11
Noguchi, R. et al. Paper: Installation of New GNSS Network Around Kusatsu-Shirane Volcano, Japan: Its Perspective and the First Result Rina Noguchi ,∗∗,, Tatsuji Nishizawa ∗∗ , Wataru Kanda ∗∗ , Takahiro Ohkura ∗∗∗ , and Akihiko Terada ∗∗ Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan Corresponding author, E-mail: [email protected] ∗∗ Volcanic Fluid Research Center, School of Science, TokyoInstitute of Technology, Tokyo, Japan ∗∗∗ Aso Volcanological Laboratory, Graduate School of Science, Kyoto University, Kumamoto, Japan [Received November 30, 2018; accepted May 12, 2019] Crustal deformation is essential information for mon- itoring volcanic activity. In the summit area of the Kusatsu-Shirane Volcano (KSV), a dense Global Nav- igation Satellite System (GNSS) network has been op- erating near the recent volcanic center, Yugama crater. This network is sensitive to shallow depth activity, such as phreatic eruptions at the summit area, but is not applicable to deep magmatic activity, suggested to have been occurring for thousands of years by recent geological studies. Aiming to detect magmatic activ- ity at a certain depth, we installed a new GNSS net- work near KSV. The observation sites were selected based on the crustal deformation pattern calculated for several intrusive events of the deep-seated magma. First, the GNSS sites for campaign observation were installed at eight locations in 2017. Then, four con- tinuous sites commenced operation after a phreatic eruption at Mt. Motoshirane in January 2018. Here, we show the results of the first and second observa- tion campaigns, operating in October 2017 and Febru- ary 2018. Coordinate values are computed by pre- cise point positioning with ambiguity resolution (PPP- AR) analysis and are used to calculate the displace- ment and the baseline length change during this pe- riod. The uncertainties of the calculated coordinate values are sufficiently small (less than 4.5 mm) except at some sites for which the data possibly include multi- path errors due to trees and snow. Although any defor- mation associated with the 2018 eruption of Mt. Moto- shirane is not detected, subsequent observations would contribute to monitoring long-term activity near KSV. Keywords: Kusatsu-Shirane volcano, global navigation satellite system, crustal deformation, magma reservoir 1. Introduction The Kusatsu-Shirane volcano (KSV) is one of the ac- tive volcanoes in Japan and is known to have a well- developed hydrothermal system which is closely related to phreatic eruptions and seismic activity (e.g., [1–3]). KSV consists of two major peaks: Mt. Shirane and Mt. Motoshirane (Fig. 1). Mt. Shirane has three ma- jor crater lakes (Yugama, Mizugama, and Karegama). Mt. Motoshirane is composed of four main pyroclastic cones: Ko-Motoshirane, Shin-Motoshirane, Kagami-ike, and Kagami-ike-kita ([4] and references therein). They are all volcanic vents, some of which have fumarolic activity. Between Mt. Shirane and Mt. Motoshirane, there exist several vents, including Ainomine pyroclastic cone and Yumi-ike maar. Yumi-ike maar is thought to have been formed simultaneously with pyroclastic cones in the Mt. Motoshirane area [5]. Recent eruption ac- tivity of KSV is represented by phreatic eruptions near Yugama crater at Mt. Shirane. Since the oldest historic eruption of 1882, nineteen phreatic eruptions have been recorded [6]. After the last magmatic eruption at Kagami- ike-kita cone nearly 1500 years ago, the volcanic activ- ity in KSV shifted to the phreatic eruption activity near Yugama crater at Mt. Shirane (e.g., [4]). In other words, KSV is characterized by the more recent phreatic erup- tions, which have exhibited continuous magmatic activ- ity at Mt. Motoshirane since approximately 1500 years ago (e.g., [4, 7]). Recent geological studies have revealed magmatic eruptions that caused large amounts of lava ef- fusion during the past thousands of years in KSV [4, 8, 9]. In this background, it is necessary to prepare an observa- tion network to detect the crustal deformation in a wide range leading to a magmatic eruption in the future. For this purpose, we installed a new GNSS network around KSV. 744 Journal of Disaster Research Vol.14 No.5, 2019 https://doi.org/10.20965/jdr.2019.p0744 © Fuji Technology Press Ltd. Creative Commons CC BY-ND: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nd/4.0/).

Installation of New GNSS Network Around Kusatsu-Shirane

Embed Size (px)

Citation preview

Noguchi, R. et al.

Paper:

Installation of New GNSS Network Around Kusatsu-ShiraneVolcano, Japan: Its Perspective and the First Result

Rina Noguchi∗,∗∗,†, Tatsuji Nishizawa∗∗, Wataru Kanda∗∗,Takahiro Ohkura∗∗∗, and Akihiko Terada∗∗

∗Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan

†Corresponding author, E-mail: [email protected]∗∗Volcanic Fluid Research Center, School of Science, Tokyo Institute of Technology, Tokyo, Japan

∗∗∗Aso Volcanological Laboratory, Graduate School of Science, Kyoto University, Kumamoto, Japan[Received November 30, 2018; accepted May 12, 2019]

Crustal deformation is essential information for mon-itoring volcanic activity. In the summit area of theKusatsu-Shirane Volcano (KSV), a dense Global Nav-igation Satellite System (GNSS) network has been op-erating near the recent volcanic center, Yugama crater.This network is sensitive to shallow depth activity,such as phreatic eruptions at the summit area, but isnot applicable to deep magmatic activity, suggested tohave been occurring for thousands of years by recentgeological studies. Aiming to detect magmatic activ-ity at a certain depth, we installed a new GNSS net-work near KSV. The observation sites were selectedbased on the crustal deformation pattern calculatedfor several intrusive events of the deep-seated magma.First, the GNSS sites for campaign observation wereinstalled at eight locations in 2017. Then, four con-tinuous sites commenced operation after a phreaticeruption at Mt. Motoshirane in January 2018. Here,we show the results of the first and second observa-tion campaigns, operating in October 2017 and Febru-ary 2018. Coordinate values are computed by pre-cise point positioning with ambiguity resolution (PPP-AR) analysis and are used to calculate the displace-ment and the baseline length change during this pe-riod. The uncertainties of the calculated coordinatevalues are sufficiently small (less than 4.5 mm) exceptat some sites for which the data possibly include multi-path errors due to trees and snow. Although any defor-mation associated with the 2018 eruption of Mt. Moto-shirane is not detected, subsequent observations wouldcontribute to monitoring long-term activity near KSV.

Keywords: Kusatsu-Shirane volcano, global navigationsatellite system, crustal deformation, magma reservoir

1. Introduction

The Kusatsu-Shirane volcano (KSV) is one of the ac-tive volcanoes in Japan and is known to have a well-developed hydrothermal system which is closely relatedto phreatic eruptions and seismic activity (e.g., [1–3]).KSV consists of two major peaks: Mt. Shirane andMt. Motoshirane (Fig. 1). Mt. Shirane has three ma-jor crater lakes (Yugama, Mizugama, and Karegama).Mt. Motoshirane is composed of four main pyroclasticcones: Ko-Motoshirane, Shin-Motoshirane, Kagami-ike,and Kagami-ike-kita ([4] and references therein). Theyare all volcanic vents, some of which have fumarolicactivity. Between Mt. Shirane and Mt. Motoshirane,there exist several vents, including Ainomine pyroclasticcone and Yumi-ike maar. Yumi-ike maar is thought tohave been formed simultaneously with pyroclastic conesin the Mt. Motoshirane area [5]. Recent eruption ac-tivity of KSV is represented by phreatic eruptions nearYugama crater at Mt. Shirane. Since the oldest historiceruption of 1882, nineteen phreatic eruptions have beenrecorded [6]. After the last magmatic eruption at Kagami-ike-kita cone nearly 1500 years ago, the volcanic activ-ity in KSV shifted to the phreatic eruption activity nearYugama crater at Mt. Shirane (e.g., [4]). In other words,KSV is characterized by the more recent phreatic erup-tions, which have exhibited continuous magmatic activ-ity at Mt. Motoshirane since approximately 1500 yearsago (e.g., [4, 7]). Recent geological studies have revealedmagmatic eruptions that caused large amounts of lava ef-fusion during the past thousands of years in KSV [4, 8, 9].In this background, it is necessary to prepare an observa-tion network to detect the crustal deformation in a widerange leading to a magmatic eruption in the future. Forthis purpose, we installed a new GNSS network aroundKSV.

744 Journal of Disaster Research Vol.14 No.5, 2019

https://doi.org/10.20965/jdr.2019.p0744

© Fuji Technology Press Ltd. Creative Commons CC BY-ND: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NoDerivatives 4.0 International License (http://creativecommons.org/licenses/by-nd/4.0/).

Installation of New GNSS Network Around Kusatsu-ShiraneVolcano, Japan: Its Perspective and the First Result

Fig. 1. Newly installed and pre-existing GNSS network around Kusatsu-Shirane Volcano. Black dashed line box in the left sidemap indicates the region of the right side map. Base map: ALOS Global Digital Surface Model which is 30-m-mesh data, issued byJAXA.

2. Background: Pre-Existing Observation Sites

Since around 2009, the Kusatsu-Shirane Volcano Ob-servatory (KSVO) of the Tokyo Institute of Technol-ogy has been studying crustal deformation related tothe volcanic activity of KSV, using several observationinstruments consisting of seismometers, tiltmeters, anda Global Navigation Satellite System (GNSS) network.Because the recent eruptive activity is characterized byphreatic eruptions in and around Yugama crater [5], thepre-existing observation network was constructed withthe aim of detecting shallow crustal deformation nearYugama crater: KSR, KSW, KSE, and KSYG (added in2011) (Fig. 1). Using this GNSS network, crustal defor-mation associated with volcanic unrest has been observedcontinuously. The collected data are sent to the data serverin KSVO and automatically computed as the daily coor-dinate values by Spider software (Leica). Whereas thishigh-density network is sensitive to shallow activity, de-tection of deep crustal deformation caused by intrusionsof magma can be limited. To detect deeper crustal ac-tivity, a wider-range observation network is necessary.Furthermore, this concentrated network is vulnerable toeruptions in the summit area. Actually, in the 2018 erup-tion of Mt. Motoshirane, the observation network faceda crisis of power failure as the commercial power sys-tem was destroyed by volcanic explosions. To avoidsuch a situation, it is meaningful to expand the observa-

tion network to locations away from the volcanic center.Besides KSVO, the Geospatial Information Authority ofJapan (GSI), Japan Meteorological Agency (JMA), andNational Research Institute for Earth Science and Disas-ter Resilience (NIED) also have continuous GNSS obser-vation sites near KSV (Fig. 1). Although data from theseother institutions, covering a wide range around KSV, canbe used, the observation sites are sparsely distributed. Inparticular, there are few observation sites within 5–10 kmfrom Yugama crater (Fig. 1), which are considered to beessential to detect the crustal deformation caused by themagma activity of KSV. Therefore, we have to increasethe spatial density of the GNSS network.

3. Method

3.1. Selection of Observation SitesTo select the location of an observation site to be newly

installed, we calculated the uplift height and horizontaldisplacement associated with a deep magmatic intrusion(modeled as a spherical inflation source) in advance ofusing the Mogi model [10]. Considering the topographyof the volcanic edifice, we used the elevation-correctedMogi model [11];

Uz =3a3ΔP

4μD+h

{(D+h)2 + r2} 32

. . . . . . (1)

Journal of Disaster Research Vol.14 No.5, 2019 745

Noguchi, R. et al.

Ur =3a3ΔP

4μr

{(D+h)2+ r2} 32

. . . . . . (2)

where Uz and Ur are the vertical and horizontal displace-ments, respectively, a is the radius of the inflation source,D is the depth of inflation source below sea level, h isthe height above sea level, ΔP is the pressure change,and μ is the shear modulus. We assumed 1000 m,1.01325×108 Pa, and 40 GPa for a, ΔP, and μ , respec-tively. These assumptions correspond to a volume in-crease of 7.85×106 m3. The horizontal and vertical dis-placements were calculated using MaGCAP-V ver. 1.7(Magnetic and Geodetic Computer Analysis Processes forVolcano [12]) with varying depths for the inflation sourcein the range of 0–10 km [11]. Fig. 2 and Figs. 4–6 (inAppendix A) show examples of calculation results as-suming the depth of the inflation source to be 2.5 km,5.0 km, 7.0 km, and 10.0 km below sea level just be-neath Shin-Motoshirane crater or Yugama crater. Theseresults indicate that the crustal deformation associatedwith deep magmatic intrusions cannot be detected at thepre-existing GNSS observation sites that are concentratedaround Yugama crater; thus, it is necessary to disperse theobservation sites within 15 km of the summit area. Con-sidering the simulation results and accessibility, we deter-mined the location of ten sites consisting of four continu-ous sites (KSH1, KSM1, KSZG, and SHG1) and six cam-paign sites (NHH, TMG, YNG, OGR, NZL, and NKD).Table ?? shows the locations of those sites and the de-tailed observation settings. As described later, KSM1and SHG1 started continuous observation after conversionfrom campaign observation sites (MSN and SSG, respec-tively).

3.2. InstallationWe installed GNSS observation sites from the summer

of 2017 to the autumn of 2018. In 2017, eight sites (MSN,SSG, NHH, TMG, YNG, OGR, NZL, and NKD) wereset up for campaign observation. In 2018, four contin-uous observation sites (including two conversions fromthe campaign sites) were installed. Six of the campaignobservation sites were built using a stainless-steel plate,upon which a tribrach adapter was mounted (Fig. 7 in Ap-pendix A). This stainless-steel plate was attached to a pre-existing building using a rubber sheet so as to track five ormore GNSS satellites. For MSN, located at the southernrim of Shin-Motoshirane crater, we fixed a stainless-steelbolt, 6 cm in length, onto a stiff rock constituting a lavadome (Fig. 7B in Appendix A). For TMG, we buried a pinon the asphalt as a marker for tripod installation (Fig. 7Cin Appendix A). We carried out campaign observationsduring a calm and dry autumn season without typhoonsto avoid a warm and wet climate. During the campaignobservation, four sets of GNSS equipment were used toperform a three-day observation twice. Each set of GNSSequipment consists of an antenna (JAVAD GrAnt G3T)and a receiver (JAVAD Sigma G2T). The sampling rateand elevation mask were set at 30 s and 10◦, respectively.

In conjunction with the installation of campaign obser-vation sites, we set up the continuous sites around KSVone after another: Shizukayama (KSZG) in March 2018and Manza (KSH1) in May 2018 (Fig. 1). The former islocated at approximately 2.5 km WNW from the Yugamacrater, and the latter is approximately 5.5 km SE fromthe crater. In addition, we converted a campaign site(SSG) into the continuous one (SHG1) in May 2018. Atthese three sites, we installed the GR10 GNSS receiverand AR10 antenna (Leica Geosystems). AR10 is a multi-purpose antenna with an integrated radome, which couldprevent ash from adhering to the antenna. Finally, westarted operating the campaign site (MSN) as a contin-uous site (KSM1) using the same GNSS equipment usedfor campaign observation (JAVAD Sigma G2T and GrAntG3T) in October 2018. The data measured at these con-tinuous observation sites are telemetered using the mo-bile phone network (Docomo 3G FOMA). Specifically,the Wi-Fi router is turned on by a mechanical timer foronly one hour (9:00–10:00 JST) every day to establishan internet connection for the GNSS receiver. Duringthat time, the raw carrier phase and pseudo-range datastored in the receiver are downloaded via FTP from thedata server in KSVO. This extension of the GNSS obser-vation network is expected to lead to the detection of awider range of crustal deformation, caused by inflation ofthe deep magma reservoir of KSV.

3.3. Data ProcessingFor data measured by the campaign observation, we

performed precise point positioning with ambiguity res-olution (PPP-AR) [13] analysis to determine the posi-tion of each site; then, we calculated their displacementsand the baselines between them. PPP-AR is a position-ing technique that is able to compute an accurate so-lution with a single receiver without any reference sta-tions [13]. Because the raw data were recorded as a JPSfile (native format file of JAVAD GNSS receiver), theywere converted to a RINEX file using JPS2RIN software(ver. 2.0.112, JAVAD GNSS). Then, the converted RINEXdata were used to calculate daily positions in reference tothe IGS08 by PPP-AR analysis using GIPSY OASIS IIver. 6.1.2, developed at the NASA Jet Propulsion Labora-tory (JPL) [13]. Taking into account the ocean tide load-ing values, FES2004 was adopted as ocean tide model foreach observation site [14]. During the data processing, wealso considered the GNSS antenna phase characteristicsconsisting of antenna phase center offset and phase cen-ter variation factor of the antenna. The wet atmosphericdelay effect was corrected using the global mapping func-tion (GMF) [15], based on numerical weather model dataobtained by JPL. The clock data files were downloadedfrom the FTP server of the Crustal Dynamics Data In-formation System (CDDIS), provided by NASA. Calcula-tion of relative displacements and mapping of their spatialdistribution were also performed using MaGCAP-V. Weadopted the GEONET 020982 site, one of the nationwideGNSS network sites operated by GSI, as the reference site

746 Journal of Disaster Research Vol.14 No.5, 2019

Installation of New GNSS Network Around Kusatsu-ShiraneVolcano, Japan: Its Perspective and the First Result

Fig. 2. Distribution of horizontal displacement (red arrow) based on the Mogi model when an inflation source is assumed to belocated beneath the Shin-Motoshirane crater at 0, 2.5, 5.0, 7.5, and 10 km below sea level.

Table 1. Description of GNSS stations around Kusatsu-Shirane volcano including pre-existing sites of KSVO.

1 Stopped during October 2018 and November 2018.

to calculate the relative displacement so as to remove thecommon crustal deformation caused mainly by the post-seismic deformation of the 2011 Tohoku-Oki earthquake(e.g., [16]).

To calculate the baseline lengths at each site, we usedcalculation services provided by GSI (https://vldb.gsi.go.jp/sokuchi/surveycalc/main.html) for two steps of con-version of the coordinate values 1) from earth-centered,

earth-fixed (ECEF) to latitude-longitude-geoid height,and 2) from latitude-longitude-geoid height to north-east-up (NEU). For the NEU reference frame, we applied theJapan Plane Rectangular CS (VIII for SHG, NKD, YNG,and IX for NHH, OGR, NZL, TMG, KSM, KSYG, KSR,and KSW). Baseline lengths were calculated using thePythagorean theorem in three-dimensions.

Journal of Disaster Research Vol.14 No.5, 2019 747

Noguchi, R. et al.

Fig. 3. Displacements during 2017 October to 2018 February around Kusatsu-Shirane Volcano. Dashed rectangle in (A) indicatesthe region of (B).

4. Results: The First and Second CampaignObservations

The first campaign observation was performed frommiddle to late October 2017. After the occurrence ofa phreatic eruption at Mt. Motoshirane on January 23,2018 [3], we performed an urgent temporary observationduring early February. On account of snow coverage,some sites were inaccessible; eventually, we were ableto access only five sites: NHH, YNG, OGR, NKD, andSSG in the latter observation. As described above, wecarried out the measurements for more than three days ateach site; thus, we analyzed the daily data. Therefore, themean coordinate values were adopted as the positioningresults for the observation period, in which apparent out-liers were excluded. Table 4 (in Appendix A) shows thecoordinate values of each GNSS observation site, includ-ing pre-existing sites of KSVO.

The standard deviations, representing the accuracy ofthe first campaign observation, are sufficiently small (lessthan 5.3 mm and 21.7 mm for horizontal and vertical di-rections, respectively). Given the surrounding circum-stances, a multipath error caused by nearby trees is pos-sibly contained in the data at OGR. For the second cam-paign observation, it is considered that the OGR and SSGdata contain multipath errors caused by the surroundingsnow.

Figure 3 and Table 2 show the displacement of eachsite and the change in baseline length (distance betweeneach site with Naganosakae) between the first campaignobservation and the second one. During October 2017to February 2018, the horizontal displacement showsan eastward trend at all sites, except YNG and OGR.The vertical displacements are positive (i.e., upward) for

Table 2. The amount of displacement relative to the elec-tronic reference point of GSI (Naganosakae, 020982) duringOctober 2017 to February 2018 detected by our GNSS net-work.

Site Eastwarddisplace-ment [mm]

Northwarddisplace-ment [mm]

Upwarddisplace-ment [mm]

BaselinechangebetweenNaganosakae[mm]

NHH 2.3 −0.9 21.5 0.8

OGR −14.3 0 −3.1 0.7

SSG 0.7 5.3 −56.6 −6.6

NKD 1.3 3.1 24 −2.8

YNG −0.1 5 −30.5 −3.5

KSYG 4.1 7 5.4 −7.7

KSW 1.7 11.3 11.5 −10.7

KSR 7.3 6.7 5.4 −8.4

NHH, NKD, KSYG, KSW, and KSR, and negative (i.e.,downward) for OGR, SSG, and YNG. Table 3 showschanges in the length of each baseline (between each pair,XYZ in reference to the GRS80) during October 2017 toFebruary 2018. The baseline change in this period is lessthan 18.2 mm. Because our data is not continuous (i.e.,campaign observation for a few days) and the scale of the2018 eruption at Mt. Motoshirane was small, it is nearlyimpossible to discuss the contribution of the eruptive ac-tivity to our data.

748 Journal of Disaster Research Vol.14 No.5, 2019

Installation of New GNSS Network Around Kusatsu-ShiraneVolcano, Japan: Its Perspective and the First Result

Table 3. Change in baseline length between each site during October 2017 to February 2018 detected by newly built GNSS network.

Baseline length change [mm]NHH NKD OGR SSG YNG KSYG KSR KSW

NHH – −1.3 4.7 1.0 −6.0 5.8 1.9 11.4NKD −1.3 – 10.6 −2.1 8.1 −2.5 −10.8 −4.8OGR 4.7 10.6 – 13.5 6.7 −10.4 −18.2 −12.8SSG 1.0 −2.1 13.5 – 4.2 0.6 −7.7 −1.9YNG −6.0 8.1 6.7 4.2 – −5.9 −14.0 −7.6KSYG 5.8 −2.5 −10.4 0.6 −5.9 – −2.7 4.0KSR 1.9 −10.8 −18.2 −7.7 −14.0 −2.7 – 8.9KSW 11.4 −4.8 −12.8 −1.9 −7.6 4.0 8.9 –

5. Summary and Perspective

We installed GNSS observation sites near Kusatsu-Shirane Volcano in an effort to detect the crustal deforma-tion associated with deep magma intrusion. The first ob-servation result shows that our extended GNSS networkworks well despite some exceptions due to surroundingcircumstances. In the present study, crustal deformationassociated with the phreatic eruption at Mt. Motoshiranewas not detected. The primary factor is its smallness ineruption scale; however, we also have problems that needimproving in terms of analysis. To extract the crustal de-formation caused by the magmatic activity of KSV, sev-eral influences, such as the 2011 earthquake off the Pa-cific coast of Tohoku have to be corrected from the mea-sured positioning data. We believe that the continuation ofobservations would contribute to the monitoring of long-term volcanic activity near Kusatsu-Shirane Volcano.

AcknowledgementsWe thank Teruyuki Kato, Yosuke Aoki, Akito Araya, and Masa-taka Masuda of the Earthquake Research Institute (ERI), the Uni-versity of Tokyo, for their kind cooperation with the use of GNSSequipment. Masataka Harada helped us to choose observationsites. Yusaku Ohta provided us valuable advice for data analysis.A special thanks to all the landowners of the GNSS sites who al-lowed us to set up facilities and carry out observations. Drawingsfor the displacements were performed using MaGCAP-V soft-ware, developed at the Meteorological Research Institute of JMA.Critical and constructive comments from the two anonymous ref-erees were highly helpful in improving the original manuscript.This study was supported by the MEXT Integrated Program forNext Generation Volcano Research and Human Resource Devel-opment (Y. Morita) and by ERI JULP 2017-G-17 (R. Noguchi).

References:[1] H. Tsuya, “Explosive activity of volcano Kusatu-Sirane in October,

1932,” Bull. Earthq. Res. Inst., Vol.11, No.1, pp. 82-112,1933.

[2] T. Minakami, K. Matsuita, and S. Utibori, “Explosive activitiesof volcano Kusatu-Sirane during 1938 and 1942 (Part II),” Bull.Earthq. Res. Inst., Vol.20, No.4, pp. 505-526, 1943.

[3] A. Terada, “Kusatsu-Shirane volcano as a site of phreatic erup-tions,” J. Geol. Soc. Japan, Vol.124, No.4, pp. 251-270, 2018 (inJapanese with English abstract).

[4] A. Nigorikawa, Y. Ishizaki, N. Kametani, M. Yoshimoto, A. Terada,K. Ueki, and K. Nakamura, “Holocene eruption history of the Moto-shirane pyroclastic cone group, Kusatsu-Shirane Volcano,” JapanGeosci. Union Meet. 2016 Abst., SVC 48-11, 2016.

[5] Y. Hayakawa and M. Yui, “Eruptive History of the Kusatsu ShiraneVolcano,” Quaternary Res., Vol.28, Issue 1, pp. 1-17, 1989 (inJapanese with English abstract).

[6] Japan Meteorological Agency, “44. Kusatsu-Shiranesan,” NationalCatalogue of the Active Volcanoes in Japan, 4th edition, 25pp.,2013.

[7] M. Yoshimoto, K. Nakamura, A. Nigorikawa, A. Terada, and Y.Ishizaki, “Preliminary report for tephra stratigraphy at the flank ofKusatsu-Shirane volcano,” 2013 Fall Meet. Volcanol. Soc. Japan,Abst., p. 39, 2013 (in Japanese).

[8] N. Kametani, Y. Ishizaki, M. Yoshimoto, and A. Terada, “Holoceneeruption history of Kusatsu-Shirane volcano,” Vol. Soc. Japan,2017, Abst., P084, p. 204, 2017.

[9] N. Kametani, Y. Ishizaki, M. Yoshimoto, and A. Terada, “Eruptionhistory of the Shirane Pyroclastic Cone Group (SPCG), Kusatsu-Shirane volcano, from trench survey and 14C dating: eruption agesof a crater chain and the Yumi-ike maar on the southern foot of theSPCG,” Japan Geosci. Union Meet. 2018 Abst., SVC41-P11, 2018.

[10] K. Mogi, “Relations between eruptions of various volcanoes andthe deformations of the ground surfaces around them,” Bull. Earthq.Res. Inst. Vol.36, No.2, pp. 99-134, 1958.

[11] Meteorological Research Institute, “Studies on evaluation methodof volcanic activity,” Tech. Rep. Meteorol. Res. Inst., doi:10.11483/mritechrepo.53, 2008 (in Japanese).

[12] K. Fukui, S. Ando, F. Fujiwara, S. Kitagawa, K. Kokubo, S. Oni-zawa, T. Sakai, T. Shimbori, A. Takagi, T. Yamamoto, H. Yama-sato, and A. Yamazaki, “MaGCAP-V: a Windows-based softwareto analyze ground deformation and geomagnetic change in volcanicareas,” Abstr. IAVCEI, 4W 2C-P8, 2013.

[13] J. F. Zumberge, M. B. Heflin, D. C. Jefferson, M. M. Watkins, andF. H. Webb, “Precise point positioning for the efficient and robustanalysis of GPS data from large networks,” J. Geophys. Res., SolidEarth, Vol.102, No.B3, pp. 5005-5017, 1997.

[14] F. Lyard, F. Lefevre, T. Letellier, and O. Francis, “Modelling theglobal ocean tides: modern insights from FES2004,” Ocean Dy-nam., Vol.56, No.5-6, pp. 394-415, 2006.

[15] J. Boehm, A. Niell, P. Tregoning, and H. Schuh, “Global Map-ping Function (GMF): a new empirical mapping function based onnumerical weather model data,” Geophys. Res. Lett. Vol.33, No.7,L07304, 2006.

[16] A. Hashima, T. W. Becker, A. M. Freed, H. Sato, and D. A. Okaya,“Coseismic deformation due to the 2011 Tohoku-oki earthquake:influence of 3-D elastic structure around Japan,” Earth, Planets andSpace, Vol.68, No.1, Article: 159, 2016.

Appendix A. Supplementary Figures andTable

Figures 4–6 present the calculation results based onMogi model and Fig. 7 shows observation sites. Table 4shows the coordinate values of each GNSS observationsite.

Journal of Disaster Research Vol.14 No.5, 2019 749

Noguchi, R. et al.

Fig. 4. Distribution of vertical displacement (red arrow) based on the Mogi model when an inflation source is assumed to be locatedbeneath the Shin-Motoshirane crater at 0, 2.5, 5.0, 7.5, and 10 km below sea level.

Fig. 5. Distribution of horizontal displacement (red arrow) based on the Mogi model when an inflation source is assumed to belocated beneath the Yugama crater at 0, 2.5, 5.0, 7.5, and 10 km below sea level.

750 Journal of Disaster Research Vol.14 No.5, 2019

Installation of New GNSS Network Around Kusatsu-ShiraneVolcano, Japan: Its Perspective and the First Result

Fig. 6. Distribution of vertical displacement (red arrow) based on the Mogi model when an inflation source is assumed to be locatedbeneath the Yugama crater at 0, 2.5, 5.0, 7.5, and 10 km below sea level.

Fig. 7. Photos of observation sites. A: NHH, B: MSN, and C: TMG.

Journal of Disaster Research Vol.14 No.5, 2019 751

Noguchi, R. et al.

Tabl

e4.

Coo

rdin

ate

valu

esby

new

lybu

iltG

NSS

cam

paig

nne

twor

k.

Site

Japa

n Pl

ane

Rec

tang

lula

rID

Year

Mon

thD

ayX

[m]

Y [m

]Z

[m]

No.

Use

or n

otLa

titud

e (D

MS)

Long

itude

(DM

S)El

lipso

id h

eigh

t[m

]X

[m]

Y [m

]Tr

ue n

orth

bear

ing

(dm

s)Sc

ale

fact

orX

[m]

Y [m

]Tr

ue n

orth

bear

ing

(dm

s)Sc

ale

fact

orX

[m]

Y [m

]Z

[m]

sdX

[m]

sdY

[m]

sdZ

[m]

NH

H1

2017

1016

-385

0201

.606

933

9062

9.04

2437

7792

0.37

0617

NH

H-1

3633

04.9

8138

1383

754.

0061

267

7.97

361

849.

5968

-107

578.

8655

4256

.56

1.00

0042

5461

185.

7577

1178

7.33

91-4

42.2

90.

9999

0171

NH

H1

2017

1017

-385

0201

.608

633

9062

9.04

4437

7792

0.37

3417

NH

H-2

3633

04.9

8140

1383

754.

0061

067

7.97

661

849.

5975

-107

578.

8660

4256

.56

1.00

0042

5461

185.

7583

1178

7.33

86-4

42.2

90.

9999

0171

NH

H1

2017

1018

-385

0201

.612

733

9062

9.04

9337

7792

0.37

8117

NH

H-3

3633

04.9

8140

1383

754.

0060

667

7.98

461

849.

5975

-107

578.

8670

4256

.56

1.00

0042

5461

185.

7583

1178

7.33

76-4

42.2

90.

9999

0171

NH

H1

2017

1019

-385

0201

.606

733

9062

9.04

7937

7792

0.37

1717

NH

H-4

3633

04.9

8134

1383

754.

0059

467

7.97

661

849.

5957

-107

578.

8700

4256

.56

1.00

0042

5461

185.

7564

1178

7.33

47-4

42.2

90.

9999

0171

NH

H1

2017

1020

-385

0201

.618

533

9062

9.05

6237

7792

0.38

3417

NH

H-5

3633

04.9

8137

1383

754.

0060

167

7.99

461

849.

5966

-107

578.

8682

4256

.56

1.00

0042

5461

185.

7574

1178

7.33

64-4

42.2

90.

9999

0171

NH

H1

2018

23

-385

0201

.604

933

9062

9.03

2137

7792

0.36

2918

NH

H-6

3633

04.9

8134

1383

754.

0063

767

7.96

161

849.

5955

-107

578.

8593

4256

.56

1.00

0042

5461

185.

7565

1178

7.34

53-4

42.2

90.

9999

0171

NH

H1

2018

24

-385

0201

.609

133

9062

9.03

5637

7792

0.36

7418

NH

H-7

3633

04.9

8135

1383

754.

0063

867

7.96

861

849.

5958

-107

578.

8590

4256

.56

1.00

0042

5461

185.

7568

1178

7.34

56-4

42.2

90.

9999

0171

NH

H1

2018

25

-385

0201

.626

933

9062

9.04

2537

7792

0.37

8218

NH

H-8

3633

04.9

8129

1383

754.

0066

467

7.98

961

849.

5939

-107

578.

8526

4256

.56

1.00

0042

5461

185.

7549

1178

7.35

21-4

42.2

90.

9999

0171

OG

R1

2017

1016

-384

3649

.649

333

8726

1.99

4637

8840

0.18

1717

OG

R-1

3639

56.0

0050

1383

641.

4043

911

94.4

1274

541.

6148

-109

223.

2657

4346

.85

1.00

0046

9373

851.

9169

9967

.214

1-3

59.7

0.99

9901

22O

GR

120

1710

17-3

8436

49.6

451

3387

261.

9920

3788

400.

1766

17O

GR

-236

3956

.000

4613

8364

1.40

436

1194

.405

7454

1.61

35-1

0922

3.26

6543

46.8

51.

0000

4693

7385

1.91

5799

67.2

133

-359

.70.

9999

0122

OG

R1

2017

1018

-384

3649

.669

033

8726

2.01

4337

8840

0.20

2417

OG

R-3

3639

56.0

0050

1383

641.

4043

211

94.4

4674

541.

6148

-109

223.

2675

4346

.85

1.00

0046

9373

851.

9169

9967

.212

3-3

59.7

0.99

9901

22O

GR

120

1710

19-3

8436

49.6

533

3387

262.

0044

3788

400.

1871

17O

GR

-436

3956

.000

4513

8364

1.40

420

1194

.422

7454

1.61

33-1

0922

3.27

0543

46.8

51.

0000

4693

7385

1.91

5399

67.2

094

-359

.70.

9999

0122

OG

R1

2017

1020

-384

3650

.505

433

8726

3.96

8037

8840

1.49

6717

OG

R-5

×36

3955

.997

0013

8364

1.36

757

1196

.759

7454

1.51

85-1

0922

4.18

1443

46.8

71.

0000

4693

7385

1.80

8099

66.2

999

-359

.67

0.99

9901

22O

GR

120

182

3-3

8436

49.6

148

3387

261.

9699

3788

400.

1558

18O

GR

-636

3956

.000

6413

8364

1.40

422

1194

.362

7454

1.61

91-1

0922

3.26

9943

46.8

51.

0000

4693

7385

1.92

1299

67.2

099

-359

.70.

9999

0122

OG

R1

2018

24

-384

3649

.635

233

8726

1.98

9237

8840

0.17

0918

OG

R-7

3639

56.0

0049

1383

641.

4041

811

94.3

9474

541.

6145

-109

223.

2710

4346

.85

1.00

0046

9373

851.

9166

9967

.208

9-3

59.7

0.99

9901

22O

GR

120

182

5-3

9169

60.1

183

3390

074.

7774

3827

176.

5187

18O

GR

-8×

3638

20.5

7908

1390

727.

3543

570

126.

247

7113

9.17

24-6

3406

.559

825

23.4

0.99

9949

5271

086.

5128

5582

3.16

93-2

221.

190.

9999

3838

NZL

120

1710

16-3

8450

20.8

165

3383

649.

6612

3790

962.

5219

17N

ZL-1

3641

28.9

6696

1383

907.

0544

416

35.5

6377

361.

9361

-105

571.

1224

4221

.39

1.00

0037

2776

722.

3317

1357

9.29

19-5

26.8

70.

9999

0227

NZL

120

1710

17-3

8450

20.8

231

3383

649.

6629

3790

962.

5165

17N

ZL-2

3641

28.9

6671

1383

907.

0545

716

35.5

6477

361.

9284

-105

571.

1193

4221

.39

1.00

0037

2776

722.

3240

1357

9.29

52-5

26.8

70.

9999

0227

NZL

120

1710

18-3

8450

20.8

209

3383

649.

6656

3790

962.

5259

17N

ZL-3

3641

28.9

6695

1383

907.

0544

316

35.5

777

361.

9358

-105

571.

1227

4221

.39

1.00

0037

2776

722.

3313

1357

9.29

17-5

26.8

70.

9999

0227

NZL

120

1710

19-3

8450

20.8

157

3383

649.

6632

3790

962.

5221

17N

ZL-4

3641

28.9

6696

1383

907.

0543

616

35.5

6377

361.

9361

-105

571.

1244

4221

.39

1.00

0037

2776

722.

3317

1357

9.28

99-5

26.8

70.

9999

0227

NZL

120

1710

20-3

8450

20.8

130

3383

649.

6506

3790

962.

5072

17N

ZL-5

3641

28.9

6677

1383

907.

0546

716

35.5

4677

361.

9302

-105

571.

1168

4221

.39

1.00

0037

2776

722.

3258

1357

9.29

77-5

26.8

70.

9999

0227

TMG

120

1710

24-3

8409

63.9

061

3402

336.

8419

3778

083.

1721

17TM

G-1

3632

53.2

5697

1382

755.

3868

314

38.9

5261

687.

0463

-122

471.

2556

4852

.96

1.00

0084

7460

816.

8829

-309

8.94

5211

4.21

0.99

9900

12TM

G1

2017

1025

-384

0963

.910

634

0233

6.84

9137

7808

3.17

7017

TMG

-236

3253

.256

9413

8275

5.38

674

1438

.961

6168

7.04

55-1

2247

1.25

7948

52.9

61.

0000

8474

6081

6.88

19-3

098.

9474

114.

210.

9999

0012

TMG

120

1710

26-3

8409

63.9

170

3402

336.

8487

3778

083.

1778

17TM

G-3

3632

53.2

5687

1382

755.

3869

214

38.9

6561

687.

0432

-122

471.

2534

4852

.96

1.00

0084

7460

816.

8798

-309

8.94

2911

4.21

0.99

9900

12SH

G1

2017

1024

-383

4787

.099

633

9331

4.77

0937

9269

6.80

6617

SHG

-136

4238

.840

6313

8294

2.44

939

1647

.145

7969

9.95

18-1

1955

6.96

9848

00.1

61.

0000

7605

7886

5.26

34-4

35.5

414

10.4

90.

9999

SHG

120

1710

25-3

8347

87.1

013

3393

314.

7761

3792

696.

8045

17SH

G-2

3642

38.8

4049

1382

942.

4492

816

47.1

4879

699.

9475

-119

556.

9725

4800

.16

1.00

0076

0578

865.

2591

-435

.544

110

.49

0.99

99SH

G1

2017

1026

-383

4787

.100

533

9331

4.77

1537

9269

6.80

4517

SHG

-336

4238

.840

5613

8294

2.44

940

1647

.145

7969

9.94

96-1

1955

6.96

9548

00.1

61.

0000

7605

7886

5.26

13-4

35.5

412

10.4

90.

9999

SHG

120

1710

27-3

8347

87.1

006

3393

314.

7747

3792

696.

8083

17SH

G-4

3642

38.8

4062

1382

942.

4493

016

47.1

4979

699.

9515

-119

556.

9720

4800

.16

1.00

0076

0578

865.

2631

-435

.543

610

.49

0.99

99SH

G1

2018

25

-383

4787

.063

633

9331

4.73

1937

9269

6.78

0818

SHG

-536

4238

.840

9913

8294

2.44

961

1647

.087

7969

9.96

28-1

1955

6.96

4148

00.1

61.

0000

7605

7886

5.27

45-4

35.5

360

10.4

90.

9999

SHG

120

182

6-3

8347

87.0

694

3393

314.

7308

3792

696.

7790

18SH

G-6

3642

38.8

4087

1382

942.

4498

016

47.0

8979

699.

9590

-119

556.

9595

4800

.16

1.00

0076

0578

865.

2708

-435

.531

210

.49

0.99

99SH

G1

2018

27

-383

4787

.046

033

9331

4.70

7037

9269

6.74

3818

SHG

-736

4238

.840

6013

8294

2.44

989

1647

.042

7969

9.95

07-1

1955

6.95

7448

00.1

61.

0000

7605

7886

5.26

25-4

35.5

290

10.4

90.

9999

NKD

120

1710

24-3

8348

30.0

573

3397

513.

6310

3788

739.

0218

17N

KD-1

3640

01.3

4918

1382

736.

9984

615

40.3

2174

889.

3250

-122

739.

9726

4912

.15

1.00

0085

5574

011.

7192

-355

0.78

1612

5.4

0.99

9900

16N

KD1

2017

1025

-383

4830

.052

633

9751

3.62

9737

8873

9.01

7817

NKD

-236

4001

.349

1613

8273

6.99

838

1540

.315

7488

9.32

45-1

2273

9.97

4649

12.1

51.

0000

8555

7401

1.71

86-3

550.

7836

125.

40.

9999

0016

NKD

120

1710

26-3

8348

30.0

600

3397

513.

6322

3788

739.

0213

17N

KD-3

3640

01.3

4911

1382

736.

9985

015

40.3

2374

889.

3229

-122

739.

9717

4912

.15

1.00

0085

5574

011.

7171

-355

0.78

0712

5.4

0.99

9900

16N

KD1

2017

1027

-383

4830

.067

033

9751

3.64

5037

8873

9.02

0317

NKD

-436

4001

.348

8213

8273

6.99

830

1540

.333

7488

9.31

40-1

2273

9.97

6849

12.1

51.

0000

8555

7401

1.70

81-3

550.

7856

125.

40.

9999

0016

NKD

120

182

3-3

8348

30.0

619

3397

513.

6277

3788

739.

0352

18N

KD-5

3640

01.3

4950

1382

736.

9986

815

40.3

374

889.

3348

-122

739.

9670

4912

.15

1.00

0085

5574

011.

7291

-355

0.77

6212

5.4

0.99

9900

16N

KD1

2018

24

-383

4830

.063

933

9751

3.62

6537

8873

9.03

4218

NKD

-636

4001

.349

4713

8273

6.99

877

1540

.33

7488

9.33

39-1

2273

9.96

4849

12.1

51.

0000

8555

7401

1.72

82-3

550.

7739

125.

40.

9999

0016

NKD

120

182

5-3

8348

30.0

627

3397

513.

6271

3788

739.

0321

18N

KD-7

3640

01.3

4942

1382

736.

9987

215

40.3

2874

889.

3323

-122

739.

9661

4912

.15

1.00

0085

5574

011.

7266

-355

0.77

5212

5.4

0.99

9900

16N

KD1

2018

26

-383

4830

.063

133

9751

3.62

5437

8873

9.02

6618

NKD

-836

4001

.349

2913

8273

6.99

879

1540

.324

7488

9.32

83-1

2273

9.96

4449

12.1

51.

0000

8555

7401

1.72

26-3

550.

7734

125.

40.

9999

0016

NKD

120

182

7-3

8348

30.0

457

3397

513.

6154

3788

739.

0134

18N

KD-9

3640

01.3

4933

1382

736.

9986

215

40.3

7488

9.32

96-1

2273

9.96

8649

12.1

51.

0000

8555

7401

1.72

38-3

550.

7777

125.

40.

9999

0016

YNG

120

1710

24-3

8309

62.8

346

3406

351.

3229

3783

383.

7924

17YN

G-1

3636

44.4

0212

1382

127.

6510

273

0.96

268

954.

5923

-132

005.

1594

5248

.73

1.00

0114

6267

950.

0786

-127

30.8

185

505.

560.

9999

02YN

G1

2017

1025

-383

0962

.824

134

0635

1.31

6937

8338

3.78

5117

YNG

-236

3644

.402

1613

8212

7.65

092

730.

949

6895

4.59

35-1

3200

5.16

1852

48.7

31.

0001

1462

6795

0.07

99-1

2730

.821

050

5.56

0.99

9902

YNG

120

1710

26-3

8309

62.8

299

3406

351.

3165

3783

383.

7841

17YN

G-3

3636

44.4

0206

1382

127.

6510

973

0.95

168

954.

5904

-132

005.

1577

5248

.73

1.00

0114

6267

950.

0768

-127

30.8

168

505.

560.

9999

02YN

G1

2017

1027

-383

0962

.738

034

0635

1.40

4537

8338

3.81

1817

YNG

-4×

3636

44.4

0298

1382

127.

6459

973

0.96

6895

4.62

07-1

3200

5.28

4052

48.7

31.

0001

1462

6795

0.10

53-1

2730

.943

450

5.57

0.99

9902

YNG

120

182

5-3

8309

62.8

183

3406

351.

3100

3783

383.

7809

18YN

G-5

3636

44.4

0223

1382

127.

6509

873

0.93

968

954.

5957

-132

005.

1603

5248

.73

1.00

0114

6267

950.

0820

-127

30.8

195

505.

560.

9999

02YN

G1

2018

26

-383

0962

.823

234

0635

1.30

6637

8338

3.78

1018

YNG

-636

3644

.402

2013

8212

7.65

121

730.

9468

954.

5947

-132

005.

1546

5248

.73

1.00

0114

6267

950.

0811

-127

30.8

138

505.

560.

9999

02YN

G1

2018

27

-383

0962

.800

634

0635

1.28

2837

8338

3.76

2318

YNG

-736

3644

.402

3513

8212

7.65

132

730.

903

6895

4.59

93-1

3200

5.15

1852

48.7

31.

0001

1462

6795

0.08

57-1

2730

.811

050

5.56

0.99

9902

KSM

120

1710

16-3

8419

06.5

172

3394

888.

2661

3785

038.

5654

17KS

M-1

3637

16.1

4757

1383

204.

8503

521

88.1

6169

704.

4463

-116

157.

4863

4629

.14

1.00

0066

1868

919.

6686

3101

.920

3-1

14.4

80.

9999

0012

KSM

120

1710

17-3

8419

06.5

177

3394

888.

2605

3785

038.

5584

17KS

M-2

3637

16.1

4745

1383

204.

8505

321

88.1

5569

704.

4425

-116

157.

4819

4629

.14

1.00

0066

1868

919.

6649

3101

.924

8-1

14.4

80.

9999

0012

KSM

120

1710

18-3

8419

06.5

148

3394

888.

2656

3785

038.

5642

17KS

M-3

3637

16.1

4758

1383

204.

8503

021

88.1

5969

704.

4466

-116

157.

4875

4629

.14

1.00

0066

1868

919.

6689

3101

.919

1-1

14.4

80.

9999

0012

KSM

120

1710

19-3

8419

06.5

247

3394

888.

2780

3785

038.

5747

17KS

M-4

3637

16.1

4755

1383

204.

8501

921

88.1

7869

704.

4457

-116

157.

4903

4629

.14

1.00

0066

1868

919.

6680

3101

.916

3-1

14.4

80.

9999

0012

KSM

120

1710

20-3

8419

06.5

152

3394

888.

2670

3785

038.

5660

17KS

M-5

3637

16.1

4760

1383

204.

8502

721

88.1

6169

704.

4472

-116

157.

4883

4629

.14

1.00

0066

1868

919.

6696

3101

.918

3-1

14.4

80.

9999

0012

KSYG

2017

1016

-384

0854

.208

033

9395

2.22

1437

8678

4.63

76##

KSYG

-136

3828

.840

5813

8320

5.03

657

2099

.770

7194

5.10

40-1

1612

2.55

2246

30.3

51.

0000

6608

KSYG

2017

1017

-384

0854

.187

733

9395

2.20

4037

8678

4.61

94##

KSYG

-236

3828

.840

6213

8320

5.03

655

2099

.737

7194

5.10

52-1

1612

2.55

2646

30.3

51.

0000

6608

KSYG

2017

1018

-384

0854

.182

933

9395

2.20

1537

8678

4.61

93##

KSYG

-336

3828

.840

7213

8320

5.03

650

2099

.733

7194

5.10

83-1

1612

2.55

3846

30.3

51.

0000

6608

KSYG

2017

1019

-384

0854

.195

133

9395

2.21

4437

8678

4.63

24##

KSYG

-436

3828

.840

7213

8320

5.03

643

2099

.755

7194

5.10

83-1

1612

2.55

5646

30.3

51.

0000

6608

KSYG

2017

1020

-384

0854

.207

333

9395

2.22

6737

8678

4.64

47##

KSYG

-536

3828

.840

7013

8320

5.03

639

2099

.776

7194

5.10

77-1

1612

2.55

6646

30.3

51.

0000

6608

KSYG

2018

23

-384

0854

.190

233

9395

2.19

4337

8678

4.62

93##

KSYG

-636

3828

.840

9713

8320

5.03

691

2099

.740

7194

5.11

59-1

1612

2.54

3646

30.3

51.

0000

6608

KSYG

2018

24

-384

0854

.185

133

9395

2.18

9637

8678

4.62

27##

KSYG

-736

3828

.840

9313

8320

5.03

692

2099

.730

7194

5.11

46-1

1612

2.54

3346

30.3

51.

0000

6608

KSYG

2018

25

-384

0854

.188

133

9395

2.19

5537

8678

4.62

59##

KSYG

-836

3828

.840

8913

8320

5.03

682

2099

.737

7194

5.11

34-1

1612

2.54

5846

30.3

51.

0000

6608

KSYG

2018

26

-384

0854

.195

233

9395

2.19

8537

8678

4.62

88##

KSYG

-936

3828

.840

8313

8320

5.03

692

2099

.745

7194

5.11

16-1

1612

2.54

3446

30.3

51.

0000

6608

KSYG

2018

27

-384

0854

.188

333

9395

2.19

3237

8678

4.62

40##

KSYG

-10

3638

28.8

4087

1383

205.

0368

920

99.7

3571

945.

1128

-116

122.

5441

4630

.35

1.00

0066

08KS

R1

2017

1016

-384

0983

.802

333

9410

6.55

1637

8644

7.85

77##

KSR

1-1

3638

16.2

1950

1383

203.

8359

520

58.7

0971

556.

4694

-116

157.

6405

4630

.84

1.00

0066

18KS

R1

2017

1017

-384

0983

.792

333

9410

6.53

9937

8644

7.84

80##

KSR

1-2

3638

16.2

1955

1383

203.

8360

420

58.6

9171

556.

4709

-116

157.

6382

4630

.84

1.00

0066

18KS

R1

2017

1018

-384

0983

.787

133

9410

6.54

4037

8644

7.84

97##

KSR

1-3

3638

16.2

1961

1383

203.

8357

820

58.6

9171

556.

4729

-116

157.

6447

4630

.84

1.00

0066

18KS

R1

2017

1019

-384

0983

.801

833

9410

6.55

9337

8644

7.86

23##

KSR

1-4

3638

16.2

1953

1383

203.

8357

120

58.7

1671

556.

4704

-116

157.

6465

4630

.84

1.00

0066

18KS

R1

2017

1020

-384

0983

.806

333

9410

6.56

5237

8644

7.87

39##

KSR

1-5

3638

16.2

1969

1383

203.

8356

520

58.7

2971

556.

4754

-116

157.

6479

4630

.84

1.00

0066

18KS

R1

2018

23

-384

0983

.799

833

9410

6.52

8737

8644

7.86

06##

KSR

1-6

3638

16.2

1991

1383

203.

8365

820

58.6

9871

556.

4818

-116

157.

6247

4630

.84

1.00

0066

18KS

R1

2018

24

-384

0983

.795

133

9410

6.52

5537

8644

7.85

55##

KSR

1-7

3638

16.2

1989

1383

203.

8365

520

58.6

9071

556.

4812

-116

157.

6254

4630

.84

1.00

0066

18KS

R1

2018

25

-384

0983

.798

433

9410

6.53

1437

8644

7.85

93##

KSR

1-8

3638

16.2

1986

1383

203.

8364

620

58.6

9771

556.

4803

-116

157.

6277

4630

.84

1.00

0066

18KS

R1

2018

26

-384

0983

.803

133

9410

6.53

0737

8644

7.85

96##

KSR

1-9

3638

16.2

1981

1383

203.

8366

120

58.7

0071

556.

4788

-116

157.

6240

4630

.84

1.00

0066

18KS

R1

2018

27

-384

0983

.796

133

9410

6.52

4837

8644

7.85

34##

KSR

1-10

3638

16.2

1983

1383

203.

8366

020

58.6

8971

556.

4794

-116

157.

6242

4630

.84

1.00

0066

18KS

W1

2017

1016

-384

0115

.542

433

9425

8.82

3937

8732

5.20

69##

KSW

1-1

3638

49.6

8972

1383

136.

1052

221

41.2

1872

597.

5215

-116

832.

4721

4648

.00

1.00

0068

12KS

W1

2017

1017

-384

0115

.542

533

9425

8.81

9837

8732

5.20

34##

KSW

1-2

3638

49.6

8968

1383

136.

1053

421

41.2

1372

597.

5202

-116

832.

4692

4648

.00

1.00

0068

12KS

W1

2017

1018

-384

0115

.533

433

9425

8.82

1837

8732

5.20

25##

KSW

1-3

3638

49.6

8977

1383

136.

1050

421

41.2

0972

597.

5231

-116

832.

4766

4648

.00

1.00

0068

12KS

W1

2017

1019

-384

0115

.534

233

9425

8.82

9037

8732

5.20

29##

KSW

1-4

3638

49.6

8967

1383

136.

1048

421

41.2

1372

597.

5201

-116

832.

4816

4648

.00

1.00

0068

12KS

W1

2017

1020

-384

0115

.543

533

9425

8.83

9337

8732

5.21

51##

KSW

1-5

3638

49.6

8972

1383

136.

1047

821

41.2

3172

597.

5216

-116

832.

4831

4648

.00

1.00

0068

12KS

W1

2018

23

-384

0115

.541

133

9425

8.81

2237

8732

5.21

96##

KSW

1-6

3638

49.6

9022

1383

136.

1055

421

41.2

1872

597.

5368

-116

832.

4640

4648

.00

1.00

0068

12KS

W1

2018

24

-384

0115

.538

033

9425

8.80

8237

8732

5.21

44##

KSW

1-7

3638

49.6

9019

1383

136.

1055

721

41.2

1172

597.

5359

-116

832.

4633

4648

.00

1.00

0068

12KS

W1

2018

25

-384

0115

.533

533

9425

8.80

8437

8732

5.21

26##

KSW

1-8

3638

49.6

9020

1383

136.

1054

521

41.2

0772

597.

5362

-116

832.

4662

4648

.00

1.00

0068

12KS

W1

2018

26

-384

0115

.543

533

9425

8.81

3137

8732

5.21

84##

KSW

1-9

3638

49.6

9015

1383

136.

1055

721

41.2

1972

597.

5346

-116

832.

4633

4648

.00

1.00

0068

12KS

W1

2018

27

-384

0115

.538

533

9425

8.80

9737

8732

5.21

50##

KSW

1-10

3638

49.6

9017

1383

136.

1055

421

41.2

1372

597.

5353

-116

832.

4640

4648

.00

1.00

0068

12

ECEF

WG

S-84

GR

S80

NEU

GR

S-80

(IX)

NEU

GR

S-80

(VIII

)

0.0007

0.0018

0.0017

0.0028

0.0079

0.0045

0.0019

0.0065

0.0025

0.0016

0.0013

0.0017

0.0057

0.0020

0.0035

0.0172

-3550.7753

67950.0784

-12730.8188

74541.6141

OG

R

NZL

TMG

SHG

NKD

YNG

KSM

1

IX IX IX IX VIII

VIII

NH

H

VIII IX

67950.0829

-12730.8148

-107578.8673

-107578.8570

-122471.2556

69704.4457

-116157.4869

61849.5968

61849.5951

74011.7261

74541.6168

-109223.2705

-435.5321

74011.7158

-3550.7829

61687.0450

78865.2617

-435.5426

78865.2693

0.0155

0.0023

0.0005

0.0160

0.0008

0.0031

0.0119

77361.9333

-105571.1211

0.0033

-109223.2676

0.0114

0.0013

0.0018

0.0018

0.0217

730.9273

1635.5612

1438.9593

1647.1468

1647.0727

0.0054

0.0050

0.0029

0.0007

0.0016

0.0076

677.9806

0.0050

KSYG

IX

71945.1067

-116122.5542

2099.7542

0.0018

0.0017

0.0172

0.0017

2188.1628

0.0027

0.0080

0.0013

677.9727

1194.4213

1194.3780

1540.3230

1540.3224

730.9540

71556.4803

-116157.6252

2058.6948

0.0011

0.0013

71945.1137

-116122.5440

2099.7374

0.0015

0.0009

Coo

rdin

ate

valu

es. N

EU G

RS-

80 (V

III/IX

) (no

rth-e

ast-u

p)

72597.5358

-116832.4642

2141.2136

0.0008

0.0011

0.0045

KSW

1IX

72597.5213

-116832.4765

2141.2168

0.0011

0.0053

0.0077

0.0044

KSR

1IX

71556.4718

-116157.6436

2058.7072

0.0021

0.0037

0.0147

752 Journal of Disaster Research Vol.14 No.5, 2019

Installation of New GNSS Network Around Kusatsu-ShiraneVolcano, Japan: Its Perspective and the First Result

Name:Rina Noguchi

Affiliation:Researcher, Institute of Space and AstronauticalScience, Japan Aerospace Exploration Agency

Address:3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, JapanBrief Career:2015- Institute of Space and Astronautical Science, Japan AerospaceExploration Agency2015- Geological Survey of Japan, National Institute of AdvancedIndustrial Science and Technology2016- Volcanic Fluid Research Center, School of Science, Tokyo Instituteof Technology2018- Institute of Space and Astronautical Science, Japan AerospaceExploration AgencySelected Publications:• R. Noguchi and K. Kurita, “Unique characteristics of cones in CentralElysium Planitia, Mars,” Planetary and Space Science, Vol.111, pp. 44-54,2015.• R. Noguchi, A. Hoskuldsson, and K. Kurita, “Detailed topographical,distributional, and material analyses of rootless cones in Myvatn,Iceland,”J. of Volcanology and Geothermal Research, Vol.318, pp. 89-102,2016.• D. Shoji, R. Noguchi, S. Otsuki, and H. Hino, “Classification of volcanicash particles using a convolutional neural network and probability,”Nature, Scientific Reports, Vol.8, Article No.8111, 2018.Academic Societies & Scientific Organizations:• Volcanological Society of Japan (VSJ)• Japan Geoscience Union (JpGU)

Name:Tatsuji Nishizawa

Affiliation:Researcher, Volcanic Fluid Research Center,School of Science, Tokyo Institute of Technol-ogy

Address:2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, JapanBrief Career:2018- Volcanic Fluid Research Center, School of Science, Tokyo Instituteof TechnologySelected Publications:• T. Nishizawa, H. Nakamura, T. Churikova, B. Gordeychik, O. Ishizuka,S. Haraguchi, T. Miyazaki, B. S. Vaglarov, Q. Chang, M. Hamada, J.-I.Kimura, K. Ueki, C. Toyama, A. Nakao, and H. Iwamori, “Genesis ofultra-high-Ni olivine in high-Mg andesite lava triggered by seamountsubduction,” Nature, Scientific Reports, Vol.7, Article No.11515,doi:10.1038/s41598-017-10276-3, 2017.Academic Societies & Scientific Organizations:• Volcanological Society of Japan (VSJ)• Japan Geoscience Union (JpGU)

Name:Wataru Kanda

Affiliation:Associate Professor, Volcanic Fluid ResearchCenter, School of Science, Tokyo Institute ofTechnology

Address:641-36, Kusatsu, Agatsuma, Gunma 377-1711, JapanBrief Career:1998- Research Associate, Disaster Prevention Research Institute, KyotoUniversity2010- Associate Professor, Volcanic Fluid Research Center, TokyoInstitute of Technology2016- Associate Professor, School of Science, Tokyo Institute ofTechnologySelected Publications:• W. Kanda et al., “A Heating Process of Kuchi-erabu-jima Volcano, Japan,as Inferred from Geomagnetic Field Variations and Electrical Structure,” J.Volcanol. Geotherm. Res., Vol.189, No.1-2, pp. 158-171, 2010.• W. Kanda et al., “Hydrothermal system of the active crater of Asovolcano (Japan) inferred from a three-dimensional resistivity structuremodel,” Earth, Planets and Space, Vol.71, No.1, Article: 37, 2019.Academic Societies & Scientific Organizations:• Volcanological Society of Japan (VSJ)• Japan Geoscience Union (JpGU)• Society of Geomagnetism and Earth, Planetary and Space Sciences(SGEPSS)• Society of Economic Geologists (SEG)

Name:Takahiro Ohkura

Affiliation:Professor, Aso Volcanological Laboratory, Insti-tute for Geothermal Sciences, Graduate Schoolof Science, Kyoto University

Address:3028 Sakanashi, Ichinomiyamachi, Aso, Kumamoto 869-2611, JapanBrief Career:1991- Kyoto UniversityAcademic Societies & Scientific Organizations:• Volcanological Society of Japan (VSJ)

Journal of Disaster Research Vol.14 No.5, 2019 753

Noguchi, R. et al.

Name:Akihiko Terada

Affiliation:Lecturer, Volcanic Fluid Research Center,School of Science, Tokyo Institute of Technol-ogy

Address:2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, JapanBrief Career:2003- Institute of Seismology and Volcanology, Faculty of Science,Hokkaido University2006- Aso Volcanological Laboratory, Graduate School of Science, KyotoUniversity2009- Volcanic Fluid Research Center, School of Science, Tokyo Instituteof TechnologySelected Publications:• A. Terada and Y. Ida, “Kinematic features of isolated volcanic cloudsrevealed by video records,” Geophys. Res. Lett., Vol.34, No.1, L01305,doi:10.1029/2006GL026827, 2007.• A. Terada, T. Hashimoto, and T. Kagiyama, “A water flow model of theactive crater lake at Aso volcano, Japan: fluctuations of magmatic gas andgroundwater fluxes from the underlying hydrothermal system,” Bulletin ofVolcanology, Vol.74, No.3, pp. 641-655, 2012.• A. Terada and T. Hashimoto, “Variety and sustainability of volcaniclakes: Response to subaqueous thermal activity predicted by numericalmodel,” J. Geophys. Res., Solid Earth, Vol.122, No.8, pp. 6108-6130,2017.Academic Societies & Scientific Organizations:• Volcanological Society of Japan (VSJ)• American Geophysical Union (AGU)• Geothermal Research Society of Japan (GRSJ)

754 Journal of Disaster Research Vol.14 No.5, 2019

Powered by TCPDF (www.tcpdf.org)