchingshapes,in which themodeltemplate

is correlatedwith adistancetransformededgeimage.Thechamferdistancefunctionwas

first proposedby Barrow et al. [9] andimprovedversionsof it have beenusedfor object

recognitionandcontouralignment. For example, Borgefors[16] introducedhierarchical

chamfermatching,usingacoarse-to-finesearchin thetransformationparameterspaceto

locateanobject.OlsonandHuttenlocher[101] useHausdorff matchingto recognizethree

dimensional objectsfrom differentviews usinga templatehierarchy. Gavrila [47] uses

chamfermatchingto detectpedestrianshapesin realtime. Thechamferdistancefunction

is alsousedby ToyamaandBlake [135] asa robustcostfunctionwithin a probabilistic

trackingframework.

To formalizethe ideaof chamfermatching,the shapeof anobjectis representedby

a setof points � ,U\�¡ _ `£¢�¤_ed 2 . In our case,this is a setof pointson the projectedmodel

contour. The imageedgemap is representedas a set of featurepoints ¥ , \�¦ _ ` ¢¨§_ed 2 .In order to be tolerantto small shapevariations, any similarity function betweentwo

shapesshouldvary smoothly whenthe point locationschangeby small amounts.This

requirementis fulfilled by chamferdistancefunctions, which are basedon a distance

transform(DT) of theedgemap.Thistransformationtakesabinaryfeatureimageasinput

andassignseachlocationthedistanceto its nearestfeature,seefigure5.1. If ¥ is thesetof

edgepointsin theimage,theDT valueat location © containsthevalue ª�«­¬m®k¯ ¥°±° ©²D´³ °±° .A numberof costfunctionscanbedefinedusingthedistancetransform[16], onechoice

beingtheaverageof thesquareddistancesbetweeneachpoint of � andits closestpoint

5 Similarity Measuresfor Template-BasedShapeMatching 57

(a) (b) (c)

Figure5.1: Computing the distancetransform. Thisfigureshows(a) aninputimage, its(b) edge mapand (c) thethresholdeddistancetransformededge map,whichcontainsat each pixel thedistanceto thenearestedgepoint, here representedbygreyscalevalues.

in ¥ : µ·¶y¸�¹�º iy��4o¥�l», F¼ ¹ �¹ ¯ � ª½«±¬®k¯ ¥ °±°�¾ D�³ °­° � 5 (5.1)

Thedistancebetweena template� andanedgemap ¥ canthenbecomputedby adding

the squaredDT valuesat the templatepoint coordinatesanddividing by the numberof

points¼ ¹

. TheDT canbecomputedefficiently usinga two-passalgorithmover the im-

age[16], thustheoperationis linearin thenumberof pixels. It only needsto becomputed

oncefor eachinput imageandcanbeusedto matchmorethanonetemplate.Therefore

largecomputational savingscanbeachievedcomparedto methodsthatexplicitly search

for featurecorrespondencebetweeneachtemplateand the featureimage,for example

by searchingfor edgesalong the normalsto the contour. The DT can alsobe viewed

asa smoothing operationin the featurespace.Without smoothing, the correlationof a

template� with an edgemap ¥ leadsto a sharplypeaked cost function, which is not

robust towardssmall perturbationsof the contour. In contrastto this, the valueof the

function

µE¶y¸�¹�º iy��4o¥¿l in equation(5.1)variessmoothly whenthetemplate� is translated

away from theglobalminimum,therebysmoothing thecostsurface,asillustratedin fig-

ure5.2(c). Thecostfunctioncanbemademorerobustby thresholding theDT imageby

anupperbound.This reducestheeffect of missingedgesandis thereforemoretolerant

towardspartialocclusion.In thiscasethematchingcostbecomesµ�¶y¸�¹�º iÀ�Á4o¥²4�¨lÃ, F¼ ¹ �¹ ¯ � ª½«±¬-Ĩª½«±¬®k¯ ¥ °­°Å¾ D�³ °­° � 4�Â�Æ»4 (5.2)

where is thethresholdvalue.Notethatthechamfercostfunctionis notametric,asit is

58� 5 Similarity Measuresfor Template-BasedShapeMatching

(a) (b)

0 50 100 150 200 250 300 350

0

50

100

150

200

2500

2

4

6

8

10

12

14

16

18

20

xy

d

(c)

0 50 100 150 200 250 300 350

0

50

100

150

200

2500

2

4

6

8

10

12

14

16

18

20

xy

d

(d)

Figure5.2: Chamfer cost function in translation space. This figure shows(a) an in-put imagewith two templatessuperimposed,correspondingto theglobalcostminimumand a local, non-globalminimum. (b) the edge mapof the inputimage. (c) showsthe surfaceof the chamfercostusingnon-oriented edgesgeneratedby translating thecorrect templateover the image, and (d) showsthesurfaceof thechamfercostusingsixedgeorientations.Thepositionof theglobal minimumis the samein bothcases,but the shapeof the costsurfacediffers. A thresholdvalueof ÂÁ,���} is usedin thisexample.

not a symmetricfunction. It canbemadesymmetric, for exampleby defininga distance

asthesum

µE¶y¸�¹�º iÀ�Á4o¥¿l�> µ�¶y¸�¹�º iÀ¥Ç4o�Èl . However, in thecaseof matchinga templateto

animage,theterm

µE¶y¸�¹�º iy¥²4o�½l indicateshow well edgesin thebackgroundmatchto the

model.Sinceweexplicitly wantto handleimageswith clutteredbackground,this termis

notcomputed.

Whenmatchingto imageswith many backgroundedges,theDT imagecontainslow

5 Similarity Measuresfor Template-BasedShapeMatching 59

valueson averageandthereforea singleDT imageis not sufficient to discriminate be-

tweendifferenttemplates.Oneway to handlethissituationis to makeuseof thegradient

directionaswell. Theideais to useadistancemeasure,whichnotonly considersdistance

in translationspace,but alsoin gradientorientationspace.This increasesthe discrimi-

natorypower of the matchingfunction,asdemonstratedby OlsonandHuttenlocherfor

the Hausdorff distance[101]. Eachfeaturepoint i q 4�u�l is augmentedwith the gradient

direction É to obtaina vector Ê�, i q 4�uj4�Ézl�Ë . Given a suitablescalingfactorbetween

distancesin translationandorientation space,the distancetransformcanbe computed

with theanalogoustwo-passalgorithmin threedimensions.However, this is significantly

moreexpensive thanin the2D case.Initial experimentscomputinga 3D distancetrans-

form requiredapproximately4 secondsper frame,whereasa 2D distancetransformcan

be computedin 1.9 ms (for an imagesizeof {3��}Ì~��£��} pixels, timesmeasuredon 2.4

GHz PentiumIV machine).In practicetherangeof orientation is thereforedividedinto¼ÎÍdiscreteintervals,with a typical valueof

¼ÏÍ ,Ð| , which is usedin the experiments

in thischapter. Theedgeimageis decomposedinto¼RÍ

orientationchannelsaccordingto

edgeorientation,whereedgesat theboundaryof two intervalsareassignedto bothcor-

respondingchannels.TheDT is computedseparatelyfor eachchannelandthematching

costsfor eacharethensummedup:µ�¶y¸�¹�º iÀ�Ñ4�¥²4�¨l�, F¼ ¹ ¢¨Ò� _Ód 2 �¹ ¯ �RÔ ª½«±¬ÖÕ#ª½«±¬®k¯ ¥�Ô °±°Å¾ DL³ °±° � 4�Â�× (5.3)

where � _ and ¥ _ arethe featurepointsin orientationchanneln , seefigure5.3. Thesign

of thegradientorientationencodestheinformationwhetherthetransitionis from light to

darkor viceversa.Sincenoparticularbrightnessintensity is assumedfor thebackground,

this informationis discarded,andonly the orientationinterval ØÙDÈÚ � 4�>ÁÚ �£Û is considered.

Figure5.2(d) showsthecostsurfacewhenusingeightorientationchannels,showing that

differencebetweenthevalueof theglobalminimumandany otherlocalminimumonthe

surfaceis increased.

As pointed out above, chamfermatchingavoids the explicit computationof point

correspondences.However, the correspondencescaneasilybe obtainedduring the DT

imagecomputationby storingfor eachvaluein theDT imagethecorrespondinglocation.

Thesecanbeusedto incorporatehigherorderconstraintswithin thecostfunction,such

as continuity or curvaturebetweencorrespondingpoints. Suchconstraintshave been

successfullyusedin othershapematchingapproaches[23, 82,131].

Thechamferdistancefunctionis not invarianttowardstransformationof thetemplate

points, suchastranslation,rotationor scale.Therefore,eachof thesecasesneedsto be

60Ü 5 Similarity Measuresfor Template-BasedShapeMatching

(a) (b)

(c) (d)

Figure5.3: Chamfer matching using multiple orientations. Thisfigure shows(a) aninputimagewith thecorrectlyalignedtemplatesuperimposedand(b) theedgemapof theinputimage. Thecolourscorrespondto differentedgeorientations.(c) Theedgeimageisdecomposedintoa numberof channelscorrespondingtotheseorientations,andthedistancetransform is computedseparately, shownin (d). Here four discrete orientations are usedfor illustration, and eachchannelis of thesamesizeastheinput image.

handledby searchingover the parameterspace. In order to matcha large numberof

templatesefficiently, hierarchicalsearchmethodshavebeensuggested[16, 47].

5.1.1 The Hausdorff distance

This sectionbriefly describestheHausdorff distancefunctionfor shapematching,which

is includedfor comparisonwith othermethodsin the following sections. It is closely

relatedto chamfermatchingandhasbeenusedin anumberof applications [17, 64,101].

5 Similarity Measuresfor Template-BasedShapeMatching 61

Insteadof computing anaveragedistancebetweenpoint sets,Hausdorff matchingseeks

to minimize thelargestdistancebetweenthepoint sets.TheHausdorff distancefunction

betweena point set � anda setof featurepoints ¥ is definedasthemaximum distance

from every point in � to its nearestpoint in ¥ . Becausethis distancecanbedominated

by anoutlier, it is commonto usethepartial Hausdorff distance[64] by takingthe Ý -thrankeddistanceratherthanthemaximum:µ·¸�Þ iy��4o¥²4�Ý�l�, ÝEß�๠¯ � ª½«±¬®k¯ ¥ °±°�¾ D�³ °­° 4 (5.4)

where Ý th denotesthe Ý -th rankedvalue. For examplefor ÝÌ, ° � °Åá � , this is themedian

distancefrom pointsin � to theirclosestpoint in ¥ . Equivalently, insteadof fixing Ý , one

mayfix a maximumdistancevalue @ anddeterminethe fractionof pointswith distance

lessthanthisvalue.This is theHausdorff fraction:� ¸�Þ , ° �Râ °° � ° 4 where � â ,J\ ¾�ã � äϪ½«±¬®k¯ ¥ °­°�¾ D�³ °±°·å @·`·5 (5.5)

An efficient way to computethis valueis to dilate the edgeimageby @ andcorrelateit

with thetemplatepointsin � . Thegradientdirectioncanbeusedin a way analogousto

chamfermatching[101].

5.2 Shape matc hing as linear classifica tion

Both chamferandHausdorff matchingcanbe viewed asspecialcasesof linear classi-

fiers [43]. Let æ be the featuremapof an imageregion of size *�~Lç , for examplea

binaryedgeimage. The template è is of thesamesizeandcanbe thoughtof asa pro-

totypeshape.The problemof recognitionis to decidewhetheror not æ is an instance

of è . By writing theentriesof thematricesè and æ into vectors¡ and ¦ , eachof size*zç , this taskcanbe formulatedasa classificationproblemwith a linear discriminant

function ¡ ; ¦»,�é , with constanté ã�ê . This generalizationalsopermitsgiving different

weightsfor differentpartsof theshape,andallows negative coefficientsof ¡ , potentially

increasingthe costof clutteredimageareas.Felzenszwalb [43] hasshown thata single

templateè andadilatededgemap æ aresufficientto detectavarietyof shapesof awalk-

ing person.Thefollowing sectionlooksat shapematchingfrom a classificationpoint of

view. Eachtemplatecorrespondsto a classifier, which is appliedto a subregion of an

image.Thetargetclassincludesa numberof similar handposes.For chapter6 it will be

important thattheclassifierdetectshandsin certainposes,which correspondto thehand

modelparametersbeingwithin a compactregion in thestatespace.In otherwords,we

62Ü 5 Similarity Measuresfor Template-BasedShapeMatching

seekto constructclassifiersthatare“tuned” to certainregionsin parameterspace.Ideally

onesuchclassifier, whenappliedto asubwindow, shoulddetectahandin theseposesand

rejectall other imagesubwindows, i.e. oneswith the handbeingin a differentposeor

backgroundregions.Consistentwith patternclassificationterminology, thesewill bere-

ferredto asnegative examples.Perfectclassseparabilityis not to beexpected.However,

by setting the detectionthresholdlow in orderto achieve a very high true positive rate,

we still hopeto rejecta significantnumberof negative exampleimages.Themotivation

behindthisis thatsuchclassifierscouldbeusedin acascadedstructure(seesection2.3.2).

Thusmany negativeexamplescouldberejectedearlyat low computationalcost,andmore

computationcouldbespenton subwindows thataremoredifficult to classify. With this

in mind thenext sectionexaminesa numberof differentlinearclassifiersbasedon edge

features.

5.2.1 Comparison of classi fier s

Thissectioncomparesanumberof classifiersin termsof theirperformanceandefficiency.

Thefollowing classifiersareevaluated(illustratedin figure5.4,top row):

• Centre template [Figur e 5.4 (a)]. This classifiercorrespondsto usinga templateè , generatedat the centreof a region in parameterspace. Two possibilities for

thefeaturematrix æ arecompared.Oneis thedistancetransformededgeimagein

orderto computethetruncatedchamferdistanceasin section5.1.For comparison,

theHausdorff fractionis computedasin section5.1.1usingthedilatededgeimage.

The parametersfor bothmethodsaresetby testingtheclassificationperformance

onatestsetof 5000images.Valuesfor thechamferthreshold from 2 to 120were

tested,and ÂÁ,�ë�} waschosen,but little variationin classificationperformancewas

observedfor valueslargerthan20. For thedilationparameter@ valuesfrom 1 to 11

werecompared,with @ì,�{ showing thebestperformance.

• Mar ginalized template [Figur e 5.4 (b), (c)]. In order to constructa classifier

which is sensitive to a particularregion in parameterspace,thetemplateè is con-

structedby denselysamplingthe valuesin this region, and generatingthe con-

toursfor eachstate.Theresultingmodelprojectionsarethenpixel-wise addedand

smoothed.Differentversionsof thematrix è arecompared:

(a) thepixel-wiseaverageof modelprojections,seefigure5.4(b),

(b) thepixel-wiseaverage,additionally settingthebackgroundweightsuniformly

to a negativevaluesuchthatthesumof coefficientsis zero,and

5 Similarity Measuresfor Template-BasedShapeMatching 63

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure5.4: Templatesand feature mapsusedfor edge-basedclassification. Top row: Tem-platesA usedfor classifying edgefeatures.(a) singletemplate, (b) marginalizedtem-platecreatedbyaveragingover a region in parameter space, (c) binary marginalizedtemplate, (d) templatelearnt fromreal image data. Bottom row: Extractedfeaturesfroman image. (e) input image, (f) edge map,(g) distancetransformededge image,(h) dilated edge image.

(c) theunionof all projections,resultingin abinarytemplate,seefigure5.4(c).

• Linear classifier learnt fr om image data [Figur e 5.4 (d)]. The template è is

obtainedby learninga classifieras describedby Felzenszwalb [43]. A labelled

trainingsetconsisting of 1,000positive examplesand4,000negative examplesof

which 1,000containthe handin a differentposeand3,000imagescontainback-

groundregions(seefigure5.5) is usedto train a linearclassifierby minimizing the

Perceptroncostfunction[42, 97].

Twosetsof templatesaregenerated,onewith orientationinformation,andonewithout

it. For orientededgestheanglespaceis subdividedinto six discreteintervals,resultingin

a templatefor eachorientationchannel.

In orderto comparetheperformanceof differentclassifiers,a labelledtrainingsetof

handimagesis collected.Thepositive classis definedasall images,in which thehand

64Ü 5 Similarity Measuresfor Template-BasedShapeMatching

(a) (b)

(c) (d)

Figure5.5: Examplesof training and test images. Thefollowing are exampleimage regionsusedfor training and testing a linear classifier: (a) positive training examples, (b)testimages, (c) negative training examples containing a hand in different poses, (d)negative examplescontaining office scenes asbackground.

poseis within a certainregion in parameterspace.For the following experiments this

region is chosento bea rotationof 30 degreesparallelto the imageplanetogetherwith

a 3 pixel translationin q - and u -direction. Negative examplesare backgroundimages

aswell asimagesof handsin configurationsoutsideof this parameterregion. Theseare

imagesof ahandin variousposes,recordedindependentlyof all threepositiveimagesets,

seefigure5.5 (c). Theevaluation of classifiersis donein threeindependentexperiments

for threedifferenthandposes,an openhand,a pointing handanda closedhand. The

resultswhich were observed consistently in all experimentsare reported,even though

generalizationto otherposesis to be examinedfurther. Eachof the threetestdatasets

contains5000 images,of which 1000are true positive examples. The numberof data

waschosensuchthat theperformanceon a testsetof 5000imagesdid not significantly

improveby addingmoretrainingdata,howeverchoosingtheright sizeof thetrainingdata

setis anopenissue.

5.2.2 Experimenta l results

Thefollowing observationsweremadein theexperiments:

• In all casestheuseof edgeorientationresultedin betterclassificationperformance.

Includingthegradientdirectionis particularlyusefulwhendiscriminatingbetween

positive examples and negative examplesof handimages. This is illustrated in

figure5.6(a)and(b), whichshow theclassdistributionsfor non-orientededgesand

orientededgesin the caseof marginalizedtemplateswith non-negative weights.

5 Similarity Measuresfor Template-BasedShapeMatching 65

−400 −200 0 200 4000

0.01

0.02

0.03

0.04

0.05

0.06

x

p(x)

Non−Oriented Edges − Marginalized Template

pos handneg handneg bg

(a)

−100 0 100 200 3000

0.02

0.04

0.06

0.08

x

p(x)

Oriented Edges − Marginalized Template

pos handneg handneg bg

(b)

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

False Positives

Tru

e P

ositi

ves

ROC curves − Marginalized Template

oriented edges non−oriented edges

(c)

Figure5.6: Including edgeorientation impr oves classification performance. This exampleshowsthe classification results on a testsetusing a marginalizedtemplate. (a) his-togramof classifier output usingedgeswithoutorientation information: handin cor-rect pose (red), hand in incorrect pose(blue) and background regions (black). (b)histogramof classifier output using edgeswith orientation information. Theclassesare clearly betterseparated, (c) thecorresponding ROCcurves.

The correspondingROC curves are shown in 5.6 (c), demonstrating the benefit

of usingorientededges.Theseimprovementsof the ROC curvesareobserved in

differentamountsfor all classifiersandareshown in figure5.7(a) and(b).

• In all experimentsthe bestclassificationresultswere obtainedby the classifier

trainedonrealdata.TheROCcurvesfor aparticularhandpose(openhandparallel

to imageplane)areshown in figure5.7.At adetectionrateof 0.99thefalsepositive

ratewasbelow 0.05in all experiments.

• Marginalizedtemplatesshowedgoodresults,alsoyielding low falsepositive rates

at highdetectionrates.Templatesusingpixel-wiseaveragingandnegativeweights

for backgroundedgeswerefound to performbestwhencomparingthe threever-

sionsof marginalizedtemplates. For this templatethe falsepositive rateswere

below 0.11at adetectionrateof 0.99.

• Using the centretemplatewith chamferor Hausdorff matchingshowed slightly

lower classificationperformancethantheothermethods, but in all casesthe false

positiveratewasstill below 0.21for detectionratesof 0.99.Chamfermatchinggave

betterresultsthanHausdorff matching, ascanbeseenin theROCcurvein figure5.7

(b). It shouldbe notedthat this result is in contrastto the observationsmadeby

Huttenlocher in [61], whereHausdorff matchingis shown to outperformchamfer

matchingin a Monte-Carlosimulation study. However, this maybe explainedby

66Ü 5 Similarity Measuresfor Template-BasedShapeMatching

0 0.1 0.2 0.3 0.4 0.50.5

0.6

0.7

0.8

0.9

1

False Positives

Tru

e P

ositi

ves

Edges

P DataC ChamC HD M (a) M (b) M (c)

(a)

0 0.05 0.1 0.15 0.2 0.250.75

0.8

0.85

0.9

0.95

1

False Positives

Tru

e P

ositi

ves

Oriented Edges

P DataM (a) M (b) M (c) C ChamC HD

(b)

Figure5.7: ROC curvesfor edge-based classifiers. Thisfigure showstheROC curvefor eachof theclassifiers. (a) edge featuresalone, and(b) orientededges. Notethedifferencein scaleof the axes. The classifier trained on real image data (P Data) performsbest,the marginalized templates (M (a), M(b), M(c)) all show similar results, andchamfermatching (C Cham)is slightly better than Hausdorff matching (C HD) inthis experiment. Whenusedwithin a cascade structure, the performanceat highdetection ratesis important.

differencesin the implementation details. Whereasthe íî2 norm anda threshold

valueof ÂÑ,ï� is usedin [61], herethe í � normanda thresholdvalueof ´,�ë�} is

used.Valuesof  in therangeof 2–10weretestedin initial experimentsandwere

found to yield worseresults. Also the experimentalsettings in [61] aredifferent,

wherebackgroundedgesandocclusionsaregeneratedsynthetically andtherotation

aroundthe w -axisis limited to a rangeof 20degrees.

Theexecutiontimesfor differentchoicesof templatesè werecomparedin orderto

assessthecomputationalefficiency. Computingthescalarproductof two vectorsof sizeF�����~îF���� is relativelyexpensive. Onepossibility to reducethecomputational costis touse

anapproximation to thisclassifier, assuggestedby Huttenlocheret al. [63] for Hausdorff

matching, by projectingthetrainingedgeimagesinto aneigenspaceof lowerdimension.

However, this will comeat the costof a likely reductionin classificationperformance.

If the matrix è hasmany zero valuedentries,the computationaltime can be reduced

by avoiding thecorrespondingmultiplications.For chamferandHausdorff matching,the

templateonlycontainsthepointsof asinglemodelprojection.Thenumberof pointsin the

marginalizedtemplatedependson thesizeof theparameterspaceregion it represents.In

5 Similarity Measuresfor Template-BasedShapeMatching 67

ClassificationMethod Numberof Points ExecutionTime ��ð at CñðÑ,A}&5óò�òChamfer 400 13 ms 0.10Hausdorff 400 13 ms 0.12Marginalized Template 5,800 186ms 0.02Binary MarginalizedTemplate 5,800 136ms 0.02TrainedClassifier Template 16,384 524ms 0.01

Table5.1: Computation times for template correlation. Theexecutiontimesfor com-putingthedot productof 10,000image patchesof size F�����~�Fa��� , where onlythenon-zero coefficientsare correlatedfor efficiency, measuredon a 2.4 GHzPCwith PentiumIV. Thelastcolumnshowsthefalsepositive( ôõð ) ratesfor eachclassifier at a fixedtruepositive( öñð ) rateof 0.99.

theexperimentsit containedapproximately14 timesasmany non-zeropoints asa single

modeltemplate. Whenusinga binary templatethe dot productcomputation simplifies

to additions of coefficients. If bothvectorsarein binaryform, a furtherspeed-upcanbe

achievedby usingAND operations.For this thelargervectorscanbesplit up into arrays

of 32-bitsize,i.e. anintegervariable,whicharethencorrelatedusinganAND operation.

Thecorrelationscoreis thenobtainedby countingthenumberof bitssetto one.A further

speed-upcan be obtainedby retrieving the numberof bits by indexing into a look-up

table,however, thishasyet notbeenimplemented.

Theexecutiontimesfor correlating10,000templatesareshown in table5.1.Thetime

for computingadistancetransformor dilation, whichneedsto beonly computedoncefor

eachframewhenchamferor Hausdorff matchingis used,is lessthan2 msandis therefore

negligible whenmatchinga largenumberof templates.

5.2.3 Disc ussion

Theclassifierscanbeobtainedfrom a geometric3D modelor from trainingimages.Dif-

ferentclassifierswerecomparedaccordingto their performanceandexecution time. The

resultssuggestthatusingaclassifiertrainedonrealdatais thebestoption. This is notsur-

prising,asthetemplatescreatedusingthemodelonly approximatethehandappearance,

anddo not attemptto modelarmcontoursor backgroundedges,for example.However,

a drawbackof using this classifieris that a large numberof template points is needed

to evaluatethe classifier. Another factor, which makesthe useof a modelattractive is

thattrainingaclassifierbecomesimpracticalwhenthenumberof posesandviews is very

large,andthusa larger trainingsetis required.Thetemplatesfor chamferor Hausdorff

matching,aswell asthemarginalizedtemplateshave theadvantageof beingeasyto gen-

68÷ 5 Similarity Measuresfor Template-BasedShapeMatching

erateandbeinglabelledwith 3D poseparameters.

Thereclearly seemsto be a trade-off betweencomputation time and classification

performancefor theclassifiers,asshown in table5.1.Whenusedin acascadedstructure,

thedetectionrateof aclassifierneedsto beveryhigh,soasnot to missany truepositives.

Thefalsepositive ratefor eachclassifierat a fixeddetectionrateof 0.99,is given in the

last columnof table5.1. ChamferandHausdorff matching,while having a larger false

positive rate,areabout10-14 timesfasterto evaluatethanmarginalizedtemplatesand

about40 timesfasterthanthetrainedclassifier.

Oneissuethathasbeenleft asidefor themomentarelargescalechangesof thetem-

plate;Thechamfercostof a small templatewith relatively few edgeson a randomedge

imagewill be lower thanthat of a large template[96]. This effect becomessignificant

whensearchingovera largerrangeof scales,andit is treatedin moredetailin chapter6.

In the next sectionthe attentionis shifted from contourto colour information. In

particularit is examinedhow thefact that thehandinterior is skin-colouredcanbeused

in templatematching.

5.3 Modellin g skin colou r

Skin colour in imageshasa characteristicdistribution and this hasbeenexploited by

systems for trackingor detectinghandsor faces[14, 67, 88, 119]. However, the way

in that colour information hasbeenuseddiffers widely, in particularwith regardto the

choiceof a colourspaceandtherepresentationof thedistribution.

JonesandRehg[74] carriedout a thoroughstudyof skin colourmodels.A dataset

of 13,640imageswasusedto obtaindistributionsof skincolourandnon-skincolourval-

ues.A Bayesianclassifier, treatingeachpixel independently, wasdefinedusingdifferent

representationsof the distribution. It wasshown that a RGB-histogramrepresentation,

quantizedto ø�ù�ú bins leadsto bettergeneralizationperformancethana histogramwithû�ü ú or ù3ý û ú binsandit alsooutperformsaclassifierbasedonaGaussianmixturemodel.

Many authorschooseto work in colourspaceswherethebrightnessvalueis separated

from the hue,suchasthe HSV andYUV colour spaces[14, 137]. The intensityvalue

is theneitherweightedlessrelative to the hueor discardedcompletely. Anotheroption

is to work in the intensity normalized þÀÿ�� ��� -space,where ÿ�� ���þ���� ���� � and� �� ���þ���� ���� � . Several studieshave indicatedthat skin tonesdiffer mainly in

theirbrightnessvaluesbut thattheirchrominanceis relativelyconstrainedamongdifferent

people[14,93,154]. Yangetal. [154] suggestmodellingthedistribution asaGaussianinþÀÿ�� ��� -space,anadvantageof thisparametricrepresentationbeingthatit is easyto update

5 Similarity Measuresfor Template-BasedShapeMatching 69

whennecessary. Adaptingcolourmodelsto changesin illuminationcanyield significant

improvementsoverstaticmodels,particularlyoververy long imagesequences[93, 124].

In this work two representationsfor the colour distributionswereused:a Gaussian

distribution in normalized þÀÿ�� ��� -spaceandan RGB-histogramusing ø3ù ú bins. The nor-

malized þÀÿ�� ��� -spaceintroducesinvarianceto brightnesschanges,however, it doesnot

compensatefor changesin illumination colour. The distribution parameterswere esti-

matedfromskincoloursin thefirst frameof asequence,obtainedbymanualsegmentation

andno adaptationwasperformed.TheRGB modelwasconstructedby acquiringa skin

colour datasetof 700,000RGB vectorstaken from onepersonunderdifferent lighting

conditionsover thetimeperiodof oneday. Skinareaswhichwerebrightness-saturatedor

very darkdueto shadows werenot includedin theskin colourhistogram.In practice,it

wasfoundthat this modelwasableto detectskin-colourin a wide rangeof illumination

conditionswhile rejectingmostof thebackgroundareain office scenes.

A costfunctionbasedon colourvaluescanbeconstructedin a numberof ways.One

option is to colour segment the imageandsubsequently matcha silhouette templateto

this binary featuremap. Herea probabilistic approachis takenby deriving a likelihood

function � þ����������! � basedontheimageobservation �"���#� , thecolourvectorsin either þÀÿ�� ��� -or RGB spacein thewhole image.Givena statevector , correspondingto a particular

handpose,thepixels in the imagearepartitionedinto a setof locationswithin thehand

silhouette $&%(')%(*,+�þ� �.- andwithin thebackgroundregion $&%/'0%1*32+¿þ� �.- outsidethe

silhouette. If pixel-wise independenceis assumed,the likelihoodfunctionfor thewhole

imagecanbefactoredas�)þ�� ����� � � � 457698;: =< �0>�þ�?jþ#% �@� 4576BA8C: D< �)EGF:þ�?zþ% �@� (5.6)

� 457698;: =< � > þ�?jþ#% �H�� EGF þ�?zþ% �@� 4576I8�: =<KJ A8;: D< �)EGF:þ�?jþ% �@� � (5.7)

where ?jþ#% � is the colour vectorat location % in the image,and � > and � EGF are the skin

colour andbackgroundcolour distributions,respectively. Note that the secondterm on

theright handsideof equation(5.7) is independentof thestatevector . Whentakingthe

log-likelihood,thisbecomesasumLNMCO � þ�� ����� � � � P576I8;: Q< LNM;O �0>�þ�?jþ#% �@� � P576 A8C: R< LNM;O �)EGF:þ�?jþ% �@� (5.8)

� P576I8;: Q< S LNMCO �0>�þ�?jþ% �@�UT LVM;O �WEGF:þ�?jþ#% �H�WX � P57698;: =<VJ A8;: =<LNMCO �)EGF:þ�?jþ#% �H�ZY (5.9)

70[ 5 Similarity Measuresfor Template-BasedShapeMatching

(a)

(b)

0 50 100 150 200 250 300 350

0

50

100

150

200

250−0.5

0

0.5

1

x

y

d

(c)

Figure5.8: Colour lik elihood in translation space.Thisfigure shows(a) an input im-age with two templatessuperimposed,corresponding to the global optimumanda non-globallocal minimum, (b) the log-likelihood image encodedasagreyscaleimageand(c) thesurfaceof thecolourcost(negativelog-likelihood)generatedby translating thecorrecttemplateover theimage.

Figure5.8(c) showsthecostsurfacein termsof negative log-likelihood,whentranslating

a templateover thesameinput imageasin figure5.2. Becausethecostis computedby

integratingoveranarea,thecostvariescontinuouslywith smallchangesin translation, so

thatin contrastto edgefeatures,it is notnecessaryto smooth thefeatures.

Theindependenceassumption in equation(5.6) is clearlya simplification; thecolour

valuesof neighbouring pixels are not independent.Jedynaket al. [72] suggestusing

a first order model by consideringa pixel neighbourhood, and show that this slightly

improvesskin colourclassification,however at a tenfold increasein computationalcost.

A differentway to circumventtheproblemis to applyfilters with local supportat points

onaregulargrid ontheimage.Thefilter outputsarethenapproximatelyindependent[69,

129]. Howeverthepixel-wiseindependenceassumptiongivesreasonableapproximations

andleadsto a form of thelikelihoodfunctionthatis efficient to evaluate.

5 Similarity Measuresfor Template-BasedShapeMatching 71

5.3.1 Comparis on of class ifier s

Experimentsanalogousto theonesfor shapeclassifiersin section5.2.1werecarriedout.

In this section,however, the linear classifiersarebasedon the silhouette areain order

to evaluatethecolour likelihoodof an imagesubwindow. Usingsubwindows insteadof

the completeimagelimits the effect of backgroundpixels that areskin coloured. They

alsomake it straightforward to detectthe presenceof morethanonehandin the scene.

As in section5.2.1,onesuchclassifierhasa numberof handshapesasthe target class,

correspondingto a rangewithin theparameterspace.

Givenan input imageregion, definethe featurematrix \ > asthe log-likelihoodmap

of skin colour and \ EGF asthe log-likelihoodmapof backgroundcolour. Skin colour is

representedasa Gaussianin þÀÿ�� ��� -spaceandthebackgrounddistribution is modelledas

a uniform distribution. A silhouette template ] is definedascontaining +1 at locations

within thehandsilhouette and ^ otherwise.Writing thesematricesasvectors,analogous

to section5.2,thelog-likelihoodin equation(5.8)canbewrittenas:LNM;O � þ�� ����� � � � _W`0a > ��þcb T _ � `0a EGF (5.10)� _W`#þ�a > T a EGF � �db;`0a EGF � (5.11)

where be�gfih;� YIYjY �Ihjk ` is theone-vectorandtheentriesin a EGF areconstantwhenusinga

uniformbackgroundmodel.Thus,correlatingthematrix \l�d\ > T \ EGF with asilhouette

template] correspondsto evaluatingthelog-likelihoodof aninput regionup to anaddi-

tiveconstant.Notethatwhenthedistributionsarefixed,thelog-likelihoodvaluesfor each

colourvectorcanbepre-computedandstoredin a look-uptablebeforehand.A number

of differentclassifierswerecompared(illustratedin figure5.9,top row).

• Centre template [Figur e 5.9(a)]. Thisclassifiercorrespondsto usinga silhouette

template] , generatedat thecentreof a region in parameterspace.Thevaluesof] within the silhouette areaaresetto one,the valuesin the backgroundto zero.

This correspondsto evaluating the log-likelihood of thecentretemplateaccording

to equation(5.11).

• Mar ginalizedtemplate[Figur e5.9(b), (c)]. Thistemplateisgeneratedby densely

samplingthevaluesin aregionof parameterspaceandgeneratingthesilhouettesfor

eachstate.Theresultingmodelprojectionsarethenpixel-wiseaddedanddifferent

versions of matrices] arecompared:

(a) thepixel-wiseaverageof modelprojections,seefigure5.9(b),

72[ 5 Similarity Measuresfor Template-BasedShapeMatching

(a) (b) (c) (d)

(e) (f)

Figure5.9: Templatesand featuremapsusedfor colour-basedclassification. Top row: Tem-plates A usedfor classifying colour features. (a) single template, (b) marginalizedtemplatecreated by averaging over region in parameter space, (c) template learntfrom real image data. Bottom row: Extracted features from an image. (d) inputimage, (e) log-likelihoodimage of skincolour, representedasgreyscaleimage.

(b) theunionof all projections,resulting in abinarytemplate,seefigure5.9(c).

• Linear classifier learnt fr om image data [Figur e 5.9 (d)]. The template ] is

obtainedby learninga classifierfrom training data. The sametraining setas in

section5.2.1(seefigure5.5) is usedto traina linearclassifierusingtheskincolour

log-likelihoodmapastrainingdata.

5.3.2 Experimenta l results

The sametestdatasetas in section5.2.1 is usedthroughoutthe experiments,and the

following observationsweremade:

• For the imagesin the test set colour information helpsto discriminate between

positive examplesof handsandbackgroundregions. However, thereis significant

overlapbetweenthe positive andnegative classexampleswhich containa hand.

5 Similarity Measuresfor Template-BasedShapeMatching 73

−1000 0 1000 2000 30000

0.05

0.1

0.15

0.2

x

p(x)

Histograms − Centre Template

pos hand neg hand background

(a)

0 0.1 0.2 0.3 0.4 0.50.5

0.6

0.7

0.8

0.9

1

False Positives

Tru

e P

ositi

ves

ROC curves − pos hand vs. neg hand

Oriented EdgesColour

(b)

0 0.1 0.2 0.3 0.4 0.50.5

0.6

0.7

0.8

0.9

1

False Positives

Tru

e P

ositi

ves

ROC curves − pos hand vs. background

Colour Oriented Edges

(c)

Figure5.10: Colour information helps to exclude background regions. Thisexampleshowsthe classification results on a test set using a centre template. (a) histogram ofclassifier output using a skincolour log-likelihoodhand in correct pose(red), handin incorrect pose (blue) and background regions (black). (b) ROC curveshowingthat oriented edges are better than colour featuresfor discriminating between thehand in the correct poseand the handin incorrect pose. (c) ROC curve showingthat colour featuresare better than oriented edgesfor discriminating between thehandin thecorrectpose andbackground regions.

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

False Positives

Tru

e P

ositi

ves

ROC curves − pos vs. all neg

P DataC M (a) M (b)

(a)

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

False Positives

Tru

e P

ositi

ves

ROC curves − pos hand vs. neg hand

P DataC M (a) M (b)

(b)

Figure5.11: ROC curves for colour-basedclassifiers. This figure showsthe ROC curvesforeach of theclassifiers. (a) Theclassifiers basedon thecentre (C) andmarginalizedtemplates (M (a), M(b)) have similar performance, whereasthe trained classifier(P Data) does not perform aswell in regionsof high detection rates. (a) TheROCcurvesonly for classifying positiveexamplesandnegativeexampleimagescontain-ing a hand, where thetrainedclassifier(P Data) performsbetter.

74[ 5 Similarity Measuresfor Template-BasedShapeMatching

This is demonstratedin figure5.10(a),which shows a histogramof thethreeclass

distributions for the caseof the marginalizedtemplate. Orientededgesare bet-

ter featuresto discriminatebetweenthe handin differentposes(figure 5.10 (b)),

whereascolour featuresareslightly betterat discriminating betweenthe positive

classandbackgroundregions(figure5.10(c)).

• Both centretemplateandmarginalizedtemplatesshow betterclassificationperfor-

mancethanthe trainedclassifier, in particularin thehigh detectionrange,seefig-

ure5.11(a). At detectionratesof 0.99thefalsepositiveratefor thecentretemplate

is 0.24,wherasit is 0.64for thetrainedclassifier. Oneexplanationfor thisis thedif-

ferencein lighting conditionsunderwhich thetrainingandtestsetswereacquired,

leadingto templatecoefficients for backgroundregions, which do not generalize

well. Working in the normalizedþÀÿ�� ��� -spaceonly giveslimited variancetowards

illuminationchanges.However, the trainedclassifiershows betterperformanceat

separatingpositive examplesfrom negative example imagescontaininghands,see

figure5.11(b). At a detectionrateof 0.99,thefalsepositive rateis 0.41compared

to 0.56for theothertwo classifiers.

• Thereis not muchdifferencebetweenthe performanceof marginalizedtemplates

andthe centretemplate.The reasonfor this could be that the areadifferencebe-

tweenthemis relatively small comparedto the correspondingtypesof edgetem-

plates.

Themethodswerealsocomparedin termsof computation time. Thetime measured

for computing 10,000correlationsof templatesof size haùCmon�haùCm is 524 ms (seeta-

ble 5.1). However, for binary templatesthe evaluation canbe performedefficiently by

pre-computing a sumtable, \ >�prq , whichhasthesamesizeastheimageandcontainsthe

cumulativesumsalongthe s -direction:

\ >�pZq þts=�vu � � wx y z|{ S LVM;O �0>�þ�?jþ�}H�vu �@�~T LVM;O �)EGF:þ�?jþ�}@�vu �@� X � (5.12)

wherein this equationtheimage? is indexedby its s and u -coordinates.This arrayonly

needsto becomputedonceandis thenusedto computesumsover areasby addingand

subtracting valuesatpointsonthesilhouettecontour, seefigure5.12.This is aconvenient

techniqueto convert areaintegrals into contour integrals. As suchit is relatedto the

summedareatablesof Crow [33], the integral imagesof Viola andJones[141], andthe

integrationmethodbasedonGreen’s theoremof JermynandIshikawa[73]. Comparedto

5 Similarity Measuresfor Template-BasedShapeMatching 75

(a) (b)

Figure5.12: Efficient evaluation of colour lik elihoods. (a) Theskincolour log-likelihood im-ageencodedasa greyscaleimage. Higherintensitycorrespondsto higher likelihoodof skin vs. non-skin colour. (b) Thesumtable contains the cumulativesumof val-uesin image (a) along the � -direction. Thesumof valuesin within an areacanbeefficiently computed by adding andsubtracting valuesat silhouettepointsonly. Thegreyscaleintensitiesare scaled to therange [0,255] in bothimages.

integral images,thesumover non-rectangularregionscanbecomputedmoreefficiently,

and in contrastto the techniqueof Jermynand Ishikawa the contournormalsare not

needed.In contrastto thesemethods, however, the modelpointsneedto be connected

pixels, e.g. obtainedby line-scanninga silhouette image. The computation time for

evaluating 10,000templatesis reducedfrom 524 ms to 13 ms for a silhouette template

of 400points. As thecomputation of thesumtable \ >�pZq is only computedonce,this is

negligible whenmatchinga largenumberof templates.

5.4 Combining edge and colou r inf orma tion

In theprevioussectionssimilarity measuresbasedon edgeandcolour informationhave

beenderived. Whencombiningthe two features,they canbe stacked into a single2D

observation vector ���Ðþ����#� F �7�v� ����� � ` . In a first approach,theedgeandcolourcostterms

arecomputedfor a numberof test images. Figure5.13shows a graphof the distribu-

tionsof thecostvectorsfor 1000positive and1000negative exampleimagesubregions.

Positive examplescorrespondto a handbeingin a posecorrespondingto the parameter

rangerepresentedby theclassifier. Negative examplescorrespondto thehandin differ-

entposesandbackgroundregions. Theplot shows that for thetestimagesthat theclass

overlapis not largeanda lineardiscriminantis usedto separatethetwo classes,yielding

76[ 5 Similarity Measuresfor Template-BasedShapeMatching

0 5 10 150

0.1

0.2

0.3

0.4

0.5

0.6

Edge Cost

Col

our

Cos

t

Matching Cost Distributions

Figure5.13: Determining the weighting factor in the cost function. Thedistributionof edge and colour cost valuesfor a numberof positive(lower left) andnegativetraining examples(upperright) is shown,andthe linear classifierfoundusinga maximummargin linear classifier. Theweightingfactor is setto thenegativeinverseof theslopeof this line.

a total misclassification rateof 4.8%on this dataset. Usinga lineardiscriminantcorre-

spondsto simplyusingaweightedsumof theedgeandcolourcostterms[14], wherethe

weighting factoris derivedfrom thedatadirectly in orderto yield optimalclassification

performanceon a testset. Experimentsfor threedifferentclassifiers,correspondingto

thehandin differentposes,but at thesamescale,show that this weightingfactorvaries

litt le for differenttemplates.A methodto combinethetwo featureswithin aprobabilistic

framework is presentedin chapter6.

5.4.1 Experimenta l results

In order to test the integration of shapeandcolour informationa setof 500 templates

wasgenerated,correspondingto 100discreteorientationsandfive differentscales.The

templatesarematchedto animageby translatingit over theimageat a6-pixel resolution

in s andu -direction. Theweightedcostfunctionwasusedtodetectahandin thefollowing

scenarios:

5 Similarity Measuresfor Template-BasedShapeMatching 77

Input Image Edges ColourLikelihood DetectionResult

Figure5.14: Detectionwith integrated edgeand colour features. This illustrative ex-ampleshowshowa costfunction thatusesedgeandcolourfeaturesimprovesdetection.For each input image thebestmatch is shownin thelast column.(Top row) Handin frontof clutteredbackground,and(bottom row) handinfront of face.

• A handin front of clutteredbackground,which containslittle skin colour: In this

casethehandis difficult to detectusingedgeinformationalone.Thecolourlikeli-

hood,howeverallows for correctdetection(Seetop row of figure5.14).

• A handin front of a face: In this examplethereis not enoughskin colour infor-

mationto detectthehand,however thehandedgesarestill visible andareusedas

featuresto correctlylocatethehand(Seebottomrow of figure5.14). Themethod

of extractingskincolouredges(section4.3)clearlyfails in thisexample.

This illustrative exampleshows that using a robust cost function can improve the

performanceof handdetectionor trackingalgorithmsthat useintensity or skin colour

edgesalone.

In thesecondexperiment,an input sequenceof 640 frameswasrecorded.Thepose

is anopenhand,parallelto the imageplane,andit movedwith 4 DOF; translationin s ,u , and � -direction,aswell asrotationaroundthe � -axis.Thetaskis madechallengingby

introducing a clutteredbackgroundwith skin-colouredobjects.Thehandmotionis fast,

andduring the sequencethe handis partially andfully occluded,aswell asout of the

cameraview. Thesamesetof 500templatesis usedto searchfor thebestmatchover the

image.No dynamicmodelis usedin thissequence,becausethehandleavesandre-enters

thecameraview severaltimes.

78[ 5 Similarity Measuresfor Template-BasedShapeMatching

Figure5.15 shows typical resultsfor a numberof framesof this sequenceandfig-

ure5.16shows thepositionerrormeasuredagainstmanuallylabelledgroundtruth. The

RMSerroroverthecompletesequencefor theframesin whichthehandwasdetected,was

3.7pixels. Themainreasonfor themagnitudeof this erroris thecoarsesearchat 6-pixel

resolution in translationspace.Assuming a uniform distribution on thehandlocationin

the image,the expectedRMS error is larger than1.5 pixels. The UKF algorithmfrom

chapter4 wasalsorun on this input sequence,but it wasnot ableto track the handfor

morethan20 frames.Themain reasonis thatneitherintensitynor colouredgefeatures

alonearerobustenoughfor this experiment.Anotherreasonfor the lossof track is that

the motion in this sequenceis fastandabrupt,so that neithera constantvelocity nor a

constantaccelerationmodelis accurate.

5.5 Summar y

Whentrackinghandsin an unconstrainedenvironment, it is importantto designrobust

costfunctions. Integrating edgeandcolour informationleadsto robust similarity mea-

sures,asthe featurescomplementeachother. For example,colour is very usefulwhen

edgeinformationis unreliabledueto fasthandmotion. On theotherhand,edgeinforma-

tion allowsaccuratematchingwhenthehandis in front of skincolouredbackground.

In this chaptera numberof differentsimilarity measuresfor templatematchingwith

shapevariationwereconsidered.If a trainingsetof shapesis available,a linearclassifier

can be trainedwhich hashigh discriminative power. It can give different weightsto

differentpartsof theshapeandis ableto penalizebackgroundedges.However, it is also

expensiveto evaluate.Marginalizedtemplateshavebeenintroducedasamethodto usean

objectmodelto constructaclassifier, which is specifically“tuned” to aspecificregionof

parameterspace.They canbeefficiently evaluated,for exampleby approximating them

with abinaryvaluedtemplate.Finally, templatesgeneratedfrom asinglecontour(“centre

templates”in theexperiments),canbe usedto classifyshapes.However it is necessary

to pre-processtheedgeimagefirst, e.g. by a dilation operationor a distancetransform,

in order to be tolerantto shapevariation. The main advantageof this approachis that

it is very efficient becausethe pre-processingstepis only requiredonceper imageand

matchingasingletemplateis fast.

Thecolourcosttermis basedon independentpixel likelihoodsandcanbeevaluated

usingsilhouetteareatemplates.In mostcasesskincolourhasacharacteristicdistribution,

which is distinctfrom mostbackgroundregions.This chaptermadea numberof simpli-

fying assumptionsin deriving thecolour likelihood,including the independenceof pixel

5 Similarity Measuresfor Template-BasedShapeMatching 79

likelihoods,auniformbackgroundcolourmodel,aswell aslimitedilluminationchanges.

It was found that a representationusing a quantizedRGB histogram obtainedfrom a

imagestakenundera varietyof illuminationconditionswasstill ableto discriminatebe-

tweenskin-colourandmostof thebackgroundregions. Finally, by usingpre-computed

sumtablestheevaluation costof thecolour likelihoodtermis proportionalto the length

of thesilhouettecontourinsteadof its area.

Thedetectionresultsin thischapterweredemonstratedfor asinglehandposeonlyand

it remainsto beshown that themethodworksfor arbitraryhandposes.In thefollowing

chaptermany ideasthathave beendevelopedup to herewill becomingtogetherto build

a handtrackingsystem. The main idea is to usethe robust cost function developed in

thischapter, whereit wasusedfor detectionateachframeandapplyit within anefficient

temporalfiltering framework.

80� 5 Similarity Measuresfor Template-BasedShapeMatching

Frame# Input Image Edges ColourLikelihood DetectionResult

0

100

250

257

390

516

598

Figure5.15: Detection resultsusing edgeand colour information. Thisfigure showssuccessfuldetectionof an open hand moving with 4 DOF. The first twocolumnsshowtheframenumberandthe input frame, thenext two columnsshowtheCannyedge mapand the skincolour likelihood. Thelast columnshowsthe bestmatch superimposed, if the likelihood function is above aconstant threshold. The sequenceis challengingbecausethe backgroundcontains skin-colouredobjects(frame 0) andmotionis fast,leadingto mo-tion blur and missededges. Thedetectionhandlessomepartial occlusion(frame 100), recovers from lossof track (frames 257,390), can deal withlighting changes(frame 516)andunsteadycamera motion(frame 598).

5 Similarity Measuresfor Template-BasedShapeMatching 81

Figure5.16: Err or comparison betweenUKF tracking and detection. This figureshowsthe error performanceof the UKF tracker and detectionon the im-age sequencein figure 5.15. Thehandposition error wasmeasuredagainstmanually labelledgroundtruth. Theshadedareas(blue) indicateintervalsin which the handis either fully occludedor out of camera view. Thede-tectionalgortihmsuccessfullyfindsthehandin thewholesequence, whereastheUKF tracker usingskin-colouredgesis onlyableto track thehandfor afew frames.Thereasonsfor the lossof track is that thehandmotionis fastbetweentwo framesand that skin-colouredgescannotbe reliably foundinthis inputsequence.

6 Hand Tracking Using AHierar chical Filter

Hewhoplantsa treeplantsa hope.

Lucy Larcom(1824–1893)

The taskof robust trackingdemandsa strategy for detectingthe object in the first

frame,aswell asfinding theobjectwhentrack is lost. This is particularlyimportant for

HCI applications, wherehandmotioncanbe fastandit is difficult to accuratelypredict

themotion.

A secondchallengeis thattherecanbea lot of ambiguity dueto self-occlusionwhen

usinga single input image. Several differenthandposescangive rise to the sameap-

pearance,for examplewhensomefingersareoccludedby otherfingers. In suchcases

dynamic informationcanhelpto resolve theambiguity.

This chapteraddressesboth issuesandproposesanalgorithmfor Bayesiantracking,

which is basedon a multi-resolutionpartitioning of the statespace. It is motivatedby

methods introducedin thecontext of hierarchicaldetection,which arebriefly outlinedin

thenext section.

6.1 Tree-based detectio n

Methodsfor detectingobjectsarebecomingincreasinglyefficient. Examplesarereal-time

facedetectionor pedestriandetection[47, 86, 141]. However, applyingthesetechniques

to handdetectionfrom a singleimageis difficult becauseof the largevariationin shape

andappearanceof a handin differentposes.In this casedetectionandposeestimation

are tightly coupled. Oneapproachto solving this problemis to usea large numberof

82

6 HandTrackingUsingA HierarchicalFilter 83

shapetemplatesandfind thebestmatchin the image.In exemplar-basedmethods, such

templatesareobtaineddirectlyfrom thetrainingsets.Thishastheadvantagethatnopara-

metricmodelneedsto be constructed[18, 47, 135]. For example,Gavrila usesapprox-

imately4,500shapetemplatesto detectpedestriansin images[47]. To avoid exhaustive

search,a templatehierarchyis formedby bottom-upclusteringbasedon thechamferdis-

tance(seesection5.1). A numberof similar shapetemplatesarerepresentedby a cluster

prototype. This prototype is first comparedto the input image,andonly if the error is

below a thresholdvalue,thetemplateswithin theclusterarecomparedto theimage.The

useof a templatehierarchyis reportedto resultin aspeed-upof threeordersof magnitude

comparedto exhaustivematching[47].

If a parametricobjectmodelis available, anotheroptionto build sucha treeof tem-

platesis by partitioning thestatespace.Let this treehave � levels,eachlevel � definesa

partition � � of thestatespaceinto � � distinctsets�D�lh;� YjYIY �v� , suchthat � � ��$9� y � -��0�y z|{ .The leavesof the treedefinethefinestpartitionof thestatespace���o��$9� y � - �0�y z|{ . The

useof a parametricmodelalsoallows to combine a templatehierarchycreatedoff-line

with anon-lineoptimizationprocess.Oncethe leaf level is reached,thetemplatematch

canberefinedby continuousoptimizationof themodelparameters.In [131] weusedthis

methodto adapttheshapeof agenerichandmodelto anindividualuserin thefirst frame.

A draw-backof asingle-framedetector, suchastheonepresentedin [47], is thediffi-

culty to incorporatetemporalconstraints.ToyamaandBlake[135] proposedaprobabilis-

tic framework for exemplar-basedmatching,which allows the integration of a dynamic

model. Temporalinformationis useful,firstly to resolve ambiguoussituations, andsec-

ondly, to smooththe motion. However, in [135] no templatehierarchyis formed. The

following sectionintroducesanalgorithmwhich combinestheefficiency of hierarchical

methodswith Bayesianfiltering.

6.2 Tree-based filtering

Trackinghasbeenformulatedasa Bayesianinferenceproblemin section4.1, leadingto

recursivepredictionandupdateequations:

� þ#���.� � {!� �G� { � � �l� þ#���.�����G� { � � þ���G� { � � {!� �G� { ��� ���G� { (6.1)� þ#���.� � {!� � � � � � {� � þ��C�.����� � � þ���.� � {!� �G� { � (6.2)�r��� � � þ��;�v����� � � þ#���.� � {!� �G� { ��� ��� Y (6.3)

84� 6 HandTrackingUsingA HierarchicalFilter

In thegeneralcaseit is not possibleto obtainanalyticsolutionsfor theseequations,but

thereexist a numberof approximationmethodswhich canbeusedto obtaina numerical

solution [12, 40,66, 126].

An important issuein eachapproachis how to representtheprior andposteriordis-

tributionsin thefiltering equations.Onesuggestion,introducedby Bucy andSenne[24],

is to usea point-massrepresentationon a uniform grid. The grid is definedby a dis-

cretesetof pointsin statespace,andis usedto approximatethe integralsin thefiltering

equationsby replacingcontinuous integralswith Riemannsumsover finite regions. The

distributionsare approximatedaspiecewise constantover theseregions. The underly-

ing assumption of this methodis that the posteriordistribution is band-limited, so that

thereareno singularitiesor large oscillationsbetweenthepointson the grid. Typically

grid-basedfiltershavebeenappliedusinganevenlyspacedgrid andtheevaluation is thus

exponentially expensive asthedimension of thestatespaceincreases[12, 24]. Bucy and

Sennesuggestmodellingeachmodeof thedistribution by a separateadaptinggrid, and

they devisea schemefor creatinganddeletinglocal gridson-line. A differentapproach

is takenby Bergman[12], who usesa fixedgrid, but avoidstheevaluation at grid points

wheretheprobability massis below a thresholdvalue. Thegrid resolutionis adaptedin

orderto keepthenumberof computationswithin pre-definedbounds.

The aim in this chapteris to designan algorithm that can take advantageof the

efficiency of tree-basedsearchto efficiently computean approximation to the optimal

Bayesiansolution usinga grid-basedfilter.

In the following, assumethat the valuesof the statevectors arewithin a compact

region � of thestatespace.In thecaseof handtracking,thiscorrespondsto thefactthat

theparametervaluesarebounded,theboundaryvaluesbeingdefinedby thevalid range

of motion. Definea multi-resolutionpartitionof theregion � asdescribedin section6.1

by dividing the region � at eachtree-level � into � � distinct sets $9� y � -��0�y z|{ , which are

non-overlappingandmutually exclusive, thatis�)� y z|{ �y � �¡� for �R��hC� YIYIY �.� Y (6.4)

A graphicaldepictionis shown in figure6.1. Theposteriordistribution is representedas

piecewise constantover thesesets,the distribution at the leaf level beingthe represen-

tation at the highestresolution. Even thoughthe complexity of this methodwill grow

exponentially in thestatespacedimension,the ideais to usetheprocessof hierarchical

detectionto rapidly identify regionsin statespacewith low probability mass.

To formalizethediscretefiltering problem,define ¢ y �� astheparametervaluesin state

6 HandTrackingUsingA HierarchicalFilter 85

l=1

l=2

l=3

1

2i=1

{S }iL NLx

x

Figure6.1: Hierar chical partitioning of the statespace.Thestate spaceis partitionedusinga multi-resolutiongrid. Theregions $9� y � - � �y z|{ at the leaf level definethefinestpartition, over which thefiltering distributionsare approximatedaspiecewiseconstant. Thenumberof regionsis exponentialin thestatedimen-sion.However, if largeregionsof parameterspacehavenegligible probabilitymass,thesecanbeidentifiedearly, achievingreductionin computational com-plexity.

spaceintegratedover theregion � y � at time £ , i.e.� þ¢ y �� � �d�)¤;¥ 6 ��¦ � � þ#��� �W� ��� Y (6.5)

Theinitial prior distribution for thediscretestates�)þ#¢ y �{ � � { � canbeobtainedby integra-

tion from � þ#� { � � { � as � þ¢ y �{ � � { � � � ¤"§ 6 � ¦ � �)þ#� { � � { �H� � { Y (6.6)

Next thediscreterecursive relationsareobtainedfrom thecontinuouscaseby integrating

over regions. Given the distribution over the leaves of the tree, � þ¢ y ��G� { � � {!� �G� { � , at the

previoustimestep£ T h , thepredictionequationnow becomesatransitionbetweendiscrete

regionsin statespace:

�)þ#¢©¨ �� � � {!� �G� { � � �0�x y z|{ � þ¢©¨ �� ��¢ y ��G� { � � þ¢ y ��G� { � � {!� �G� { �rY (6.7)

Given the statetransition distribution � þ�ª�.�����G� { � the transition probability betweenre-

gionsis given by� þ#¢ ¨ �� ��¢ y ��G� { � � � ¤ ¥ 6 �¬« � � ¤ ¥V­ § 6 � ¦ � � þ#���.�����G� { ��� ��� � ���G� { Y (6.8)

Thusthe transitiondistribution is approximatedby transition probabilities betweendis-

creteregionsin statespace,seefigure6.2(a).

86� 6 HandTrackingUsingA HierarchicalFilter

2

1

2

1

time t time t+1

S

jlSiL

x

x

x

x

(a)

c(S )jl

1

2

x

x

p ( | )Xt tz

(b)

Figure6.2: Discretizing the filtering equations.(a) Thetransitiondistributionsareap-proximatedbytransitionprobabilities betweendiscreteregionsin statespace,which can be modelledby a Markov transition matrix. (b) The likelihoodfunction is evaluatedat the centre �:þ�� ¨ � � of each region, assumingthat thefunction is locally smooth.

In orderto evaluatethe distribution � þ#¢®¨ �� � � {!� � � , the likelihood � þ����.��¢©¨ �� � needsto be

evaluatedfor a region in parameterspace.This is computedby evaluating thelikelihood

functionatasinglepoint, takento bethecentreof theregion �:þ�� ¨ � � .Thisapproximationassumesthatthelikelihood functionin theregion � ¨ � canberep-

resentedby thevalueat thecentrelocation �:þ�� ¨ � � (seefigure6.2(b) ):� þ��;�.��¢ ¨ �� � � � ¤;¥ 6 ��« � � þ��C�.����� �W� ��� (6.9)¯ � ¤ ¥ 6 ��« � h° ±j² ³´ ��� : ��« � <� ���µ� þ��;�.� ��þt� ¨ � �@�oY (6.10)

This is similar to the ideaof usinga clusterprototypeto representsimilar shapes.In

equation(6.9)thelikelihood functionhasto taketheshapevariationwithin theregion � ¨ �into account.Having laid out Bayesianfiltering over discretestates,the question arises

how to combinethe theorywith theefficient tree-basedalgorithmpreviously described.

Theideais to approximatetheposteriordistribution by evaluating thefilter equationsat

eachlevel of the tree. In a breadth-firsttraversalregionswith low probabilitymassare

identified andnot further investigatedat the next level of the tree. Regionswith high

posteriorare explored further in the next level (Figure 6.3). It is to be expectedthat

the higherlevels of the treewill not yield accurateapproximations to the posterior, but

areusedto discardinadequatehypotheses,for which the posteriorof the setis below a

thresholdvalue. The following schemeis usedto setthe thresholds:For eachlevel the

6 HandTrackingUsingA HierarchicalFilter 87

maximum andminimumof theposteriorvalues¶� �i· qU¸ w� � ¹»º�¼¨ z|{ ·�½�½�½ · � � � þ#¢©¨ �� � � {!� � � and¶� �i· q y¿¾� � ¹»ÀVÁ¨ z|{ ·�½�½�½ · � � � þ¢©¨ �� � � {!� � � (6.11)

is usedto computethethresholdas �� � ¶� �i· q yþ� �Ä�.Å�þ ¶� �i· qU¸ w� T ¶� �i· q yþ� � � where �.ÅÆ*Çf�^��Ihjk Y (6.12)

The searchproceedsonly in the subtreesof nodeswith a posteriorvaluelarger than  �� .After eachtime step £ theposteriordistribution is representedby thepiecewiseconstant

distributionover theregionsat theleaf level.

In orderto determinewhetherthehandis still in thescene,it is checkedif thevariance

of thenormalizedposteriorvaluesattheleaflevel isbelow acertainthresholdvalue �c� � � � � .h��� T h �0�x ¨ z|{®È � þ¢ ¨ �� � � {!� � �UT ¶� � · q � ¸ ¾� ÉËÊÍÌ Â �c� � � � � (6.13)

where ¶� � · q � ¸ ¾� � h��� �0�x ¨ z|{ � þ¢©¨ �� � � {!� � �oY (6.14)

Whena handis in thescene,this leadsto a distribution wherethereis at leastonestrong

peak,whereasin backgroundscenesthe valuesdo not vary as much. In this caseno

dynamicinformationis usedandonly the likelihoodvaluesarecomputed,asin the ini-

tialization step.An overview of thealgorithmis givenin Algorithm 6.1.

6.2.1 The relation to par tic le filtering

This sectioncommentson similarities anddifferencesbetweenthis methodandMonte-

Carlobasedapproachesfor evaluating theBayesianfiltering equations;in particularpar-

ticle filters. Thesearebasedonsequentialimportancesamplingwith resampling[40, 52,

66]. Particlefilters have beenappliedin a numberof fields, includingcomputer vision,

roboticsandsignalprocessing[15, 40, 66, 133]. Oneof their main attractionsis their

convergenceproperty: The convergencerateof the approximation error is independent

of the dimensionof the statespace.This is in contrastto grid-basedmethods, suchas

theonesuggestedhere. However, a numberof issuesareimportantwhenapplyingpar-

ticle filters. Their performancedependslargely on theproposal distribution from which

particlesaresampledin eachtime step[40]. It is essentialto sampleparticlesin regions

in statespace,which have high likelihood values. If additionalknowledgeis available

in form of an importancedistribution, e.g. a differentsensorinput or knowledgeabout

88� 6 HandTrackingUsingA HierarchicalFilter

l

l

l

=1

=2

=3

(a)

x

p(x|z)

x

x

p(x|z)

p(x|z)

(b)

Figure6.3: Tree-basedestimation of the posterior density. (a) Associatedwith thenodesat each level is a non-overlapping setin thestatespace, defininga par-tition of the state space. Theposteriorfor each nodeis evaluatedusingthecenterof each set,depictedby a handrotatedby a specificangle. Sub-treesof nodeswith low posterior arenot furtherevaluated.(b) Correspondingpos-terior density(continuous) and the piecewiseconstantapproximation usingtree-basedestimation. Themodesof the distribution are approximated withhigherprecisionat each level.

the valid posteriordistribution, this canbe usedin orderto obtaina significantlybetter

estimateof theposteriorwith thesamenumberof samples[67, 111,153].

In contrastto particlefilters, the tree-basedfilter is a deterministic filter, which was

motivatedby anumberof problem-specificreasons.Firstof all, thefactsthathandmotion

canbefastandthatthehandcanenterandleavethecameraview in HCI applicationscall

for a methodthat provides automatic initialization. It is difficult to definea dynamic

model that can accuratelypredict the handmotion at the given temporalresolution of

30 framesper second,andthusit is important to maintain large supportregionsof the

distributions. The secondimportantconsiderationis the fact that the time requiredfor

projectingthe modelis approximatelythreeordersof magnitudehigherthanevaluating

thelikelihood function. Thusthesampling stepin a particlefilter is relatively expensive

andthismakestheoff-line generationof templatesattractive.

Theideasof tree-basedfiltering andparticlefiltering canalsobecombinedby using

the posteriordistribution estimatedwith the tree-basedfilter asan importancedistribu-

tion for a particlefilter. Finally, it canbe notedthat hierarchicalapproacheshave also

successfullyappliedin particlefilters directly [38, 140].

6 HandTrackingUsingA HierarchicalFilter 89

6.3 Edge and colou r likeliho ods

This sectionintroducesthe likelihood functionwhich is usedwithin thealgorithm. The

likelihood �)þ��Q� � relatesobservations � in the imageto the unknown state . The ob-

servationsare basedon the edgemap � �#� F � of the image,as well as pixel colour val-

ues ������� . Thesefeatureshave provedusefulfor detectingandtrackinghandsin previous

work [88, 90, 155] and the previous chapterhasexamineda numberof cost functions

basedon them. In the following sectionsthe joint likelihood of �Î� þ�� �#� F � �@�����#� � ` is

approximatedas �)þ��Q� � � � þ�� �� F � �v� ����� �! � (6.23)� � þ�� �� F � �! � � þ�� ����� �! � � (6.24)

thustreatingtheobservationsindependently. We aim to derive likelihoodtermsfor each

of theobservations, � �#� F � and �;���#� , in thefollowingparagraphs.

• Edge lik elihood: In chapter5 a numberof similarity measureshave beencom-

pared,all of which canbe usedto definethe observation model. Herewe choose

chamfermatching,introducedin section5.1, which hasbeendemonstratedto be

computationally mostefficient whenmatchinga largenumberof templates.How-

ever, deriving a likelihood basedon the chamferdistancefunction is a non-trivial

problem.ToyamaandBlake [135] suggesta likelihood model,whereanexemplar

shapetemplateis thecentreof amixturedistribution, eachcomponentbeingamet-

ric exponentialdistribution [135]. Given the shapetemplate � andthe observed

edgeimage� �#� F � , thelikelihood hastheform� þ�� �#� F � � � � � hÏ �ÑÐ ¼"Ò S T®Ó � � ��Ô ¸cq þt�Õ�v� �#� F � � X � (6.25)

whereÏ � is thepartition function. Basedon theassumption that theshape� can

berepresentedasa linearcombination of � independentcurve basisfunctions,the

chamferdistanceis shown to have a Ö Êv×=Ê� distribution, where Ö is a distancecon-

stant[135]. Theseparametersalsodefine Ó � h��3ù&Ö Ê and the partition functionÏÙØ ÖË� for eachtemplate(the subscript� hasbeenomitted). The likelihoodis

approximately GaussianandtheparametersÖ and � arelearntfrom avalidationset

of edgeimagesfor eachexemplarclusterseparately. In our casethe templates �aregeneratedby themodel,andarethereforedependenton thevaluesof thestate

vector . Analogousto ToyamaandBlake, thetemplateat eachnodeis treatedas

90Ú 6 HandTrackingUsingA HierarchicalFilter

thecentreof anexponentialdistribution of theform in equation(6.25),andthepa-

rametersÓ and Ö arelearntby computingthemomentswithin aclusterof templates

assuggestedin [135].

A draw-backof this methodof constructingtheliklihood is thatthedistribution of

thechamfercoston randombackgroundedgesis not takeninto account.Different

subsetsof edgepointsareusedto compute thechamferdistancefor differenttem-

plates.This directly influencesthe distribution of the featurevalues,for example

to computethechamferdistanceof a templatewith very few points,only a small

numberof edgepointsis used,andthis templatewill havea low chamfercostnear

any edge,alsoon backgroundedges.A differentmethodto definelikelihoodsis

basedon thePDF projectiontheorem[7, 96], which stateshow thedistribution on

featurescanbe convertedto a distribution on the images. However, the applica-

tion of thePDFprojectiontheoremto deriving likelihood functionsis left to future

work.

• Colour lik elihood: Thecolourcosttermhasalreadybeendefinedasa likelihood

function � þ������#��� � in chapter5. It assumespixelwise independenceof the colour

values,sothatit canbefactoredinto aproductof skin-colourlikelihoods for pixels

within thesilhouette$&%Õ'Û%e*o+�þt �r- andbackgroundcolour likelihoodsfor pixels

outsideof thesilhouette $&%e'�%e*Ü2+�þ� �.- :� þ�� ���#� � � � 4576I8;: =< �0>�þ�?jþ% �@� 4576BA8;: =< �WEGF?þ�?zþ% �@� (6.26)

where ?jþ#% � is thecolourvectorat location % in the image. � > and � EGF aretheskin

colourandbackgroundcolourdistributions,respectively. Skin colour is modelled

with a Gaussiandistribution in þÀÿ�� ��� -space,for backgroundpixelsa uniform dis-

tribution is assumed.This is anapproximationonly, andif a distribution of back-

groundcolourcanbeobtainedfrom astaticscene,thisshouldbeusedinstead.

6.4 Modellin g hand dynamic s

The dynamicsof global handmotion and finger articulationare modelled in different

ways.A simple first orderprocessis usedto modeltheglobaldynamics� þ� Q�.� Ë�G� { �ÞÝ ß þ� Q�G� { �rà �(Y (6.27)

This modelmakesonly weakassumptionsby not takingvelocity into accountandthere

aremany otherpossiblechoicesfor thedynamicmodel,suchastheconstantvelocity or

6 HandTrackingUsingA HierarchicalFilter 91

constantaccelerationmodelusedin chapter4, or secondordermodels,which have been

usedfor handtracking[15, 90].

Thedynamicsfor articulatedmotionarealsomodelledasa first orderprocess,how-

ever, they arelearntfrom trainingdataobtainedwith adataglove(seesection6.6). Since

discreteregionsin statespaceareconsidered,theprocesscanbedescribedby a Markov

transition matrix á �C� *Çf�^��Ihjk �0�Ûâ;�B� , whichcontainsthetransitionprobabilitiesbetween

theregions $&+ ¨ � -��B�¨ z|{ at theleaf-level. In orderto evaluatethetransitionsat differenttree

levels,a transitionmatrix á � � *ãfä^��jhjk �0�Ûâ;�)� for eachlevel � of thetreeis required,where

eachmatrixcontainsthevalues:á � �y ¨ �Ç� þ#¢ ¨ �� ��¢ y ��G� { � for }~��h;� YjYIY �v��� and åæ��h;� YIYIY �.� � Y (6.28)

In practice,thesematricesaresparseandthenon-zerovaluesarestoredin alook-uptable.

6.5 Tracking rigid bod y motion

In the following experimentsthe hierarchicalfilter is usedto track rigid handmotion

in clutteredscenesusinga singlecamera.The resultsreveal the ability to tolerateself-

occlusionduring out-of-image-planerotations. The 3D rotationsarelimited to a hemi-

sphereandfor eachsequenceathree-level treeisbuilt, whichhasthefollowing resolutions

at theleaf level: 15degreesin two 3D rotations,10degreesin imagerotationand5 differ-

entscales,resultingin a totalof haø�nÞhaø�nçh9èénGý��h û �.^�ý3ý templates.Theresolutionof

thetranslationparametersis 20pixelsat thefirst level, 5 pixelson thesecondlevel, and2

pixelsat the leaf level. Notethat for eachof thesequencea differenttreeis constructed,

usingthecorrespondinghandconfiguration.

Figures6.4showsthetrackingresultsonaninputsequenceof apointinghandduring

translationandrotation. During the rotation thereis self-occlusionas the index finger

movesin front of the palm. For eachframethe maximuma-posteriori(MAP) solution

is shown. An errorplot for this sequenceis shown in figure6.5 andin this sequencethe

erroris measuredasthelocalizationerrorof theindex fingertip. TheRMS errorover the

wholesequenceis 8.0pixels.

Figure6.6shows framesfrom thesequenceof anopenhandperformingoutof image

planerotation.Thissequencecontains160framesandshowsahandfirst rotatingapprox-

imately 180 degreesandreturningto its initial pose(figure 6.6, two top rows). This is

followedby a90degreerotation(figure 6.6,two bottomrows),andreturningto its initial

position. This motion is difficult to trackasthereis little informationavailablewhenthe

palmsurfaceis normalto theimageplane.

92Ú 6 HandTrackingUsingA HierarchicalFilter

Figure6.4: Tracking a pointing hand. Theimagesare shownwith projectedcontourssuperimposed(top row) andcorresponding3D model(bottom row), whichareestimatedusingthetree-basedfilter. Thehandis translating androtating.

0 10 20 30 40 50 60 70 80 900

10

20

30

Frame

Pos

ition

Err

or [p

ixel

]

(a)(b)

Figure6.5: Err or performance. (a) This figure showsthe error performanceon theimagesequencein figure6.4.Errorsare thefingertip localization error of theindex finger and were measured against manuallylabelledgroundtruth. Itcanbeseenthat themodelis notexactlyalignedin everyframe, however, thisdoesnot effect subsequentframes. TheRMSerror over the wholesequenceis 8.0 pixels(b) Framenumber36 with largesterror (24 pixels)at the indexfinger tip; therestof theMAPmodeltemplateis still well aligned.

Figure6.7shows exampleimagesfrom a sequenceof 509framesof a pointinghand.

Thetracker handlesfastmotionandis ableto recover after thehandhasleft thecamera

view andre-entersthescene.

Thecomputation takesapproximatelytwo secondsperframeon a 1GHzPentiumIV,

correspondingto a speed-upof two ordersof magnitudeover exhaustive detection.Note

that in all casesthe handmodelwas automaticallyinitialized in the first frame of the

sequence.

6.5.1 Initializa tion

In a numberof experimentsthe ability of the algorithmto solve the initialization prob-

lem wastested.In thefirst frameof eachsequencetheposteriorterm � þ¢ê¨ {{ � � { � for each

region is proportional to the likelihood value �)þ�� { ��¢©¨ {{ � for the first observation � { . A

6 HandTrackingUsingA HierarchicalFilter 93

Figure6.6: Tracking out-of-image-planerotation. In thissequencethehandundergoesrotation and translation. The framesshowingthe handwith self-occlusiondo not provide much data, and templatematching becomesunreliable. Byincludingprior information, thesesituationscan beresolved.Theprojectedcontours are superimposedon the images,and the corresponding 3D modelis shownbeloweach frame.

frame0 frame102 frame115 frame121 frame128 frame131

frame302 frame311 frame316 frame344 frame351 frame400

Figure6.7: Fast motion and recovery. Thisfigureshowsframesfroma sequencetrack-ing 6 DOF. (Top row) Thehandis tracked during fast motionand (bottomrow) the tracker is able to successfullyrecover after the hand has left thecamera view.

treewith four levels and8,748templatesof a pointing handat the leaf level wasgen-

erated,correspondingto a searchover 972discreteanglesandninescales,anda search

over translationspaceat singlepixel resolution. As before,themotion is restrictedto a

hemisphere. Thesearchprocessat differentlevelsof the treeis illustratedin figure 6.8.

The templatesat the higherlevelscorrespondto larger regionsof parameterspace,and

arethuslessdiscriminative. Theimageregionsof thefaceandthesecondhand,for which

94Ú 6 HandTrackingUsingA HierarchicalFilter

Figure6.8: Automatic initial ization. Top Left : Input image, Next: Images with detectionresultssuper-imposed. Each square representsan image location which contains atleast onenodewith a likelihood estimateabove the threshold value. The intensityindicatesthenumberof matches,with high intensitycorresponding to more matches.Ambiguity is introducedby the face and the second hand in the image (for whichthere is no templatein the tree). As thesearch proceedsthrough levels1–4, regionsare progressively eliminated,resulting in only few final matches.Bottom right : Thetemplatecorresponding to themaximumlikelihood.

thereis notemplate,haverelatively low costasthey containskincolourpixelsandedges.

As thesearchproceeds,theseregionsareprogressively eliminated,resultingin only few

final matches.

Figure6.9givesa moredetailedview by showing examplesof templatesat different

treelevelswhichareabove(accepted)andbelow (rejected)thethreshold(equation(6.12))

at level � for adifferentinput image.It canbeseenthatthetemplateswhichareabovethe

thresholdat thefirst level do not presentvery accuratematches,however a largenumber

of templatescanberejected.At lower treelevelstheaccuracy of thematchincreases.

6.6 Dimensi onality reduc tion for articulat edmotion

The 3D handmodelpresentedin chapter3 allows 21 degreesof freedomto articulated

motion,correspondingto thedegreesof freedomof thejoints in ahumanhand[2]. Even

though thereare21parametersin ourmodelthatareusedto describearticulatedmotion,

thismotionishighlyconstrained.Eachjoint canonlymovewithin certainlimits. Thusthe

articulationparametersareexpectedto lie within acompactregion in the21dimensional

6 HandTrackingUsingA HierarchicalFilter 95

Level 1

accepted

Level 1

rejected

Level 2

accepted

Level 2

rejected

Level 3

accepted

Level 3

rejected

Figure6.9: Search resultsat differ ent levels of the tr ee. This figure showstemplatesabove and belowthe thresholdvalues  �� at levels1 to 3 of the tree, rankedaccording to their posteriorvalues.Asthesearch is refinedat each level, thedifferencebetweenacceptedandrejectedtemplatesdecreases.

anglespace.Additionally the motion of differentjoints is correlated,for examplemost

peoplefind it difficult to bendthelittle fingerwhile keepingthering fingerextended.

Wu et al. [153] useprincipal componentanalysis(PCA) to project their 20 dimen-

sionaljoint anglemeasurementsinto a 7D space,while capturing95 percentof thevari-

ation within their dataset. Zhou andHuang[155] introducean eigendynamicsmodel.

Theseeigendynamicsaredefinedasthemotionof asinglefinger, modeledby a2D linear

dynamicsystemin a lowerdimensionaleigenspace,reducingthedimensionof thesearch

spacefrom 20 to 10. In bothcases,valid finger configurationsdefinea compactregion

within the subspaceandthe goal is to samplefrom this region. Oneapproach,adopted

by Wu et al., is to define28 basisconfigurationsin thesubspace,correspondingto each

96ë 6 HandTrackingUsingA HierarchicalFilter

fingerbeingeitherfully extendedor fully bent(notall ì�í�îÎï�ì combinationsof fingersex-

tended/bentareused).It is claimedthatnaturalhandarticulationlies largelyon linear1D

manifolds spannedby any two suchbasisconfigurations,andsampling is implemented

asa randomwalk alongthese1D manifolds.Anotherapproach[155] is to train a linear

dynamic systemontheregionwhile decouplingthedynamicsfor eachfinger. In thiscase

onemotionsamplecorrespondsto fiverandomwalksalong2D curves,eachrandomwalk

correspondingto themotionof oneparticularfinger.

Wehavecollected15setsof joint angles(sizesof datasets:3,000to 264,000)usinga

dataglove. Theinputdatawascapturedfrom threedifferentsubjectswho werecarrying

out a numberof different handgestures. It was found in all casesthat 95 percentof

the variancewas capturedby the first eight principal components, in 10 caseswithin

the first seven, which confirmsthe resultsreportedin [153]. However, except for very

controlled openingand closing of fingers,we did not find the one-dimensional linear

manifold structurereportedin [153]. For example,figure6.11showstrajectoriesbetween

anumberof basisconfigurationsusedin [153] projectedontothefirst threeeigenvectors.

Thehandmoved betweenthefour basisconfigurationsin randomorderfor thedurationof

oneminute.It canbeseenthatevenin thiscontrolledexperimentthetrajectoriesbetween

thefour configurationsdonotseemto beadequatelyrepresentedby 1D manifolds.

6.6.1 Constructing a tree for articul ated motion

Havingshownthatarticulatedmotioncanbeapproximatedin alowerdimensionaleigenspace,

this sectionintroducestwo methodsto build the templatehierarchyfrom datasetscol-

lectedwith a dataglove. Thediscretesetsð9ñ©òiótô�õ)öòø÷|ùrúüû î�ý úIþjþIþjú.ÿ ú canbeobtainedin the

following ways:

• Partitioning the eigenspace:Oneoption to subdivide thespaceis to usea regular

grid. Defining partition boundariesin the original 21 dimensional spaceis diffi-

cult, becausethenumberof partitions increasesexponentiallywith thenumberof

divisionsalongeachaxis. Thereforethe datacanfirst be projectedonto the first�principal components (

��� ì"ý ), andthepartitioningis donein the transformed

parameterspace.The centresof thesehyper-cubesare thenusedasnodesin the

treeon onelevel, whereonly partitions,which containdatapointsneedto becon-

sidered,seefigure6.12(b). Multiple resolutionsareobtainedby subdividing each

partition.

6 HandTrackingUsingA HierarchicalFilter 97

(a) (b)

(c) (d)

Figure6.10: Variation along principal components. This figuresshowsthe variationin handposewhenmovingawayfromthemeanposeinto thedirectionof the(a) first,(b) second,(c) third, and(d) fourth principal component.Theinputdatasetcontained50,000joint anglevectors,obtainedfroma dataglove.

(a) (b)

Figure6.11: Paths in the eigenspace. This figure shows(a) a trajectoryof projectedhandstate(joint angle)vectors ontothefirst threeprincipal componentsasthehandposechangesbetweenthefour posesshownin (b).

• Clustering in the original state space: Sincethe joint angledatalies within a

compactregion in statespace,the datapoints cansimply be clusteredusinga hi-

98ë 6 HandTrackingUsingA HierarchicalFilter

��������

�� � ��� ��

����

�� ��

���� ����

!" #$ %�%%�%&&'())** +�+,-. /0

12345678 9: ;< =�=>�> ?@A�AB�B CDEFGHI�IJ

KL M�MNOOPP

QRST

U�UV�V WX Y�YY�YZ�ZZ�Z[�[\]�]^_` ab c�cd efg�ghi�ij�jkkllm�mn�nop qr st uv

w�wxy�yz�z{�{|}�}~�~ ���� ����������������

�� ����

����������������

����� � 

¡¢ £¤¥¦§�§¨�¨

©�©ª�ª«�«¬�¬­® ¯�¯° ±²

³�³´ µ¶·�·¸�¸¹�¹º»¼½�½¾�¾

¿�¿À ÁÂÃ�ÃÄ�ÄÅ�ÅÆ�ÆÇ�ÇÈ�ÈÉÊË�ËÌ

ÍÎÏ�ÏÐ�ÐÑ�ÑÒ�ÒÓ�ÓÔÕ�ÕÖ�Ö ×ØÙÚÛÜ ÝÞß

ßààáâãäå�åæçè é�éê�ê

ë�ëì�ìí�íî�îïðñò óô õ�õö÷�÷ø�ø ù�ùú ûü ýþ

ÿ� ������ ���� �� ��� �

��������

���� �� ����������������

����

���� ! "�"#�#

$�$% &'() *�*+�+

,-

./01

PSfragreplacements

243

265

(a)

7879

:;

<= >? @ABCDE

FGH8HI

JK

LLMM

N8NOPQ

R8RS8ST8TU8UVWX8XY Z8Z[

\\]]

^8^_8_`abbccd8de

f8fg

hij8jk

lm nop8pqrstu

v8vwx8xy8yz{

|8|}~��8���8��8� �8��8�

�8��8��8���8��8� ��

���� ��������

�8��8� �8��8����8��8���  ¡

¢8¢£ ¤8¤¥ ¦§

¨©ª«

¬8¬¬8¬­­ ®8®¯8¯°8°±8±²³ ´µ ¶8¶·8·

¸¹º» ¼8¼½

¾¿À8ÀÁ

ÂÃ

Ä8ÄÅ8Å

ÆÇ

È8ÈÉ8ÉÊË

ÌÍÎÏ

ÐÑÒÓÔÕÖ8Ö×8×

ØÙÚÛ

ÜÝ

Þ8Þß8ß

à8àáâã

ä8äåæçèé

ê8êë8ëìí îï ðñ

òóôõ

ö8ö÷ø8øùúû

ü8üýþþÿÿ���� ����

������ ����� ������������������������ ����� !�!"#$

%&'�'()*+,-./�/01�11�12�22�23456 78 9�9:�:

;�;<=>?@

A�AB�BCD

EFGH I�IJ�J KL

M�MN�NOPQRSTU�UVWX

YZ[\]^

_�_`ab c�cd�dPSfragreplacements

e 3

e 5

(b)

Figure6.12: Partitioning the state space. This figure illustratestwo methodsof par-titioning the statespace: (a) by clusteringthe data points in the originalspace, and (b) by first projecting the data pointsonto the first

�principal

componentsandthenusinga regular grid to definea partition in thetrans-formedspace. Thefigure only showsonelevel of a hierarchical partition,corresponding to onelevel in thetree.

erarchical�-meansalgorithmwith an ÿ f distancemeasure.This algorithmis also

known asthegeneralizedLloydalgorithm in thevectorquantisation literature[51],

wherethegoal is to find a numberof prototype vectorswhich areusedto encode

vectorswith minimal distortion. The clustercentresobtainedin eachlevel of the

hierarchyareusedasnodesin onelevel of thetree.A partitionof thespaceis given

by theVoronoidiagramdefinedby thesenodes,seefigure6.12(a).

Both techniquesareusedto build a treefor trackingfinger articulation. In the first se-

quencethesubjectalternatesbetweenfour differentgestures(seefigure6.13).For learn-

ing thetransitiondistributions,a datasetof size7200wascapturedwhile performingthe

four gesturesanumberof timesin randomorder.

In thefirst experimentthetreeis built by hierarchical�-meansclusteringof thewhole

training set. The treehasa depthof three,wherethe first level contains300 templates

togetherwith apartitioning of thetranslationspaceata ì gih ì g pixel resolution. Thesec-

ondandthird level eachcontain7200templates(i.e. thewholedataset)anda translation

searchat j h j and ì h ì pixel resolution, respectively.

In thesecondexperimentthetreeisbuilt bypartitioningalowerdimensionaleigenspace.

Applying PCA to the datasetshows that more than96 percentof the varianceis cap-

turedwithin the first four principal components, thuswe partition the four dimensional

eigenspace.In this experiment,thefirst level of thetreecontains360templates,thesec-

6 HandTrackingUsingA HierarchicalFilter 99

ondandthird level contain9163templates.Thegrid resolutionsin translationspaceare

thesameasin thefirst experiment. In bothcasestransitionmatricesk l ó areobtainedby

histogrammingthedata.

The trackingresultsfor the treeconstructedby clusteringareshown in figure 6.13.

The resultsfor the tree built by partitioning the eigenspacearequalitatively the same.

Themethodof constructingthe treeby partitioning the eigenspacehasa numberof ad-

vantages:Firstly, a parametricrepresentationis obtained,which allows for interpolation

betweenhandstates,andfurtheroptimisationoncetheleaf level hasbeenreached.Sec-

ondly, for large datasetsthe computationalcostof PCA is significantly lower thanthe

costof clustering.

Figure6.14shows theresultsof trackingglobalhandmotion togetherwith fingerar-

ticulation. Theopeningandclosingof thehandis capturedby thefirst two eigenvectors,

thusonly two articulationparametersareestimated.For thissequencetherangeof global

handmotion is restrictedto a smallerregion,but it still has6 DOF. In total 35,000tem-

platesareusedat the leaf level. Theresolutionof thetranslationparametersis 20 pixels

at thefirst level, 5 pixelson thesecondlevel, and2 pixelsat the leaf level. Theout-of-

image-planerotationandthefingerarticulationaretrackedsuccessfullyin thissequence.

6.7 Summ ary

This chapterhasintroduceda hierarchicalfiltering algorithmfor three-dimensionalhand

tracking.Thestatespaceis partitionedatmultipleresolutions,whichallowsthedefinition

of agrid-basedfilter ondiscreteregions.The3Dmodelisusedtogeneratetemplatesatthe

centreof eachregion, andtheseareusedto evaluatethe likelihoodfunction. A dynamic

modelis givenby transitionprobabilitiesbetweenregions,whicharelearntfrom training

dataobtainedby capturingarticulatedmotion. The algorithmwas testedon a number

of sequences,including rigid body motion andarticulatedmotion in front of cluttered

background.

100 6 HandTrackingUsingA HierarchicalFilter

Figure6.13: Tracking articulated hand motion. In this sequencea numberof differentfinger motionsare tracked. Theimagesare shownwith projectedcontourssuperimposed(top) and corresponding3D avatar models(bottom),whichare estimatedusingour tree-basedfilter. Thenodesin thetreeare foundbyhierarchical clusteringof trainingdatain theparameterspace, anddynamicinformationis encodedastransitionprobabilitiesbetweentheclusters.

6 HandTrackingUsingA HierarchicalFilter 101

Algorithm 6.1Tree-basedfiltering equationsNotation: monqpsrutwv denotestheparentof nodet .Initializatio n Stepat x�î�ýAt level û î�ý :

myr{z}| ùù ~ � ù v�î myr � ù ~ z | ùù v� õ 3| ÷|ù myr{z | ùù ~ � ù v for tæî�ý újþIþIþjú � ù þ (6.15)

At level û�� ý :myr{z | óù ~ � ù v¬î ����� ù myr � ù ~ z | óù v if myr�z}������� |��ù ~ � ù v ��� ó � ù� ú��� ù myr�z ������� |��ù ~ � ù v otherwise,

(6.16)

where � î õ ö�| ÷|ù myr�z}| óù ~ � ù v þ (6.17)

At time x � ýAt level û î�ý :

myr{z | ù� ~ � ù�� � v�î myr � � ~ z | ù� v�myr�z | ù� ~ � ù�� � � ù v� õ 3| ÷|ù myr � � ~ z | ù� v�m�r{z | ù� ~ � ù�� � � ù v ú (6.18)

where

myr{z | ù� ~ � ù�� � � ù v¬î õo�� òi÷|ù myr�z | ù� ~ z ò l� � ù v�myr{z ò l� � ù ~ � ù�� � � ù v (6.19)

At level û�� ý :myr{z | ó� ~ � ù�� � v�î ����� ù myr � � ~ z | ó� v�myr{z | ó� ~ � ù�� � � ù v if myr�z ������� |��� ~ � ù�� � v ��� ó � ù� ú��� ù myr�z ������� |��� ~ � ù�� � v otherwise,

(6.20)

where

myr{z}| ó� ~ � ù�� � � ù v¬î õo�� òi÷|ù myr�z}| ó� ~ z ò l� � ù v�myr�z ò l� � ù ~ � ù�� � � ù v (6.21)

and � î õ ö�| ÷|ù myr�z}| ó� ~ � � v þ (6.22)

102 6 HandTrackingUsingA HierarchicalFilter

Figure6.14: Tracking a hand opening and closingwith rigid body motion. Thisse-quenceis challengingbecausethehandundergoestranslation androtationwhile openingandclosingthefingers. 6 DOF for rigid bodymotionplus2DOF for finger flexionandextensionare trackedsuccessfully.

7 Conc lusion

Whatgoodarecomputers?They canonlygiveyouanswers.

PabloPicasso(1881-1973)

7.1 Summ ary

Themaincontribution of this thesisis theformulationof a framework for recoveringthe

3D handposefrom imagesequences.It draws from two strandsof research:hierarchical

detectionandBayesianfiltering. Reliabledetectionhelpsin dealingwith difficult prob-

lemssuchasloosing trackdueto self-occlusion.By usingdynamicinformation, detec-

tion is mademoreefficient by eliminating a significantnumberof hypotheses.Bayesian

methodsare attractive as they provide a principledway of encodinguncertaintyabout

parameterestimates.This is particularlynecessaryfor the problemof trackingin clut-

ter as thereis muchambiguity, resultingin multi-modal distributions. Oneof the key

issuesin Bayesianfiltering is how to representthesedistributions. Previously grid-based

methods, involving partitioning the statespace,have proven very successfulfor propa-

gatingdistributionsin tracking.However, they suffer from themajordrawbackthat they

arecomputationally infeasiblein high dimensional spaces.Whenthe stateparameters

areconfinedto a compactregion, it is suggestedto partitionthis region in a hierarchical

fashionandusetheresultingtreeto representthedistributions.

It hasbeenshown in this work how to constructa 3D handmodelfrom simple geo-

metricprimitives.Thereareseveralbenefitsto usinga3D modeloverparametriccontour

modelsor exemplar models.In contrastto parametriccontourmodels,topologicalshape

changesof the contourcausedby self-occlusionarehandlednaturallyby a 3D model,

without the needof resortingto nonlinearshapespaces[58]. In contrastto exemplar-

basedmodels,theuseof a 3D parametricmodelallows to generatefurthertemplateson-

line, onceanapproximatematchhasbeenfound.Continuousoptimizationcanbeusedto

refinethematchor adaptthemodelto thehandof adifferentuser[132]. A 3D modelalso

hastheadvantageof semanticcorrespondence,whichallowsthedefinitionof ameaning-

103

104 7 Conclusion

ful dynamicmodel,andcanbe importantfor HCI applications.Furthermore,methods

basedon 3D modelscanbeextendedfrom singleto multiple views with relatively little

effort, becauseit simply requiresprojectingthemodelinto eachview.

7.2 Limitatio ns

The rangeof allowed motion is currently limited by the numberof templates. In the

currentsystemtemplatesfor differentscaleandorientationparametersaregeneratedoff-

line, leadingto a largenumberof templates.Thesetemplatescouldalsobegeneratedon-

line by 2D transformations,andtheincreasein timerequiredfor likelihoodcomputations

couldbetolerablein thelight of memorysavings.

On our currenthardware (2.4 GHz PentiumIV) the algorithmdoesnot run in real

time. Typical run timesaretwo framespersecondfor a few hundredtemplatesto three

secondsper framefor about35,000templates.Even thoughsomeeffort wasspenton

optimizing themethods,thereis still scopefor improvement.

Emphasishasbeenplacedonthedesignof robustsimilarity measures,whicharethen

usedto constructa likelihood function within the filter. For edgedetection,the Canny

edgedetectorhasbeenused,which is a standardtool in computer vision [25]. However,

it doesnotalwaysyield consistentedgeresponsesin videosequencesdueto imagenoise.

Theresultis alsohighly dependentonthekernelandthresholdparametersin thedetector.

In practicemissing edgessometimesleadto missed detections,andspuriousedgescan

lead to falsepositive detections.Similarly, the static skin colour featurescan become

unreliableif illuminationchangessignificantly.

7.3 Future work

This sectionidentifiesa numberof directionsof futurework. An advantageof theprob-

abilistic approach,which wastaken in this work, is that it is modularin the sensethat

application-specificdynamicmodelsor observationmodelscanbeincludedseamlessly.

• Observation model: Thedesignof bettersimilarity measureswill directlyincrease

therobustnessof thetracker. It will beinteresting to investigateusingdifferentfilter

outputsasfeatures,asin [69, 129, 137]. Also theintegrationof othercuessuchas

texture,motionandshadingcouldleadto bettercostfunctions.If two camerasare

available,densestereoalgorithms,can be useful for segmenting the handin the

image.

7 Conclusion 105

• Hand model: Thetracker will alsodirectly benefitfrom a moreaccurategeomet-

ric handmodelandefficient renderingtechniques.The modelusedin this work

is comparableto the simple cylindermodelsof Marr andNishihara[92] or Rehg

andKanade[109]. Eventhoughsuchmodelsarea goodapproximation to thetrue

geometry, advancesin computergraphicshave led to morecomplex but accurate

models, suchas the handmodelof Albrecht et al. [2]. As computing power in-

creases,it is possible to usethesemodelsin computervisionapplications.

• Tree construction: The tree hasbeenconstructedmanuallyin the examplesby

dividing the parameterspaceat certainresolutions. Futurework should consider

methodsto make this processautomatic,for exampleby consideringthe appear-

ancevariationwithin eachpartition or by clusteringthe templatesbasedon their

appearancesimilarity.

• Combining tr ee-basedfiltering with continuousmethods:Theresultof thetree-

basedfilter containsa discretizationerrordueto thepartitioning of thestatespace.

However, becausetheoutputis a probability distribution, it canbeintegratedwith

acontinuousfilter, suchasa particlefilter.

• Extension to multiple views: Thefiltering framework presentedin chapter6 can

beextendedto estimationfrom multiple calibratedcameras.Thesamestatespace

partitioning canbe usedasfor the singleview case,andthe modelat the canbe

projectedinto eachview.

• Experimental comparison with other approaches: The stepfrom the research

laboratoryto commercialapplicationstypically leadsvia anevaluation of compet-

ing methodson benchmarkdata. Possiblydue to the ambiguity of the task, the

difficulty to obtaingroundtruthdata,aswell asdifferentapplicationgoals,thereis

nopublicallyavailabledatasetfor three-dimensionalhandtracking.

Bib liog raph y

[1] J. K. Aggarwal andQ. Cai. Humanmotionanalysis:A review. ComputerVision

andImageUnderstanding, 73(3):428–440,1999.

[2] I. Albrecht,J.Haber, andH.-P. Seidel.Constructionandanimationof anatomically

basedhumanhandmodels.In Proc.Eurographics/SIGGRAPHSymp.onComputer

Animation, 98–109,SanDiego,CA, July2003.

[3] V. Athitsos,J.Alon, S.Sclaroff, andG. Kollios. Boostmap:A methodfor efficient

approximatesimilarity rankings. In BostonUniversity ComputerScienceTech.

ReportNo.2003-023, November2003.

[4] V. AthitsosandS.Sclaroff. 3D handposeestimationby findingappearance-based

matchesin a largedatabaseof trainingviews. In IEEEWorkshoponCuesin Com-

munication, 100–106,December2001.

[5] V. Athitsos andS. Sclaroff. An appearance-basedframework for 3D handshape

classificationandcameraviewpoint estimation. In IEEE Conferenceon Faceand

GestureRecognition, 45–50,WashingtonDC, May 2002.

[6] V. AthitsosandS. Sclaroff. Estimating 3D handposefrom a clutteredimage. In

Proc.Conf. ComputerVisionandPatternRecognition, volumeII, 432–439, Madi-

son,WI, June2003.

[7] P. M. Baggenstoss.The pdf projectiontheoremand the class-specificmethod.

IEEETransactionsonSignalProcessing, (51):672–685,2003.

[8] Y. Bar-ShalomandT. E. Fortmann.Tracking andData Association. Number179

in Mathematicsin scienceandengineering.AcademicPress,Boston,1988.

[9] H. G. Barrow, J. M. Tenenbaum,R. C. Bolles, andH. C. Wolf. Parametriccor-

respondenceandchamfermatching:Two new techniquesfor imagematching. In

Proc.5th Int. Joint Conf. Artificial Intelligence, 659–663,1977.

106

7 Bibliography 107

[10] S.Belongie,J.Malik, andJ.Puzicha.Matchingshapes.In Proc.InternationalCon-

ferenceonComputerVision, volume I, 454–455, Vancouver, Canada,July2001.

[11] S.Belongie,J.Malik, andJ.Puzicha.Shapematchingandobjectrecognitionusing

shapecontexts. IEEETrans.PatternAnalysisandMachineIntell., 24(4):509–522,

April 2002.

[12] N. Bergman. RecursiveBayesianEstimation: NavigationandTracking Applica-

tions. PhDthesis,Linkoping University, Linkoping,Sweden,1999.

[13] P. J. BeslandN. McKay. A methodfor registrationof 3-D shapes.IEEE Trans.

PatternAnalysisandMachineIntell., 14(2):239–256, March1992.

[14] S. Birchfield. Elliptical headtracking using intensity gradientsand color his-

tograms.In Proc.Conf. ComputerVisionandPatternRecognition, 232–237,Santa

Barbara, CA, June1998.

[15] A. Blake and M. Isard. Active Contours : The Application of Techniquesfrom

Graphics,Vision, Control Theoryand Statistics to Visual Tracking of Shapesin

Motion. Springer-Verlag,London,1998.

[16] G. Borgefors. Hierarchicalchamfermatching: A parametricedgematchingalgo-

rithm. IEEE Trans.PatternAnalysis andMachineIntell., 10(6):849–865,Novem-

ber1988.

[17] Y. Boykov andD. P. Huttenlocher. A new Bayesianframework for objectrecogni-

tion. In Proc. Conf. ComputerVision andPatternRecognition, volume II, 2517–

2523,Fort Collins,CO,June1999.

[18] M. Brand.Shadow puppetry. In Proc.7thInt. Conf. onComputerVision, volumeII,

1237–1244,Corfu,Greece,September1999.

[19] C. Bregler andJ. Malik. Trackingpeoplewith twists andexponentialmaps. In

Proc. Conf. ComputerVision andPatternRecognition, 8–15,SantaBarbara,CA,

June1998.

[20] L. Bretzner, I. Laptev, andT. Lindeberg. Handgesturerecognitionusingmulti-

scalecolourfeatures,hierarchicalmodelsandparticlefiltering. In Proc.Faceand

Gesture, 423–428,WashingtonDC, 2002.

108 7 Bibliography

[21] T. M. Breuel.Fastrecognitionusingadaptivesubdivisionsof transformationspace.

In Proc. Conf. ComputerVisionandPatternRecognition, 445–451, UrbanaCham-

paign,IL, June1992.

[22] T. M. Breuel. GeometricAspectsof Visual ObjectRecognition. PhDthesis,Mas-

sachusettsInstituteof Technology, Cambridge,MA, April 1992.

[23] T. M. Breuel.Higher-orderstatisticsin objectrecognition.In Proc.Conf. Computer

VisionandPatternRecognition, 707–8,New York, 1993.

[24] R. S. Bucy andK. D. Senne. Digital synthesisof nonlinearfilters. Automatica,

(7):287–298,1971.

[25] J. F. Canny. A computational approachto edgedetection. IEEE Trans. Pattern

AnalysisandMachineIntell., 8(6):679–698, November 1986.

[26] Y. ChenandG.Medioni. Objectmodelingby registrationof multiple rangeimages.

ImageandVisionComputing, 10(3):145–155, April 1992.

[27] R. CipollaandA. Blake. Thedynamicanalysisof apparentcontours.In Proc.3rd

Int. Conf. onComputerVision, 616–623, Osaka,Japan,December1990.

[28] R. Cipolla andP. J. Giblin. Visual Motion of Curvesand Surfaces. Cambridge

University Press,Cambridge,UK, 1999.

[29] R. Cipolla,P. A. Hadfield,andN. J.Hollinghurst. Uncalibratedstereovision with

pointing for aman-machineinterface.In Proc.IAPRWorkshoponMachineVision

Applications, 163–166, Kawasaki,Japan,1994.

[30] R. CipollaandN. J.Hollinghurst. Human-robotinterfaceby pointing with uncali-

bratedstereovision. ImageandVisionComputing, 14(3):171–178, April 1996.

[31] R. Cipolla,Y. Okamoto,andY. Kuno. Qualitativevisualinterpretationof 3D hand

gesturesusingmotionparallax.In Proc.IAPRWorkshoponMachineVision Appli-

cations, 477–482, Tokyo, Japan,1992.

[32] T. F. Cootes,C.J.Taylor, D. H. Cooper, andJ.Graham.Activeshapemodels– their

trainingandapplication.ComputerVision andImageUnderstanding, 61(1):38–59,

January1995.

[33] F. C. Crow. Summed-areatablesfor texturemapping. In Proc. SIGGRAPH, vol-

ume18,207–212,July1984.

7 Bibliography 109

[34] Y. Cui andJ. J. Weng. Handsegmentation using learning-basedpredictionand

verificationfor handsignrecognition.In Proc.Conf. ComputerVision andPattern

Recognition, 88–93,SanFrancisco,CA, June1996.

[35] Y. Cui and J. J. Weng. Appearance-basedhandsign recognitionfrom intensity

imagesequences.ComputerVision and Image Understanding, 78(2):157–176,

2000.

[36] Q. DelamarreandO. D. Faugeras.Findingposeof handin videoimages:astereo-

basedapproach.In Proc.3rd Int. Con.onAutomatic FaceandGestureRecogntion,

585–590,Nara,Japan,April 1998.

[37] Q. Delamarreand O. D. Faugeras. Articulatedmodelsandmulti-view tracking

with silhouettes.In Proc.7th Int. Conf. on ComputerVision, volumeII, 716–721,

Corfu,Greece,September1999.

[38] J.Deutscher, A. Blake, andI. Reid. Articulatedbodymotion captureby annealed

particlefiltering. In Proc. Conf. ComputerVision and Pattern Recognition, vol-

umeII, 126–133,Hilton Head,SC,June2000.

[39] J.Deutscher, B. North,B. Bascle,andA. Blake. Trackingthroughsingularitiesand

discontinuities by randomsampling. In Proc. 7th Int. Conf. on ComputerVision,

volumeII, 1144–1149,Corfu,Greece,September1999.

[40] A. Doucet,N. G. de Freitas,andN. J. Gordon,editors. SequentialMonteCarlo

Methodsin Practice. Springer-Verlag,2001.

[41] T. W. DrummondandR.Cipolla.Real-timetrackingof highly articulatedstructures

in thepresenceof noisymeasurements.In Proc.8thInt. Conf. onComputerVision,

volumeII, 315–320,Vancouver, Canada,July2001.

[42] R. O. Duda,P. E. Hart, andD. G. Stork. Pattern Classification. JohnWiley &

Sons,New York, secondedition, 2001.

[43] P. F. Felzenszwalb. Learningmodelsfor objectrecognition.In Proc. Conf. Com-

puterVisionandPatternRecognition, volumeI, 56–62,Kauai,HI, December2001.

[44] P. F. Felzenszwalb andD. P. Huttenlocher. Efficient matchingof pictorial struc-

tures. In Proc.Conf. ComputerVision andPatternRecognition, volume 2, 66–73,

2000.

110 7 Bibliography

[45] D. A. ForsythandJ.Ponce.ComputerVision – A ModernApproach. PrenticeHall,

UpperSaddleRiver, NJ,first edition, 2003.

[46] Y. FreundandR. Schapire.A decisiontheoreticgeneralizationof on-linelearning

andan applicationto boosting. J. of Computerand SystemSciences, 55(1):119–

139,1997.

[47] D. M. Gavrila. Pedestriandetectionfrom amoving vehicle.In Proc.6thEuropean

Conf. onComputerVision, volumeII, 37–49,Dublin, Ireland,June/July 2000.

[48] D. M. Gavrila andL. S. Davis. 3-D model-basedtrackingof humansin action:

a multi-view approach.In Proc. Conf. ComputerVision andPatternRecognition,

73–80,SanFrancisco,June1996.

[49] D. M. Gavrila andV. Philomin. Real-timeobjectdetectionfor smartvehicles. In

Proc.7th Int. Conf. onComputerVision, volumeI, 87–93,Corfu,Greece,Septem-

ber1999.

[50] A. Gelb. AppliedOptimalEstimation. TheMIT Press,Cambridge,MA, 1974.

[51] A. GershoandR. M. Gray. VectorQuantization andSignalCompression. Kluwer

Academic,1992.

[52] N. J.Gordon,D. J.Salmond,andA. F. M. Smith.Novel approachto non-linearand

non-GaussianBayesianstateestimation. IEE Proceedings-F, 140:107–113,1993.

[53] C. G. Gross,C. E. Rocha-Miranda,andD. B. Bender. Visualpropertiesof neurons

in inferotemporalcortex of themacaque.J. Neurophysiol., 35:96–111, 1972.

[54] I. Haritaoglu,D. Harwood,andL. S.Davis. W4: Real-timesurveillanceof people

andtheir activities. IEEE Trans.PatternAnalysisandMachineIntell., 22(8):809–

830,2000.

[55] C. G. HarrisandC. Stennett.Rapid– a video-rateobjecttracker. In Proc.British

MachineVisionConference, 73–78,Oxford,UK, September1990.

[56] R. I. Hartley and A. Zisserman. Multiple View Geometryin ComputerVision.

CambridgeUniversity Press,Cambridge,UK, 2000.

[57] A. J.HeapandD. C. Hogg.Towards3-D handtrackingusingadeformablemodel.

In 2ndInternational FaceandGestureRecognitionConference, 140–145,Killing-

ton,VT, October1996.

7 Bibliography 111

[58] A. J.HeapandD. C. Hogg. Wormholesin shapespace:Trackingthroughdiscon-

tinuouschangesin shape. In Proc. 6th Int. Conf. on ComputerVision, 344–349,

Bombay, India,January1998.

[59] D. Hogg. Model-basedvision: a programto seea walking person. Image and

VisionComputing, 1(1):5–20,February1983.

[60] N. R. Howe, M. E. Leventon, andW. T. Freeman.Bayesianreconstructionof 3D

humanmotion from single-cameravideo. In Adv. Neural Information Processing

Systems, 820–826, Denver, CO,November1999.

[61] D. P. Huttenlocher. MonteCarlocomparisonof distancetransformbasedmatching

measure.In ARPA ImageUnderstandingWorkshop, 1179–1183,New Orleans,LA,

May 1997.

[62] D. P. Huttenlocher, G. A. Klanderman,andW. J. Rucklidge. Comparingimages

usingthe Hausdorff distance.IEEE Trans.PatternAnalysisand Machine Intell.,

15(9):850–863,1993.

[63] D. P. Huttenlocher, R. H. Lilien, andC. F. Olson.View-basedrecognitionusingan

eigenspaceapproximation to theHausdorff measure.IEEETrans.PatternAnalysis

andMachineIntell., 21(9):951–955,September1999.

[64] D. P. Huttenlocher, J. J. Noh, andW. J. Rucklidge. Trackingnon-rigidobjectsin

complex scenes.In Proc.4th Int. Conf. on ComputerVision, 93–101,Berlin, May

1993.

[65] D. P. HuttenlocherandW. J. Rucklidge. A multi-resolutiontechniquefor com-

paringimagesusingtheHausdorff distance.In Proc. Conf. ComputerVision and

PatternRecognition, 705–706,New York, June1993.

[66] M. IsardandA. Blake. CONDENSATION — conditional densitypropagation

for visualtracking. Int. Journalof ComputerVision, 29(1):5–28,August1998.

[67] M. IsardandA. Blake. ICondensation:Unifying low-level andhigh-level track-

ing in a stochastic framework. In Proc. 5th EuropeanConf. on ComputerVision,

volumeI, 893–908,Freiburg, Germany, June1998.Springer-Verlag.

[68] M. IsardandA. Blake. A mixed-statecondensationtrackerwith automaticmodel-

switching. In Proc. 6th Int. Conf. on ComputerVision, 107–112, Bombay, India,

January1998.

112 7 Bibliography

[69] M. IsardandJ. MacCormick. BraMBLe: A Bayesianmultiple-blobtracker. In

Proc. 8th Int. Conf. on ComputerVision, volume 2, 34–41,Vancouver, Canada,

July2001.

[70] O. L. R. Jacobs.Introduction to Control Theory. Oxford University Press,second

edition,1993.

[71] A. H. Jazwinski. StochasticProcessesandFil teringTheory. AcademicPress,New

York, 1970.

[72] B. Jedynak,H. Zheng,andM. Daoudi. Statisticalmodelsfor skin detection. In

IEEE Workshopon Statistical Analysisin ComputerVision, 180–193,Madison,

WI, June2003.

[73] I. H. JermynandH. Ishikawa. Globally optimal regionsandboundaries.In Proc.

7th Int. Conf. on ComputerVision, volumeI, 20–27,Corfu, Greece,September

1999.

[74] M. J.JonesandJ.M. Rehg.Statisticalcolormodelswith applicationto skindetec-

tion. Int. Journalof ComputerVision, 46(1):81–96, January2002.

[75] S.J.Julier. ProcessModelsfor theNavigationof High-SpeedLandVehicles. PhD

thesis,Departmentof EngineeringScience,Universityof Oxford,1997.

[76] S. J. JulierandJ.K. Uhlmann.A new extensionof theKalmanfilter to nonlinear

systems.In SPIEProceedings, volume3068,182–193,April 1997.

[77] S.J.Julier, J.K. Uhlmann,andH. F. Durrant-Whyte.A new approachfor filtering

nonlinearsystems. In Proc. AmericanControl Conference, 1628–1632, Seattle,

USA, June1995.

[78] S. J. Julier, J. K. Uhlmann,andH. F. Durrant-Whyte.A new methodfor thenon-

linear transformation of meansandcovariances.IEEE Trans.Automatic Control,

45(3):477–482, March2000.

[79] I. A. KakadiarisandD. N. Metaxas.Model-basedestimation of 3-D humanmotion

with occlusionbasedonactivemulti-viewpointselection.In Proc.Conf. Computer

VisionandPatternRecognition, 81–87,SanFrancisco,June1996.

[80] R. E. Kalman. A new approachto linearfiltering andpredictionproblems.Trans-

actionsof theASME,Journalof BasicEngineering, 82:35–45,March1960.

7 Bibliography 113

[81] E. R. Kandel, J. H. Schwartz, and T. M. Jessell,editors. Principles of Neural

Science. McGraw-Hill, New York, fourthedition,2000.

[82] M. Kass,A. Witkin, andD. Terzopoulos.Snakes:Activecontourmodels.In Proc.

1stInt. Conf. onComputerVision, 259–268,London,June1987.

[83] M. R. Korn andC. R. Dyer. 3D multiview objectrepresentationsfor model-based

objectrecognition.PatternRecognition, 20(1):91–103,1987.

[84] I. Laptev andT. Lindeberg. Trackingof multi-statehandmodelsusingparticle

filtering andahierarchyof multi-scaleimagefeatures.In IEEEWorkshoponScale-

SpaceandMorphology, 63–74,Vancouver, Canada,July2001.

[85] T. Lefebvre, H. Bruyninckx,andJ.De Schutter. Commenton ’A new methodfor

the nonlineartransformationof meansandcovariancesin filters andestimators’.

IEEETrans.AutomaticControl, 47(8):1406–1408,August2002.

[86] S. Li, L. Zhu, Z. Zhang,A. Blake, H. Zhang,andH. Shum. Statistical learning

of multi-view facedetection. In Proc. 7th EuropeanConf. on ComputerVision,

volumeIV, 67–81,Copenhagen,Denmark,May 2002.

[87] J.Lin, Y. Wu,andT. S.Huang.Capturinghumanhandmotionin imagesequences.

In Proc. of IEEE Workshopon Motion and Video Computing, 99–104, Orlando,

FL, December2002.

[88] R. LocktonandA. W. Fitzgibbon. Real-timegesturerecognitionusingdetermin-

istic boosting. In Proc. British Machine Vision Conference, volume II, 817–826,

Cardiff, UK, September2002.

[89] S.Lu, D. Metaxas,D. Samaras,andJ.Oliensis.Usingmultiple cuesfor handtrack-

ing andmodelrefinement.In Proc. Conf. ComputerVision andPatternRecogni-

tion, volumeII, 443–450,Madison, WI, June2003.

[90] J. MacCormick and M. Isard. Partitioned sampling, articulatedobjects, and

interface-qualityhandtracking. In Proc.6thEuropeanConf. on ComputerVision,

volume2, 3–19,Dublin, Ireland,June2000.

[91] D. Marr. Vision. Freeman,SanFrancisco,1982.

114 7 Bibliography

[92] D. Marr andH. K. Nishihara.Representationandrecognitionof thespatialorgani-

zationof threedimensional structure.Proc.RoyalSociety, London, 200:269–294,

1978.

[93] B. Martinkauppi. FaceColour underVarying Illumination – AnalysisandAppli-

cations. PhDthesis,Universityof Oulu,Oulu,Finland,2002.

[94] P. S.Maybeck.Stochastic Models,Estimation, andControl, volume1. Academic

Press,New York, 1979.

[95] I. Miki c, E. Hunter, M. Trivedi, andP. Cosman.Articulatedbodyposture estima-

tion from multi-cameravoxel data. In Proc. Conf. ComputerVision and Pattern

Recognition, volumeI, 455–460,Kauai,HI, December2001.

[96] T. Minka. Exemplar-basedlikelihoodsusingthepdf projectiontheorem.Technical

report,MicrosoftResearchLtd., Cambridge,UK, March2004.

[97] M. L. Minsky andS. A. Papert. Perceptrons: An Introduction to Computational

Geometry. MIT Press,Cambridge,MA, 1969.

[98] T. B. MoeslundandE. Granum.A survey of computervision-basedhumanmotion

capture.ComputerVisionandImageUnderstanding, 81(3):231–268,2001.

[99] G. Mori andJ.Malik. Estimating humanbodyconfigurationsusingshapecontext

matching.In Proc.7thEuropeanConf. onComputerVision, volume III, 666–680,

Copenhagen,Denmark,May 2002.

[100] D. D. Morris andJ. M. Rehg. Singularityanalysisfor articulatedobjecttracking.

In Proc.Conf. ComputerVisionandPatternRecognition, 289–296,SantaBarbara,

CA, June1998.

[101] C. F. Olson and D. P. Huttenlocher. Automatic target recognitionby matching

orientededgepixels. Transactionson Image Processing, 6(1):103–113, January

1997.

[102] J. O’Rourke and N. Badler. Model-basedimageanalysisof humanmotion us-

ing constraintpropagation. IEEE Trans. Pattern Analysisand Machine Intell.,

2(6):522–536, November 1980.

7 Bibliography 115

[103] A. Papoulis.Probability, RandomVariables,andStochastic Processes. McGraw-

Hill Seriesin Electrical Engineering: Communications and Signal Processing.

McGraw-Hill, New York, third edition,1991.

[104] V. Pavlovic, J. M. Rehg,T.-J. Cham,and K. P. Murphy. A dynamic Bayesian

network approachto trackingusinglearnedlearneddynamicmodels.In Proc.7th

Int. Conf. onComputerVision, 94–101,Corfu,Greece,September1999.

[105] V. Pavlovic, R. Sharma,andT. Huang. Visual interpretationof handgesturesfor

human-computerinteraction:A review. IEEETrans.PatternAnalysisandMachine

Intell., 19(7):677–695,July1997.

[106] R. PlankersandP. Fua. Articulatedsoft objectsfor multi-view shapeandmotion

capture.IEEETrans.PatternAnalysisandMachineIntell., 25:1182–1187,2003.

[107] D. Ramananand D. A. Forsyth. Finding and tracking peoplefrom the bottom

up. In Proc.Conf. ComputerVisionandPatternRecognition, volumeII, 467–474,

Madison,WI, June2003.

[108] J.M. Rehg.Visual Analysisof High DOF ArticulatedObjectswith Application to

Hand Tracking. PhD thesis,Carnegie Mellon University, Dept.of Electricaland

ComputerEngineering,1995.

[109] J.M. RehgandT. Kanade.Visualtrackingof high DOF articulatedstructures:an

applicationto humanhandtracking. In Proc. 3rd EuropeanConf. on Computer

Vision, volumeII, 35–46,May 1994.

[110] J. M. Rehgand T. Kanade. Model-basedtracking of self-occludingarticulated

objects. In Proc. 5th Int. Conf. on ComputerVision, 612–617,Cambridge,MA,

June1995.

[111] B. D. Ripley. Stochastic Simulation. Wiley, New York, 1987.

[112] S.Romdhani,P. H. S.Torr, B. Scholkopf, andA. Blake. Computationallyefficient

facedetection. In Proc. 8th Int. Conf. on ComputerVision, volumeII, 695–700,

Vancouver, Canada,July2001.

[113] R. Rosales,V. Athitsos, L. Sigal, andS. Scarloff. 3D handposereconstruction

usingspecializedmappings. In Proc.8th Int. Conf. onComputerVision, volume I,

378–385,Vancouver, Canada,July2001.

116 7 Bibliography

[114] H. Rowley, S.Baluja,andT. Kanade.Neuralnetwork-basedfacedetection.IEEE

Trans.PatternAnalysisandMachineIntell., 20(1):22–38,1998.

[115] H. Schneidermanand T. Kanade. A statistical methodfor 3D object detection

appliedto facesandcars.In Proc.Conf. ComputerVisionandPatternRecognition,

volumeI, 746–751,Hilton Head,SC,June2000.

[116] J.G. SempleandG. T. Kneebone.Algebraic ProjectiveGeometry. OxfordClassic

Texts in the PhysicalSciences.ClarendonPress,Oxford, UK, 1998. Originally

publishedin 1952.

[117] G. Shakhnarovich, P. Viola, andT. Darrell. Fastposeestimationwith parameter-

sensitivehashing.In Proc.9th Int. Conf. onComputerVision, volumeII, 750–757,

Nice,France,October2003.

[118] N. Shimada,K. Kimura, and Y. Shirai. Hand gesturerecognitionusing com-

putervision basedon model-matchingmethod. In 6th International Conference

onHuman-ComputerInteraction, Yokohama,Japan,July1995.

[119] N. Shimada,K. Kimura, andY. Shirai. Real-time3-D handpostureestimation

basedon2-D appearanceretrieval usingmonocularcamera.In Proc.Int. Workshop

onRecognition, AnalysisandTrackingofFacesandGesturesin Real-timeSystems,

23–30,Vancouver, Canada,July2001.

[120] N. ShimadaandY. Shirai. 3-D handposeestimation andshapemodelrefinement

from a monocularimagesequence.In Proc. of Int. Conf. on Virtual Systemsand

Multimedia, 423–428,Gifu, Japan,September1996.

[121] N. Shimada,Y. Shirai,Y. Kuno, andJ.Miura. Handgestureestimation andmodel

refinementusingmonocularcamera.In Proc.3rd Int. Conf. onAutomatic Faceand

GestureRecognition, 268– 273,Nara,Japan,April 1998.

[122] H. Sidenbladh,M. J. Black, andL. Sigal. Implicit probabilistic modelsof human

motionfor synthesis andtracking. In Proc. 7th EuropeanConf. on ComputerVi-

sion, volume1, 784–800,Copenhagen,Denmark,May 2002.

[123] L. Sigal, M. Isard,B. H. Sigelman,andM. J. Black. Attractive people:Assem-

bling loose-limbedmodelsusingnon-parametricbeliefpropagation.In Adv. Neural

Information Processing Systems, 2004.to appear.

7 Bibliography 117

[124] L. Sigal,S. Sclaroff, andV. Athitsos. Estimation andpredictionof evolving color

distributionsfor skinsegmentationundervaryingillumination.In Proc.Conf. Com-

puter Vision and Pattern Recognition, volume 2, 2152–2159,Hilton Head,SC,

June2000.

[125] C. SminchisescuandB. Triggs. Estimatingarticulatedhumanmotionwith covari-

ancescaledsampling. Int. Journalof RoboticsResearch, 22(6):371–393,2003.

[126] H. W. Sorenson.BayesianAnalysisof TimeSeriesandDynamicModels, chapter

Recursive Estimation for nonlineardynamicsystems,127–165. Marcel Dekker

inc., 1988.

[127] S. Spielberg (director). Minority Report,20thCenturyFox andDreamworksPic-

tures,2002.

[128] T. Starner, J.Weaver, andA. Pentland.Real-timeAmericanSignLanguagerecog-

nition usingdeskandwearablecomputer-basedvideo. IEEE Trans.PatternAnal-

ysisandMachineIntell., 20(12):1371–1375,December1998.

[129] J. Sullivan,A. Blake, andJ.Rittscher. Statisticalforegroundmodelling for object

localisation.In Proc.6thEuropeanConf. onComputerVision, volumeII, 307–323,

Dublin, Ireland,June/July 2000.

[130] D. TerzopoulosandD. Metaxas.Dynamic3D modelswith localandglobaldefor-

mations:Deformablesuperquadrics.IEEE Trans.Pattern Analysisand Machine

Intell., 13(7):703–714,1991.

[131] A. Thayananthan,B. Stenger, P. H. S. Torr, andR. Cipolla. Learninga kinematic

prior for tree-basedfiltering. In Proc. British Machine Vision Conference, vol-

ume2, 589–598,Norwich,UK, September2003.

[132] A. Thayananthan,B. Stenger, P. H. S. Torr, andR. Cipolla. Shapecontext and

chamfermatchingin clutteredscenes.In Proc.Conf. ComputerVisionandPattern

Recognition, volume I, 127–133,Madison,WI, June2003.

[133] S. Thrun,D. Fox, W. Burgard,andF. Dellaert. Robust MonteCarlo localization

for mobilerobots.Artificial Intelligence, 128(1-2):99–141, 2000.

[134] C. Tomasi,S.Petrov, andA. K. Sastry. 3D tracking= classification+ interpolation.

In Proc. 9th Int. Conf. on ComputerVision, volumeII, 1441–1448, Nice, France,

October2003.

118 7 Bibliography

[135] K. ToyamaandA. Blake. Probabilistic trackingwith exemplarsin a metricspace.

Int. Journal of ComputerVision, 48(1):9–19,June2002.

[136] K. Toyama,J. Krumm, B. Brumitt, andB. Meyers. Wallflower: Principlesand

practiceof backgroundmaintenance.In Proc. 7th Int. Conf. on ComputerVision,

255–261,Corfu,Greece,September1999.

[137] J. TrieschandC. Von derMalsburg. A systemfor person-independenthandpos-

turerecognitionagainstcomplex backgrounds.IEEE Trans. PatternAnalysisand

MachineIntell., 23(12):1449–1453,2001.

[138] R. vanderMerwe,N. deFreitas,A. Doucet,andE. A. Wan. Theunscentedpar-

ticle filter. In Adv. Neural InformationProcessing Systems, 584–590,Denver, CO,

November2000.

[139] R. vanderMerweandE. Wan. Sigma-pointKalmanfilters for probabilistic infer-

encein dynamicstate-spacemodels.In Proc.Workshopon Advancesin Machine

Learning, Montreal,Canada,June2003.

[140] V. Verma,S. Thrun,andR. Simmons.Variableresolution particlefilter. In Proc.

Int. Joint. Conf. onArt. Intell., August2003.

[141] P. Viola andM. J.Jones.Rapidobjectdetectionusingaboostedcascadeof simple

features.In Proc.Conf. ComputerVisionandPatternRecognition, volumeI, 511–

518,Kauai,HI, December2001.

[142] P. Viola, M. J.Jones,andD. Snow. Detectingpedestriansusingpatternsof motion

andappearance.In Proc.9th Int. Conf. on ComputerVision, volumeII, 734–741,

Nice,France,October2003.

[143] C.VonHardenberg andF. Berard. Bare-handhuman-computerinteraction.In Proc.

ACM WorkshoponPerceptiveUserInterfaces, Orlando,FL, November2001.

[144] E.A. WanandR.vanderMerve.TheunscentedKalmanfilter for nonlinearestima-

tion. In Proc.of IEEESymposium2000onAdaptiveSystemsfor SignalProcessing,

CommunicationsandControl, 153–158,LakeLouise,Canada,October2000.

[145] E. A. Wan,R. vanderMerve,andA. T. Nelson.Dualestimationandtheunscented

transformation.In Adv. Neural Information ProcessingSystems, 666–672, Denver,

CO,November 1999.

7 Bibliography 119

[146] P. Wellner. Thedigitaldeskcalculator:tangiblemanipulation onadesktopdisplay.

In Proc. UIST ’91 ACM Symposiumon User InterfaceSoftware and Technology,

27–33,New York, November 1991.

[147] O.Willi ams,A. Blake,andR.Cipolla.A sparseprobabilisticlearningalgorithmfor

real-timetracking.In Proc.9th Int. Conf. onComputerVision, volumeI, 353–360,

Nice,France,October2003.

[148] C. R. Wren,A. Azarbayejani,T. Darrell, andA. P. Pentland.Pfinder: Real-time

trackingof the humanbody. IEEE Trans. Pattern Analysisand Machine Intell.,

19(7):780–785,1997.

[149] Y. Wu andT. S.Huang.Capturingarticulatedhumanhandmotion: A divide-and-

conquerapproach.In Proc.7th Int. Conf. onComputerVision, volumeI, 606–611,

Corfu,Greece,September1999.

[150] Y. Wu andT. S. Huang. Vision-basedgesturerecognition:A review. In A. Braf-

fort et al., editor, Gesture-BasedCommunicationin Human-ComputerInteraction,

103–116,1999.

[151] Y. Wu andT. S.Huang.View-independentrecognitionof handpostures. In Proc.

Conf. ComputerVision and PatternRecognition, volume II, 88–94,Hilton Head,

SC,June2000.

[152] Y. Wu andT. S. Huang. Humanhandmodeling,analysisand animation in the

context of humancomputerinteraction.IEEESignalProcessingMagazine, Special

issueon ImmersiveInteractiveTechnology, 18(3):51–60, May 2001.

[153] Y. Wu, J. Y. Lin, andT. S. Huang. Capturingnaturalhandarticulation. In Proc.

8th Int. Conf. on ComputerVision, volumeII, 426–432, Vancouver, Canada,July

2001.

[154] J.Yang,W. Lu, andA. Waibel. Skin-colormodelingandadaptation.In Proc.3rd

AsianConf. onComputerVision, 687–694,HongKong,China,January1998.

[155] H. ZhouandT. S. Huang.Trackingarticulatedhandmotionwith eigen-dynamics

analysis.In Proc.9th Int. Conf. onComputerVision, volume II, 1102–1109, Nice,

France,October2003.