34
Paleoceanography Supporting Information for Axial-obliquity control on the greenhouse carbon budget through mid- to high-latitude reservoirs Jiří Laurin Institute of Geophysics, Academy of Sciences, Praha, Czech Republic Stephen R. Meyers University of Wisconsin – Madison, Department of Geoscience, Madison, USA David Uličný Institute of Geophysics, Academy of Sciences, Praha, Czech Republic Ian Jarvis School of Geography, Geology and Environment, Kingston University London, Kingston upon Thames, UK Bradley B. Sageman Department of Earth & Planetary Sciences, Northwestern University, Evanston, USA Contents of this file Text S1 to S2 Figures S1 to S4 Tables S1 to S3 Introduction This file includes supporting information for correlation of published carbon- isotope curves (Figure S1), a first-order estimate of carbon fluxes required to develop a 1‰ change in the carbon-isotope composition of the exogenic reservoir (Text S1), stratigraphy and lithology of the Bch-1 borehole (Figure S2), a detailed description of age control points used in the construction of age models (Tables S1.1 through S1.7), comparison of different axial- obliquity solutions for the interval 80-95 Ma (Figure S3), description of input parameters and selected output data from isotopic mass-balance models (Tables S2.1 and S2.2, and Figures S4.1 through S4.12), explanation of feedback mechanisms affecting the isotopic mass balance (Text S2), and a list of astronomical signatures identified previously in the Cretaceous interval (Table S3). 1

Laurin et al 2015 Palo SUPPLEMENTARY MATERIAL

Embed Size (px)

Citation preview

Paleoceanography

Supporting Information for

Axial-obliquity control on the greenhouse carbon budget through mid- to high-latitude reservoirs

Jiří Laurin Institute of Geophysics, Academy of Sciences, Praha, Czech Republic

Stephen R. MeyersUniversity of Wisconsin – Madison, Department of Geoscience, Madison, USA

David Uličný Institute of Geophysics, Academy of Sciences, Praha, Czech Republic

Ian JarvisSchool of Geography, Geology and Environment, Kingston University London, Kingston upon

Thames, UK

Bradley B. SagemanDepartment of Earth & Planetary Sciences, Northwestern University, Evanston, USA

Contents of this file

Text S1 to S2Figures S1 to S4Tables S1 to S3

Introduction This file includes supporting information for correlation of published carbon-isotope curves (Figure S1), a first-order estimate of carbon fluxes required to develop a 1‰ change in the carbon-isotope composition of the exogenic reservoir (Text S1), stratigraphy and lithology of the Bch-1 borehole (Figure S2), a detailed description of age control points used in the construction of age models (Tables S1.1 through S1.7), comparison of different axial-obliquity solutions for the interval 80-95 Ma (Figure S3), description of input parameters and selected output data from isotopic mass-balance models (Tables S2.1 and S2.2, and Figures S4.1 through S4.12), explanation of feedback mechanisms affecting the isotopic mass balance (Text S2), and a list of astronomical signatures identified previously in the Cretaceous interval (Table S3).

1

Text S1.The first order estimate of the amount of carbon required to develop an isotope excursion can be obtained from the following mass balance relationships (modified after Zeebe et al. [2009])

Mf = Mi + Ma

Rf x Mf = Ri x Mi + Ra x Ma

where Mi, Ma and Mf are masses of initial, added and final carbon inventories, respectively, and Ri, Ra and Rf are carbon-isotope ratios of these inventories. For Mi = 46700 Pg (3.89 x1018 mol; see Table S2.1 in Supporting Information) the amount of organic carbon (δ13Corg = -28 ‰) required to develop a 1‰ excursion is 1600 Pg (1.34 x1017 mol).

Text S2.Note on the feedback mechanisms affecting carbon-isotope budget. Changes in the net carbon burial fluxes considered in our models should affect atmospheric greenhouse-gas concentration (namely CO2 and CH4), ocean chemistry and the rates of weathering. These changes should modify the carbon input from weathered carbonates, silicate rocks and organic matter, and carbonate precipitation/dissolution in the ocean (e.g., review in Zeebe [2012a]), thus providing a feedback to the isotopic mass balance. The signature of this feedback mechanism in 13C0 depends on the carbon-isotope composition of the weathering fluxes and marine carbonate, which are generally poorly constrained for the Cretaceous. At a value of +2‰ for carbonate and -4 ‰ for bulk weathering fluxes (assuming a 68% contribution from carbonate weathering, 12% from silicate weathering, and 20% from organic weathering; Kump and Arthur [1999]) these changes act as a positive feedback to the isotopic changes driven by carbon burial. Sensitivity experiments with the Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir model (LOSCAR; Zeebe et al. [2009]; Zeebe [2012b]), however, suggest that the carbon-isotopic effect of this mechanism is minor and does not significantly alter the Myr-scale patterns discussed in this paper (results not shown here).

2

Figure S1. Correlation of the English Chalk 13Ccarb [Jarvis et al., 2006], Contessa Quarry 13Ccarb (part; Stoll and Schrag [2000]), Bch-1 13Corg [Uličný et al., 2014], Western Interior Basin 13Corg [Joo and Sageman, 2014] and Bottaccione Gorge 13Ccarb [Jenkyns et al., 1994; Sprovieri et al., 2013]. All data were rescaled in the time domain (see Methods). Age control points are marked by red crosses. S13: boundary location based on Sprovieri et al. [2013]; W13: boundary location based on Wendler [2013]. For details on age control points see Tables S1.1-7 in Supporting Information. Bandpassed ~1-Myr components in 13C are shown for the English Chalk, Western Interior, Bch-1 borehole and Bottaccione Gorge (blue curves).

3

Figure S2. Biostratigraphy, lithology, Si/Al ratios and 13Corg data; Bch-1 borehole, Bohemian Cretaceous Basin (central Europe). Modified after Uličný

4

et al. [2014]. FO C.c.crassus and FO C.c.inconstans updated [S. Čech, personal communication, August 2014].

Figure S3. Obliquity AM envelopes obtained by Hilbert-transforming the La04 [Laskar et al., 2004], La10a and La10d (both Laskar et al. [2011]) orbital solutions (black curves). Red curves are lowpass-filtered AM envelopes (piecewise linear filter, cutoff frequency 1.5 cycle/Myr) highlighting Myr-scale variability in AM. Horizontal bars mark ~1-Myr and ~2.5-Myr cycles of AM. Note that, despite up to ~350-kyr variability in the cycle wavelength, the ~1-Myr cycle dominates the obliquity AM in all solutions. In contrast, the ~2.5 Myr cyclicity in AM is locally instinguishable.

5

Figure S4.1. Input (A, B) and output (C) parameters of model GO-OBL-A11. Mean carbon residence time is 109 kyr in this model. Note that this type of models is capable of developing distinct Myr-scale cyclicity in 13C0, but requires enormous short-term fluctuations in the net organic-burial fluxes to reproduce the magnitude of the observed 13C changes. See text and Figure 5 for further discussion.

6

Figure S4.2. Selected input and output parameters of model THOt-OBL-La04, which simulates quasi-stable burial of bulk organic matter (13C = 13C0 -26 ‰) forced by the obliquity cycle (solution La04; Laskar et al. [2004]). (A) Input obliquity forcing. (B) Rates of buildup and decay of simulated quasi-stable reservoir (black) and size of this reservoir (red). The reservoir is assumed to act as a carbon sink when the obliquity decreases below 23.5 degrees, and is reconfigured to become a net carbon source when the obliquity rises above 23.65 degrees. In this model, no proportionality to obliquity forcing is applied beyond these thresholds. (C) Simulated 13C0.

7

Figure S4.3. Selected input and output parameters of model THCpr-OBL-La04, which simulates quasi-stable burial of marine carbonate carbon (13C = 13C0 +2 ‰) forced by the obliquity cycle (solution La04; Laskar et al. [2004]). (A) Input obliquity forcing. (B) Rates of buildup and decay of simulated quasi-stable reservoir (black) and size of this reservoir (red). The carbonate reservoir is assumed to act as a carbon sink when the obliquity decreases below 23.5 degrees, and is reconfigured to become a net carbon source when the obliquity rises above 23.65 degrees. In this model, no proportionality to obliquity forcing is applied beyond these thresholds. (C) Simulated 13C0.

8

Figure S4.4. Selected input and output parameters of model THM-OBL-La10d, which simulates quasi-stable burial of methane carbon (13C = 13C0 -60 ‰) forced by the obliquity cycle (solution La10d; Laskar et al. [2011]). (A) Input obliquity forcing. (B) Rates of buildup and decay of simulated quasi-stable reservoir (black) and size of this reservoir (red). The reservoir is assumed to act as a carbon sink when the obliquity decreases below 23.5 degrees, and is reconfigured to become a net carbon

9

source when the obliquity rises above 24.1 degrees. In this model, no proportionality to obliquity forcing is applied beyond these thresholds. (C) Simulated 13C0.

Figure S4.5. Selected input and output parameters of model THM-OBL-La10a, which simulates quasi-stable burial of methane carbon (13C = 13C0 -60 ‰) forced by the obliquity cycle (solution La10a; Laskar et al. [2011]). (A) Input obliquity forcing. (B) Rates of buildup and decay of simulated quasi-stable reservoir (black) and size of this reservoir (red). The reservoir is assumed to act as a carbon sink when the

10

obliquity decreases below 23.7 degrees, and is reconfigured to become a net carbon source when the obliquity rises above 24.1 degrees. In this model, no proportionality to obliquity forcing is applied beyond these thresholds. (C) Simulated 13C0.

Figure S4.6. Selected input and output parameters of model THOt-OBL-La10a-rev, which simulates quasi-stable burial of bulk organic matter (13C = 13C0 -26 ‰) forced by the obliquity cycle (solution La10a; Laskar et al. [2011]). (A) Input obliquity forcing. (B) Rates of buildup and decay of simulated quasi-stable reservoir (black) and size of this reservoir (red). The reservoir is assumed to act as a carbon sink when the obliquity rises above 24.1 degrees, and is reconfigured to become a net carbon

11

source when the obliquity falls below 23.9 degrees. In this model, no proportionality to obliquity forcing is applied beyond these thresholds. (C) Simulated 13C0.

Figure S4.7. Selected input and output parameters of model THM-OBL-La10a-rev, which simulates quasi-stable burial of methane carbon (13C = 13C0 -60 ‰) forced by the obliquity cycle (solution La10a; Laskar et al. [2011]). (A) Input obliquity forcing. (B) Rates of buildup and decay of simulated quasi-stable reservoir (black) and size of this reservoir (red). The reservoir is assumed to act as a carbon sink when the

12

obliquity rises above 24.1 degrees, and is reconfigured to become a net carbon source when the obliquity falls below 23.9 degrees. In this model, no proportionality to obliquity forcing is applied beyond these thresholds. (C) Simulated 13C0.

Figure S4.8. Selected input and output parameters of model THM-PREC-La04, which simulates quasi-stable burial of methane carbon (13C = 13C0 -60 ‰) forced by the precessional cycle (solution La04; Laskar et al. [2004]). (A) Input obliquity forcing. (B) Rates of buildup and decay of simulated quasi-stable reservoir (black) and size of this reservoir (red). The reservoir is assumed to act as a carbon sink when the precessional index decreases below 0.02, and is reconfigured to become a net

13

carbon source when the precessional index increases above 0.025. (C) Simulated 13C0. Note that the precession-forced isotope signature is dominated by the 405-kyr eccentricity component, and does not reproduce the ~1-Myr cyclicity observed in 13C data (Figs. 1-4).

Figure S4.9. Selected input and output parameters of model THM-PREC-La10a, which simulates quasi-stable burial of methane carbon (13C = 13C0 -60 ‰) forced by the precessional cycle (solution La10a; Laskar et al. [2011]). (A) Input obliquity forcing. (B) Rates of buildup and decay of simulated quasi-stable reservoir (black) and size of this reservoir (red). The reservoir is assumed to act as a carbon sink when

14

the precessional index decreases below 0.02, and is reconfigured to become a net carbon source when the precessional index rises above 0.025. (C) Simulated 13C0. Note that the precession-forced isotope signature is dominated by the 405-kyr eccentricity component, and does not reproduce the ~1-Myr cyclicity observed in 13C data (Figs. 1-4).

Figure S4.10. Selected input and output parameters of model THM-PREC-La04-rev, which simulates quasi-stable burial of methane carbon (13C = 13C0 -60 ‰) forced by the precessional cycle (solution La04; Laskar et al. [2004]). (A) Input obliquity forcing. (B) Rates of buildup and decay of simulated quasi-stable reservoir (black) and size of this reservoir (red). The reservoir is assumed to act as a carbon sink when the

15

precessional index rises above 0.025, and is reconfigured to become a net carbon source when the precessional index falls below 0.020. (C) Simulated 13C0. A similar model setup was shown to reproduce some of the key features of the Late Turonian through Early Conacian carbon-isotope record [Laurin et al., 2014]. The overall long-term pattern and the 170-kyr signature observed in the Turonian data (Fig. 4), however, suggest that obliquity was the dominant control throughout most of the Turonian.

16

Figure S4.11. Selected input and output parameters of model THM-PREC-La10a-rev, which simulates quasi-stable burial of methane carbon (13C = 13C0 -60 ‰) forced by the precessional cycle (solution La10a; Laskar et al. [2011]). (A) Input obliquity forcing. (B) Rates of buildup and decay of simulated quasi-stable reservoir (black) and size of this reservoir (red). The reservoir is assumed to act as a carbon sink when the precessional index rises above 0.025, and is reconfigured to become a net carbon source when the precessional index falls below 0.020. (C) Simulated 13C0. Note that the precession-forced isotope signature is dominated by the 405-kyr eccentricity component, and does not reproduce the ~1-Myr cyclicity observed in 13C data (Figs. 1-4).

Figure S4.12. Comparison of 13Corg data (Bch-1 borehole) with an alternative model solution in which the buildup of methane-carbon reservoir is linked to high amplitudes in the obliquity forcing (setup THM-OBL-La10a-rev). (A) Age-calibrated 13Corg, Bch-1 borehole. Major carbon-isotope excursions indicated (HW2 and HW3 refer to Hitch Wood 2 and Hitch Wood 3 following Uličný et al. [2014]). (B) EHA spectral estimate for the calibrated Bch-1 curve. (C) 13C0 simulated with the THM-OBL-La10a-rev model (“0” model time = 100 Myr ago in the solution La10a; Laskar et al. [2011]). (D) EHA spectral estimate for the simulated 13C0. Note the concentration of power at the ~170 kyr wavelength and its similarity with ~170-kyr signature in the calibrated Bch-1 data. Longer AM wavelengths are biased in these EHA plots due to a relatively small size of the EHA window (1 Myr). Compare with Figure 4. Note that both obliquity AM phasing alternatives can replicate the observed 13Corg and its EHA signature. The key difference between the two models is in the rates of reservoir buildup and decay: when the reservoir buildup is linked to low amplitudes in the obliquity forcing (e.g., THM-OBL-La04; Figs. 4, 6) the model require relatively high rates of decay (buildup vs. decay rate ratios c. 1:7), while the opposite proportionality (c. 7:1) is required in the reverse phasing setup (e.g., THM-OBL-La10a-rev). The former possibility would be consistent, for example, with buildup and decay of methane-hydrate reservoirs, while the latter possibility might be applicable, for example, to lacustrine organic-rich deposits.

17

18

Stratigraphic level Depth [m]

Age Model Floating [kyr]

Age Model [this study] [Myr ago]

Source of stratigraphic data

Source of chronology

base C. crassus crassus Zone 37 -250 89.50 Uličný et al. [2014] Laurin et al. [2014]top Navigation Event 1)

98 0 89.75 Uličný et al. [2014]Sageman et al. [2014]

Didymotis Event I 109 137 89.89 Uličný et al. [2014] Laurin et al. [2014]base P. germari Zone 130 375 90.13 Uličný et al. [2014] Laurin et al. [2014]base M. scupini Zone 140 795 90.55 Uličný et al. [2014] Laurin et al. [2014]peak Hitch Wood Event I 172 1091 90.84 Uličný et al. [2014] Laurin et al. [2014]Bridgewick Event 225 1356 91.11 Uličný et al. [2014] Laurin et al. [2014]base I. perplexus Zone 255 1555 91.31 Uličný et al. [2014] Laurin et al. [2014]

base C. woollgari Zone 374 3150 92.90 Uličný et al. [2014]Ogg and Hinnov [2012]

base Turonian "-100 kyr" (hiatus) 402.5 4050 93.80 Uličný et al. [2014]

approximate duration 2)

base Turonian 402.7 4150 93.90 Uličný et al. [2014]Meyers et al. [2012a]

1) approximates base Coniacian [Walaszczyk et al., 2010; Uličný et al., 2014]2) based on correlation to precession/eccentricity cycles in W Bohemia [Laurin, unpublished]

Table S1.1 Bch-1 borehole, Bohemian Cretaceous Basin (13Corg after Uličný et al. [2014]).

1

Stratigraphic level Original age model [Jarvis et al., 2006][Myr ago]

Age Model [this study]

[Myr ago]

Source of stratigraphic data Source of chronology

base Maastrichtian 70.6 72.1 Jarvis et al. [2006] Ogg and Hinnov [2012]base Campanian 83.53 84.19 Jarvis et al. [2006] Sageman et al. [2014]base Santonian 85.85 86.49 Jarvis et al. [2006] Sageman et al. [2014]base C. crassus crassus Zone

89.056 89.5 Jarvis et al. [2006] (= C. schloenbachi)

Laurin et al. [2014] anchored to Sageman et al. [2014]

top Navigation Event 1) 89.196 89.75 Jarvis et al. [2006] Sageman et al. [2014]Didymotis Event I 89.279 89.89 correlated from Liencres and

Salzgitter (Jarvis et al. [2006], their fig. 8)

Laurin et al. [2014] anchored to Sageman et al. [2014]

base M. scupini Zone 89.506 90.55 correlated from Dover and Liencres (Jarvis et al. [2006], their fig. 8)

Laurin et al. [2014] anchored to Sageman et al. [2014]

peak Hitch Wood Event 2)

89.553 90.84 Jarvis et al. [2006] Laurin et al. [2014] anchored to Sageman et al. [2014]

Bridgewick Event 89.835 91.11 Jarvis et al. [2006] Laurin et al. [2014] anchored to Sageman et al. [2014]

base I. perplexus Zone 3)

90.36 91.31 Jarvis et al. [2006], Walaszczyk et al. [2010], Uličný et al. [2014]

Laurin et al. [2014] anchored to Sageman et al. [2014]

base C. woollgari Zone 92.13 92.9 Jarvis et al. [2006] Ogg and Hinnov [2012]base Turonian 93.55 93.9 Jarvis et al. [2006] Meyers et al. [2012a]; Ogg and Hinnov

[2012]OAE II, onset positive CIE

93.99 94.44 Jarvis et al. [2006] base OAE II after Sageman et al. [2006]; Meyers et al. [2012a]; Ma et al. [2014]

top Mid-Cenomanian Event I

95.62 96.5 Jarvis et al. [2006] timing relative to base OAE II after Lanci et al. [2010]; cf. Mitchell et al. [2008]

base Cenomanian 99.6 100.5 Jarvis et al. [2006] Ogg and Hinnov [2012]1) approximates base Coniacian [Walaszczyk et al., 2010; Uličný et al., 2014]2) = Hitch Wood I of Uličný et al. [2014]3) top of the Lower Southerham Event is coeval with base I. perplexus Zone [Walaszczyk et al., 2010; Uličný et al., 2014]

2

Table S1.2 English Chalk, composite (13Ccarb after Jarvis et al. [2006]).

3

Stratigraphic level Original age model

[Joo and Sageman, 2014]

[Myr ago]

Age Model [this

study][Myr ago]

Source of stratigraphic data

Source of chronology

base Campanian 84.19 84.19 Joo and Sageman [2014]

Sageman et al. [2014]

base Santonian 86.49 86.49 Joo and Sageman [2014]

Sageman et al. [2014]

base Coniacian (S. preventricosus Zone)

89.75 89.75 Joo and Sageman [2014]

Sageman et al. [2014]

Bridgewick Event 91.05 91.11 Joo and Sageman [2014]

Laurin et al. [2014] anchored to Sageman et al. [2014]

top Lower Southerham Event 1) 91.45 91.31 Joo and Sageman [2014]

Laurin et al. [2014] anchored to Sageman et al. [2014]

base C. woollgari Zone 92.9 92.9 Joo and Sageman [2014]

Ogg and Hinnov [2012]

base Turonian 93.9 93.9 Joo and Sageman [2014]

Meyers et al. [2012a]; Ogg and Hinnov [2012]

OAE II, onset positive CIE 94.58 94.44 Joo and Sageman [2014]

Sageman et al. [2006]; Meyers et al. [2012a]; Ma et al. [2014]

top Mid-Cenomanian Event I 95.78 96.5 Joo and Sageman [2014]

timing relative to base OAE II after Lanci et al. [2010]; cf. Mitchell et al. [2008]

1) top of the Lower Southerham Event is coeval with base I. perplexus Zone [Walaszczyk et al., 2010; Uličný et al., 2014]

Table S1.3 Western Interior, composite (13Corg after Joo and Sageman [2014]).

4

Stratigraphic level Height [m]

Age Model [this study]

[Myr ago]

Source of stratigraphic data Source of chronology

base Campanian 596.85 84.19 Sprovieri et al. [2013] Sageman et al. [2014]base Santonian 560.8 86.49 Sprovieri et al. [2013] Sageman et al. [2014]top Navigation Event 1) 527.5 89.75 Sprovieri et al. [2013], their fig. 2 Sageman et al. [2014]Bridgewick Event 514 91.11 correlated to Jarvis et al. [2006]; Sprovieri

et al. [2013], their fig. 2Laurin et al. [2014] anchored to Sageman et al. [2014]

base I. perplexus Zone 2) 512.5 91.31 correlated to Jarvis et al. [2006] Laurin et al. [2014] anchored to Sageman et al. [2014]

base C. woollgari Zone 3) 494 92.9 correlated Lulworth Event of Jarvis et al. [2006]; Sprovieri et al. [2013], their fig. 2

Ogg and Hinnov [2012]

base Turonian 487.47 93.9 Sprovieri et al. [2013] Meyers et al. [2012a]; Ogg and Hinnov [2012]

OAE II, onset positive CIE 486.8 94.44 Sprovieri et al. [2013], their fig. 2 Sageman et al. [2006]; Meyers et al. [2012a]; Ma et al. [2014]

top Mid-Cenomanian Event I 470.5 96.5 Sprovieri et al. [2013], their fig. 2 timing relative to base OAE II after Lanci et al. [2010]; cf. Mitchell et al. [2008]

base Cenomanian 438 100.5 Sprovieri et al. [2013], their fig. 2 Ogg and Hinnov [2012]

1) approximates base Coniacian [Walaszczyk et al., 2010; Uličný et al., 2014]2) top of the Lower Southerham Event is coeval with base I. perplexus Zone [Walaszczyk et al., 2010; Uličný et al., 2014]3) approximates Lulworth Event [Jarvis et al., 2006; Uličný et al., 2014]

Table S1.4 Bottaccione Gorge (13Ccarb after Sprovieri et al. [2013]).

5

Stratigraphic level Height [m]

Age Model [this

study][Myr ago]

Source of stratigraphic data Source of chronology

base Campanian 164 84.19 Wendler [2013] Sageman et al. [2014]base Santonian 135 86.49 Wendler [2013] Sageman et al. [2014]top Navigation Event 1) 94 89.75 Jarvis et al. [2006] Sageman et al. [2014]Bridgewick Event 80 91.11 Jarvis et al. [2006] Laurin et al. [2014] anchored to Sageman

et al. [2014]base I. perplexus Zone 2)

76 91.31 approximate correlation following Jarvis et al. [2006]

Laurin et al. [2014] anchored to Sageman et al. [2014]

base C. woollgari Zone 3)

61 92.9 approximate correlation following Jarvis et al. [2006] and Wendler [2013]

Ogg and Hinnov [2012]

base Turonian 57.5 93.9 Jarvis et al. [2006] Meyers et al. [2012a]; Ogg and Hinnov [2012]

OAE II, onset positive CIE

55.2 94.44 Jarvis et al. [2006] Sageman et al. [2006]; Meyers et al. [2012a]; Ma et al. [2014]

top Mid-Cenomanian Event I

39.5 96.5 Jarvis et al. [2006] timing relative to base OAE II after Lanci et al. [2010]; cf. Mitchell et al. [2008]

base Cenomanian 7 100.5 center of the Albian/Cenomanian Boundary CIE [cf. Jarvis et al., 2006; Sprovieri et al., 2013]

Ogg and Hinnov [2012]

1) approximates base Coniacian [Walaszczyk et al., 2010; Uličný et al., 2014]2) top of the Lower Southerham Event is coeval with base I. perplexus Zone [Walaszczyk et al., 2010; Uličný et al., 2014]3) approximates Lulworth Event [Jarvis et al., 2006; Uličný et al., 2014]

Table S1.5 Bottaccione Gorge (13Ccarb after Jenkyns et al. [1994]).

6

Stratigraphic level Height [m]

Age Model [this study]

[Myr ago]

Source of stratigraphic data Source of chronology

top Navigation Event 1)42.0

89.75 correlation after Jarvis et al. [2006], their fig. 14

Sageman et al. [2014]

peak Hitch Wood Event 2)30.3

90.84 correlation after Jarvis et al. [2006], their fig. 14

Laurin et al. [2014] anchored to Sageman et al. [2014]

Bridgewick Event27.5

91.11 correlation after Jarvis et al. [2006], their fig. 14

Laurin et al. [2014] anchored to Sageman et al. [2014]

top Lower Southerham Event 3)

24.1 91.31 correlation after Jarvis et al. [2006], their fig. 14

Laurin et al. [2014] anchored to Sageman et al. [2014]

Lulworth Event (base C. woollgari Zone)

5.5 92.9 Wendler [2013]; note that this correlation differs from the correlation in Jarvis et al. [2006]

Ogg and Hinnov [2012]

base Turonian 1.5 93.9 Jarvis et al. [2006] Meyers et al. [2012a]; Ogg and Hinnov [2012]

OAE II, onset positive CIE 0 94.44 Jarvis et al. [2006] Sageman et al. [2006]; Meyers et al. [2012a]; Ma et al. [2014]

top Mid-Cenomanian Event I

-18 96.5 Jarvis et al. [2006] timing relative to base OAE II after Lanci et al. [2010]; cf. Mitchell et al. [2008]

base Cenomanian -50.5 100.5 center of the Albian/Cenomanian Boundary CIE [cf. Jarvis et al., 2006; Sprovieri et al., 2013]

Ogg and Hinnov [2012]

1) approximates base Coniacian [Walaszczyk et al., 2010; Uličný et al., 2014]2) = Hitch Wood I of Uličný et al. [2014]3) top of the Lower Southerham Event is coeval with base I. perplexus Zone [Walaszczyk et al., 2010; Uličný et al., 2014]

Table S1.6 Contessa Quarry, Gubbio (13Ccarb after Stoll and Schrag [2000]).

7

Stratigraphic level

Height[Giorgioni,

2012][cm]

Age Model [this study]

[Myr ago]

Source of stratigraphic data

Source of chronology

base Cenomanian 1784 1) 100.5 Giorgioni [2012] Ogg and Hinnov [2012]top “cycle 1”

50 103.135Giorgioni et al. [2012] Giorgioni et al. [2012]; 11x 405 kyr above base Upper

Albianbase Upper Albian -2510 107.59 Giorgioni et al. [2012] Gale et al. [2011]base of section

-2784 107.99Giorgioni et al. [2012] Giorgioni et al. [2012]; c. 1x 405 kyr below base Upper

Albian

1) height/depth relative to the base of Scaglia Bianca

Table S1.7 Umbria-Marche Basin, Monte Petrano section (13Ccarb after Giorgioni et al. [2012]; Giorgioni [2012]).

8

Parameter Unit GO-OBL-A1…A60 GC-OBL-C1…C60 GM-OBL-E1…E60time step kyr 5 5 5a 0.0009-0.0011 0.0009-0.0011 0.0009-0.0011b 0.0002 0.0002 0.0002c 0.1-2.2 0.1-1.8 0.02-1.8d 0.18 1.0 0.1org ‰ -28 -28 -28carb ‰ +2 +2 +2meth ‰ -60 -60 -6013Cin ‰ -4 -4 -4Fin *) mol/kyr 6.78 x1015 - 1.06 x1017 5.00 x1015 - 1.2 x1017 5.32 x1015 - 9.71 x1016

Forg mol/kyr eq. 5 (Methods) 0.24* carb 1.8* meth

Fcarb mol/kyr 4.2* org eq. 5 (Methods) 4.2* org

Fmeth mol/kyr 0 0 eq. 5 (Methods)Fmin mol/kyr 7.22 x1014 5.76 x1015 7.22 x1014

Fmax mol/kyr 4.44 x1016 2.77 x1017 4.44 x1016

M0init **) mol 3.89 x1018 3.89 x1018 3.89 x1018

*) Input fluxes are set to maintain a long-term equilibrium with the output fluxes (Fin = org + carb + meth).**) Initial value consisting of marine dissolved inorganic carbon (3.64 x1018 mol C; Locklair et al. [2011]), atmospheric carbon (2 x1017 mol C; Locklair et al. [2011], assuming 4x pre-industrial pCO2), surface ocean biota (2.5 x1014 mol C; Killops and Killops [2005]) and terrestrial biota (5 x1016 mol C; Killops and Killops [2005]).

Table S2.1 Input parameters for the GO, GC and GM models

Parameter Unit THM-OBL-La04 THM-OBL-La10a THM-OBL-La10dtime step kyr 5 5 5reservoir type biogenic methane biogenic methane biogenic methanereservoir 13C ‰ 13C0 - 60 13C0 - 60 13C0 - 60forcing o (La04; Laskar

et al. [2004])o (La10a; Laskar et

al. [2011])o (La10d; Laskar et al.

[2011])th1 degrees 23.50 23.70 23.50th2 degrees 23.65 24.10 24.10Rq buildup rate mol/kyr 3.45 x1014 3.45 x1014 3.45 x1014

max Rq decay rate mol/kyr 2.34 x1015 2.34 x1015 2.34 x1015

org ‰ -28 -28 -28carb ‰ +2 +2 +2meth ‰ -60 -60 -6013Cin ‰ -4 -4 -4Fin *) mol/kyr 2.87 x1016 2.87 x1016 2.87 x1016

Forg mol/kyr 5.53 x1015 5.53 x1015 5.53 x1015

Fcarb mol/kyr 2.31 x1016 2.31 x1016 2.31 x1016

Fmeth mol/kyr 0 + Rq 0 + Rq 0 + Rq

M0init **) mol 3.89 x1018 3.89 x1018 3.89 x1018

Table S2.2 Input parameters for the THM, THOt and THCpr models

1

Parameter Unit THM-PREC-La04 THM-PREC-La10a THCpr-OBL-La04time step kyr 5 5 5reservoir type biogenic methane biogenic methane marine carbonatereservoir 13C ‰ 13C0 - 60 13C0 - 60 13C0 + 2forcing e sinϖ (La04;

Laskar et al. [2004])

e sinϖ (La10a; Laskar et al.

[2011])

o (La04; Laskar et al. [2004])

th1 0.020 0.020 23.50th2 0.025 0.025 23.65Rq buildup rate mol/kyr 4.05 x1014 3.75 x1014 1.35 x1016

max Rq decay rate mol/kyr 2.70 x1015 2.55 x1015 1.01 x1017

org ‰ -28 -28 -28carb ‰ +2 +2 +2meth ‰ -60 -60 -6013Cin ‰ -4 -4 -4Fin *) mol/kyr 2.87 x1016 2.87 x1016 2.87 x1016

Forg mol/kyr 5.53 x1015 5.53 x1015 5.53 x1015

Fcarb mol/kyr 2.31 x1016 2.31 x1016 2.31 x1016 + Rq

Fmeth mol/kyr 0 + Rq 0 + Rq 0M0init **) mol 3.89 x1018 3.89 x1018 3.89 x1018

Table S2.2 (continued)

Parameter Unit THOt-OBL-La04 THOt-OBL-La10a THOt-OBL-La10dtime step kyr 5 5 5reservoir type bulk organic matter bulk organic matter bulk organic matterreservoir 13C ‰ 13C0 - 26 13C0 - 26 13C0 - 26forcing o (La04; Laskar et

al. [2004])o (La10a; Laskar et

al. [2011])o (La10d; Laskar et

al. [2011])th1 degrees 23.50 23.70 23.50th2 degrees 23.65 24.10 24.10Rq buildup rate mol/kyr 7.80 x1014 7.80 x1014 7.80 x1014

max Rq decay rate mol/kyr 5.25 x1015 5.25 x1015 5.25 x1015

org ‰ -28 -28 -28carb ‰ +2 +2 +2meth ‰ -60 -60 -6013Cin ‰ -4 -4 -4Fin *) mol/kyr 2.87 x1016 2.87 x1016 2.87 x1016

Forg mol/kyr 5.53 x1015 + Rq 5.53 x1015 + Rq 5.53 x1015 + Rq

Fcarb mol/kyr 2.31 x1016 2.31 x1016 2.31 x1016

Fmeth mol/kyr 0 0 0M0init **) mol 3.89 x1018 3.89 x1018 3.89 x1018

Table S2.2 (continued)

2

Parameter Unit THM-OBL-La10a-rev

THOt-OBL-La10a-rev

time step kyr 5 5reservoir type biogenic methane bulk organic matterreservoir 13C ‰ 13C0 - 60 13C0 - 26forcing o(La10a; Laskar

et al. [2011])o(La10a; Laskar et

al. [2011])th1 (inv) degrees 24.10 24.10th2 (inv) degrees 23.90 23.90Rq buildup rate mol/kyr 2.25 x1015 4.80 x1015

max Rq decay rate mol/kyr 3.00 x1014 7.50 x1014

org ‰ -28 -28carb ‰ +2 +2meth ‰ -60 -6013Cin ‰ -4 -4Fin *) mol/kyr 2.87 x1016 2.87 x1016

Forg mol/kyr 5.53 x1015 5.53 x1015 + Rq

Fcarb mol/kyr 2.31 x1016 2.31 x1016

Fmeth mol/kyr 0 + Rq 0M0init **) mol 3.89 x1018 3.89 x1018

Table S2.2 (continued)

Parameter Unit THM-PREC-La04-rev

THM-PREC-La10a-rev

time step kyr 5 5reservoir type biogenic methane biogenic methanereservoir 13C ‰ 13C0 - 60 13C0 - 60forcing e sinϖ (La04;

Laskar et al. [2004])e sinϖ (La10a;

Laskar et al. [2011])th1 (inv) 0.025 0.025th2 (inv) 0.020 0.020Rq buildup rate mol/kyr 2.25 x1015 2.25 x1015

max Rq decay rate mol/kyr 4.50 x1014 3.60 x1014

org ‰ -28 -28carb ‰ +2 +2meth ‰ -60 -6013Cin ‰ -4 -4Fin *) mol/kyr 2.87 x1016 2.87 x1016

Forg mol/kyr 5.53 x1015 5.53 x1015

Fcarb mol/kyr 2.31 x1016 2.31 x1016

Fmeth mol/kyr 0 + Rq 0 + Rq

M0init **) mol 3.89 x1018 3.89 x1018

*) Input fluxes are set to maintain a long-term equilibrium with the output fluxes (Fin = org + carb + meth).**) Initial value consisting of marine dissolved inorganic carbon (3.64 x1018 mol C; Locklair et al. [2011]), atmospheric carbon (2 x1017 mol C; Locklair et al. [2011], assuming 4x pre-industrial pCO2), surface ocean biota (2.5 x1014 mol C; Killops and Killops [2005]) and terrestrial biota (5 x1016 mol C; Killops and Killops [2005]).

Table S2.2 (continued)

3

Age Basin, Site Orbital signature Reference

Cenomanian Anglo-Paris Basin and Crimea Eccentricity, obliquity, precession

Gale et al. [1999]

Cenomanian-Early Campanian Bottaccione Gorge (Italy) Eccentricity, ?obliquity, precession

Sprovieri et al. [2013]

Middle-Late Cenomanian Umbria-Marche basin (Italy) Eccentricity, obliquity, precession

Lanci et al. [2010]; Mitchell et al. [2008]

Middle-Late Cenomanian Western Interior Basin (N. America) Eccentricity, obliquity, precession

Ma et al. [2014]

Late Cenomanian-Middle Turonian

Levant Platform (Jordan) Eccentricity, obliquity, precession

Wendler et al. [2014]

Late Cenomanian-Early Turonian Western Interior Basin (N. America) Eccentricity, obliquity, precession

Sageman et al. [1997]; Meyers et al. [2001]

Late Cenomanian-Early Turonian Lower Saxony Basin (NW Europe) Eccentricity, obliquity, precession

Voigt et al. [2008]

Late Cenomanian-Early Turonian Mid-latitude North Atlantic Precession, eccentricity Kuypers et al. [2004]

Late Cenomanian-Early Turonian Low- to mid-latitude North Atlantic Eccentricity, obliquity, precession

Meyers et al. [2012b]

Late Cenomanian-Early Turonian Tarfaya Basin (low-latitude Atlantic) Obliquity *) Kuhnt et al. [2005]

Turonian-Santonian Songliao Basin (Eastern Asia) Eccentricity, obliquity, precession

Wu et al. [2013]

1

Turonian-Coniacian Tropical Atlantic, ODP site 1259 400-kyr eccentricity Friedrich et al. [2008]

Late Turonian-Early Coniacian Bohemian Cretaceous Basin (central Europe)

Eccentricity, obliquity, precession

Laurin and Uličný [2004]; Laurin et al. [2014]

Late Coniacian- ?Campanian Low-latitude Atlantic ODP site 959 Precession Beckmann et al. [2005]

Coniacian Low-latitude Atlantic ODP sites 959 and 1261

Eccentricity, obliquity, precession

Flögel et al. [2008]

Coniacian-Early Campanian Western Interior Basin (N. America) Eccentricity, obliquity, precession

Locklair and Sageman [2008]

Campanian-Maastrichtian S. Atlantic DSDP site 516F Eccentricity (~100 kyr, 405 kyr) Herbert [1997]

Campanian-Maastrichtian South Atlantic Precession Herbert and D’Hondt [1990]; Herbert et al. [1999]

Maastrichtian Atlantic and Indian Oceans Eccentricity (~100 kyr, 405 kyr) Husson et al. [2011]

Maastrichtian Zumaia (Spain) Eccentricity, precession Batenburg et al. [2012]

*) reinterpreted by Meyers et al. [2012b]

Table S3. Orbital signatures in Late Cretaceous (Cenomanian through Maastrichtian) strata.

2

References (cited in Supporting Information only)

Flögel, S., B. Beckmann, P. Hofmann, A. Bornemann, T. Westerhold, R.D. Norris, C. Dullo, and T. Wagner (2008), Evolution of tropical watersheds and continental hydrology during the Late Cretaceous greenhouse; impact on marine carbon burial and possible implications for the future, Earth Planet. Sci. Lett., 274, 1-13.

Friedrich, O., R.D. Norris, A. Bornemann, B. Beckmann, H. Pälike, P. Worstell, P. Hofmann, and T. Wagner (2008), Cyclic changes in Turonian to Coniacian planktic foraminiferal assemblages from the tropical Atlantic Ocean, Mar. Micropaleontol., 68, 299–313.

Gale, A.S., J.R. Young, N.J. Shackleton, S.J. Crowhurst, and D.S. Wray (1999), Orbital tuning of Cenomanian marly chalk successions: towards a Milankovitch time-scale for the Late Cretaceous, Phil. Trans. R. Soc. Lond. A, 357, 1815-1829.

Gale, A.S., P. Bown, M. Caron, J. Crampton, S.J. Crowhurst, W.J. Kennedy, M.R. Petrizzo, and D.S. Wray (2011), The uppermost middle and upper Albian succession at the Col de Palluel, Hautes-Alpes, France: An integrated study (ammonites, inoceramid bivalves, planktonic foraminifera, nannofossils, geochemistry, stable oxygen and carbon isotopes, cyclostratigraphy), Cretaceous Res., 32, 59–130, doi:10.1016/j.cretres.2010.10. 004.

Herbert, D.T., and L.S. D'Hondt (1990), Precessional climate cyclicity in Late Cretaceous–Early Tertiary marine sediments: a high resolution chronometer of Cretaceous–Tertiary boundary events, Earth Planet. Sci. Lett., 99, 263–276.

Husson, D., B. Galbrun, J. Laskar, L.A. Hinnov, N.R. Thibault, S. Gardin, and R.E. Locklair (2011), Astronomical calibration of the Maastrichtian (Late Cretaceous), Earth Planet. Sci. Lett., 305, 328-340.

Jenkyns, H. C., A. S. Gale, and R. M. Corfield (1994), Carbon- and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance, Geol. Mag., 131, 1–34, doi:10.1017/S0016756800010451.

Killops, S.D., and V.J. Killops (2005), Introduction to organic geochemistry

1

(Blackwell Publishing, Malden).Kuhnt, W., F. Luderer, S. Nederbragt, J. Thurow, and T. Wagner (2005),

Orbital-scale record of the late Cenomanian-Turonian oceanic anoxic event (OAE-2) in the Tarfaya Basin (Morocco), Int. J. Earth Sci., 94, 147–159.

Kuypers, M. M. M., L. J. Lourens, W. I. C. Rijpstra, R. D. Pancost, I. A. Nijenhuis, J. S. Sinninghe Damsté (2004), Orbital forcing of organic carbon burial in the proto-North Atlantic during oceanic anoxic event 2, Earth Planet. Sci. Lett., 228, 465-482, doi:10.1016/j.epsl.2004.09.037.

Laurin, J., and D. Uličný (2004), Controls on a shallow-water hemipelagic carbonate system adjacent to a siliciclastic margin; example from Late Turonian of Central Europe, J. Sediment. Res., 74, 697–717.

Locklair, R.E., and B.B. Sageman (2008), Cyclostratigraphy of the Upper Cretaceous Niobrara Formation, Western Interior, U.S.A.: A Coniacian-Santonian orbital timescale, Earth Planet. Sci. Lett., 269, 539–522.

Sageman, B.B., J. Rich, M.A. Arthur, G.E. Birchfield, and W.E. Dean (1997), Evidence for Milankovitch periodicities in Cenomanian-Turonian lithologic and geochemical cycles, Western Interior USA, J. Sediment. Res., 67, 286-302.

Voigt, S., J. Erbacher, J. Mutterlose, W. Weiss, T. Westerhold, F. Wiese, M. Wilmsen, and T. Wonik (2008), The Cenomanian – Turonian of the Wunstorf section – (North Germany): global stratigraphic reference section and new orbital time scale for Oceanic Anoxic Event 2, Newsl. Stratigr., 43, 65–89.

Wunsch, C. (2010), Towards understanding the Paleocean. Quaternary Sci. Rev. 29, 1960-1967.

Zeebe R.E. (2012a), History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification, Annu. Rev. Earth Planet. Sci., 40, 141-165.

Zeebe, R.E. (2012b), LOSCAR: Long-term Ocean-atmosphere-Sediment Carbon cycle Reservoir Model v2.0.4., Geosci. Model Dev., 5, 149-166.

Zeebe, R.E., J.C. Zachos, and G.R. Dickens (2009), Carbon dioxide forcing alone insufficient to explain Palaeocene-Eocene Thermal Maximum warming, Nat. Geosci., 2, 576–580.

2

3