29
Afr. J. Ecol. 1997, Volume 35, pages 10–38 Climatic and biogeographical associations of southern African dung beetles (Coleoptera: Scarabaeidae s. str.) ADRIAN L. V. DAVIS 1 Department of Zoology, University of Cape Town, Rondebosch, 7700 South Africa Summary Climatic and biogeographical associations of southern African dung beetles (Scarabaeinae, Coprinae) were analysed from a collection amassed between 1971 and 1986. Endemism to Africa south of 15)S was much greater in southwesterly climates (winter rainfall, bimodal spring/autumn rainfall, arid late summer rainfall) than to the north-east in the moist, mid-summer rainfall region. Major biogeographical groups centred to the south-west comprised predominantly southern African endemics, Western/Eastern Cape coast, Karoo, Karoo/Namib, northern Namibia and the south-western Kalahari. Biogeographical groups centred on the south-eastern highlands and the subtropical east coast (mid- summer rainfall) also comprised predominantly southern African endemics. All other major groups centred to the north-east in the mid-summer rainfall region comprised predominantly species with widespread tropical biogeographical aliations, pan-southern Africa but centred in the east, pan-mid-summer rainfall region, eastern mid-summer rainfall region, tropical east Zimbabwe/central Moçambique, subtropical/tropical game reserves (non-ruminant dung special- ists). There were cross-climatic dierences in taxonomic composition of the fauna. Within the winter rainfall region, percentage species composition of Scarabaeinae was greater whereas that of the coprine tribe, Onthophagini, was lower than within the other three climatic regions. Percentage species richness of most other tribes of Coprinae diered little between most climates but that of Scarabaeinae declined from west to east (Canthonini, Scarabaeini), east to west (Sisyphini) or to either side of the late summer rainfall region (Gymnopleurini). Key words: Africa, biogeographical, climatic, dung, Scarabaeidae Re ´sume ´ Les associations climatiques et bioge ´ographique des bousiers (Scarabaeinae, Coprinae) d’Afrique du sud furent analyse ´es a ` parir d’une collection constitue ´e entre 1971 et 1986. L’ende ´misme en Afrique au sud de 15) e ´tait bien plus e ´leve ´ sous les climats du sud-ouest (pluies hivernales, pluies bimodales au printemps et en automme, pluies tardives lors d’e ´te ´s arides) qu’au nord-est dans la re ´gion humide aux chutes de pluie de la mi-e ´te ´. Des groupes bioge ´ographiques majeurs centre ´s au sud-ouest comprenaient principalement des ende ´miques d’Afrique du sud, la co ˆ te du Cap Oriental et Occidental, L Karoo, L Karoo/Namib, la 1 Present address: Department of Zoology and Entomology, University of Pretoria, Pretoria 10002 South Africa ? 1997 East African Wild Life Society.

Climatic and biogeographical associations of Kenyan and northern Tanzanian dung beetles (Coleoptera: Scarabaeidae)

Embed Size (px)

Citation preview

Afr. J. Ecol. 1997, Volume 35, pages 10–38

Climatic and biogeographical associations of southernAfrican dung beetles (Coleoptera: Scarabaeidae s. str.)

ADRIAN L. V. DAVIS1

Department of Zoology, University of Cape Town, Rondebosch, 7700 South Africa

SummaryClimatic and biogeographical associations of southern African dung beetles(Scarabaeinae, Coprinae) were analysed from a collection amassed between 1971and 1986. Endemism to Africa south of 15)S was much greater in southwesterlyclimates (winter rainfall, bimodal spring/autumn rainfall, arid late summerrainfall) than to the north-east in the moist, mid-summer rainfall region. Majorbiogeographical groups centred to the south-west comprised predominantlysouthern African endemics, Western/Eastern Cape coast, Karoo, Karoo/Namib,northern Namibia and the south-western Kalahari. Biogeographical groupscentred on the south-eastern highlands and the subtropical east coast (mid-summer rainfall) also comprised predominantly southern African endemics. Allother major groups centred to the north-east in the mid-summer rainfall regioncomprised predominantly species with widespread tropical biogeographicalaffiliations, pan-southern Africa but centred in the east, pan-mid-summer rainfallregion, eastern mid-summer rainfall region, tropical east Zimbabwe/centralMoçambique, subtropical/tropical game reserves (non-ruminant dung special-ists). There were cross-climatic differences in taxonomic composition of thefauna. Within the winter rainfall region, percentage species composition ofScarabaeinae was greater whereas that of the coprine tribe, Onthophagini, waslower than within the other three climatic regions. Percentage species richness ofmost other tribes of Coprinae differed little between most climates but that ofScarabaeinae declined from west to east (Canthonini, Scarabaeini), east to west(Sisyphini) or to either side of the late summer rainfall region (Gymnopleurini).

Key words: Africa, biogeographical, climatic, dung, Scarabaeidae

ResumeLes associations climatiques et biogeographique des bousiers (Scarabaeinae,Coprinae) d’Afrique du sud furent analysees a parir d’une collection constitueeentre 1971 et 1986. L’endemisme en Afrique au sud de 15) etait bien plus elevesous les climats du sud-ouest (pluies hivernales, pluies bimodales au printemps eten automme, pluies tardives lors d’etes arides) qu’au nord-est dans la regionhumide aux chutes de pluie de la mi-ete. Des groupes biogeographiques majeurscentres au sud-ouest comprenaient principalement des endemiques d’Afriquedu sud, la cote du Cap Oriental et Occidental, L Karoo, L Karoo/Namib, la

1Present address: Department of Zoology and Entomology, University of Pretoria, Pretoria 10002South Africa

? 1997 East African Wild Life Society.

Namibie septentrionale et le sud-ouest Kalahari. Des groupes biogeogrphiquescentres sur les regions montagneuses du sud-est et la cote est subtropicale (chutesde pluies de la mi-ete) comprenaient egalement surtout des endemiques d’Afriquedu sud. Tous les autres groupes majeurs centres au nord-est dans la region auxchutes de pluie de la mi-ete comprenaient principalement des especes avecaffiliations biogeographiques tropicales etendue a l’ensemble de la region sudafricaine, mais centrees dans la region oriental a cutes de pluie de la mi-ete, auZimbabwe oriental tropical/Mozambique central, et aux reserves de faunesauvage subtropicales/tropicales (specialistes des bouses de non-ruminants). On atrouve des differences dans la composition taxonomique de la faune quel que soitle climat. Dans la region a chutes de pluie hivernales, le pourcentage d’especes deScarabeinae dans la composition etait plus grand alors que elle de la tribu descoprines, Ontophagini, etait plus faible que dans les trois autres regionsclimatiques. Le pourcentage de la richesse en especes de la plupart des autrestribus de Coprinae differait peu entre la plupart des climats mais celui desScarabaeinae diminuait d’ouest en est (Canthonini, Scarabaeini), d’est en ouest(Sisyphini), ou en quelle que direction de la region a chutes de pluies estivalestardives (Gymnopleurini).

IntroductionDung-burying beetles (Scarabaeidae s. str.: Scarabaeinae, Coprinae) show arelatively specialist spatial distribution (Davis, 1994a). Variables which influencespatial specialization include climate (Kirk & Ridsdill-Smith, 1986; Davis &Dewhurst, 1993), soil (Nealis, 1977; Cambefort, 1991a; Doube, 1991), vegetation(Cambefort, 1982; Doube, 1983) and food type (Fincher et al., 1970; Davis,1994b). This biogeographical study of southern African dung beetles considersboth the current and historical influence of these variables.

The prevailing climatic system over southern Africa developed in the latePliocene, c. three million years ago (Deacon, 1983). This system involvesinterplay between three cells of air currents (Tyson, 1986) comprising therain-bearing westerlies centred over the south Atlantic Ocean, the rain-bearingeasterlies centred over the Indian Ocean and a cell of dry air centred over thecold Benguela current in the Atlantic Ocean to the west of southern Africa.During winter, the westerlies and the dry cell expand north-eastwards bringing awinter peak in rainfall to the Western Cape, bimodal autumn and spring peaksin rainfall to the Eastern Cape and dry season conditions to the remainder ofsouthern Africa. During summer, the easterlies expand sequentially south-westwards bringing a mid-summer peak in rainfall to the moist, easterly, climatetypes and a late summer peak in rainfall to the arid, westerly, climate types.Concurrent with the expansion of the easterlies, the cell of dry air contractssouthwards bringing dry summers to the winter rainfall region.

Geomorphologically, the subcontinent comprises a tilted plateau which isbordered by coastal mountain ranges. A Permian (Deacon, 1983) or Triassic age(Dingle et al., 1983; Tyson, 1986) is claimed for the Cape fold mountain systemin the Western and Eastern Cape whereas the south-eastern highlands areyounger and originate from the asymmetric raising and tilting westwards of theplateau during the mid-Tertiary and the Pliocene. This second uplift is more orless coeval with major climatic changes.

Associations of southern African dung beetles 11

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

Overall, the disposition of air currents and topographical features over thesubcontinent results in 25 different climatic regions (Walter & Lieth, 1964). Theseclimate types have been reduced to the four major climatic regions of winter,bimodal, late summer and mid-summer rainfall by Davis (1987, 1993). In thepresent study, the mid-summer rainfall region is divided into five subregions(Fig. 1, Table 1).

Soil, vegetation and dung types show clear distribution patterns. A swatheof late Cretaceous to mid-Tertiary sands (Tyson, 1986) dominate the centralKalahari basin from the Northern Cape to southern Angola. Miocene toPliocene sands are also concentrated around the coastline. In contrast, finer-grained soils dominate in the south-eastern highlands with a patchwork offiner-grained soils and sand outliers elsewhere. Three principal vegetationaldivisions (Werger, 1978) largely coincide with climatic regions. The shrubland-dominated Cape floristic and Karoo/Namib divisions roughly coincide, respect-ively, with the winter/bimodal and the arid, late summer rainfall regions. Thehighland grassland and lowland woodland of the southern Sudano-zambeziandivision roughly coincide with the mid-summer rainfall region. Fragmentation inthe distribution of woody vegetation has occurred over much of the subcontinentalthough it is particularly influential on dung beetle occurrence in the winterrainfall region (Davis, 1993). The range of large indigenous mammals is alsofragmented so that high densities of non-ruminant dung are mostly restricted togame reserves whereas ruminant dung remains widespread.

Fig. 1. Climatic regions of southern Africa after Walter & Lieth (1964) and modifications by Davis (1987).

12 A. L. V. Davis

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

Table 1. Dung beetle collection data for the 25 climatic regions of southern Africa (Walter & Lieth, 1964)south of 15)S

Climatetype

Number of collections on:

Numberof

collectionlocalities*

Soil type Food type Vegetation type

Finegrained

Coarsegrained(sand)

Ruminantdung

Non-ruminant

dung

Omnivoredung/carrion

Pasture/grassland

Shrubland/open

woodland Forest

Winter rainfallIII3 0 3 0 2 1 0 3 0 3III4 5 21 20 4 1 13 12 0 28III(IV)a 11 38 52 1 0 32 12 0 54III(IV)b 8 3 14 1 0 5 7 0 15IV 6 4 18 0 0 10 1 0 21

Bimodal rainfallIII5 29 6 37 1 0 9 18 0 38IV(V) 31 7 50 4 0 34 3 4 60V 22 3 42 1 0 16 4 0 49Late summer rainfallII4a 28 4 30 2 1 10 17 0 35II(III)a 9 56 59 4 0 18 48 0 73II(III)b 1 3 3 1 0 0 3 0 4III1 6 36 27 9 4 7 36 0 46III2 1 16 9 4 1 8 8 0 18

Mid-summer rainfallKalahariII4b 17 29 46 1 0 27 19 0 50II4c 59 92 137 20 10 12 130 1 183

HighveldII3a 144 24 140 3 1 125 19 3 211II3c 97 4 134 6 1 101 2 0 150

TransitionalII3d 106 35 156 6 6 85 56 2 197

East coastII(I)a 29 35 46 19 13 31 20 29 144II2a 0 5 6 0 0 4 2 1 7II3e 32 28 43 23 2 15 37 6 108II3f 0 4 4 0 0 0 3 0 4

Subtropical/tropicalII2b 61 13 71 12 8 32 29 15 108II3b 53 25 83 1 1 32 49 0 113II3g 117 60 189 80 10 58 110 23 349

*Discrepancies between the number of collection localities and collection data totals are due to missinginformation.

Associations of southern African dung beetles 13

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

The present study examines both climatic and biogeographical relationshipsof the southern African dung beetle fauna recorded mainly on large herbivoredung in unshaded situations. Regional trends in biogeographical and tribalcomposition of the fauna have been determined. Multivariate analytical tech-niques have been used to identify major climatic and geographical groups. Thepossible influence of local factors (soil, vegetation, dung type) on these groupshas been assessed. Local geographical distribution patterns and implications forroutes of dispersal are discussed.

MethodsDung beetle distribution data for Africa south of latitude 15)S were drawn fromthe reference collection of the former Australian CSIRO Dung Beetle ResearchUnit (DBRU) which was amassed between 1971 and 1986. Distribution datawere plotted for the 220 species recorded in >15 separate collections out of 2068made in southern Africa. Both geographical and climatic data matrices werecreated at optimal scales for minimizing noise and maximizing biogeographicalinformation content. On all geographical matrices, species data were plottedaccording to presence (1) or absence (0) from the 76#4) squares of latitude andlongitude from which dung beetle collections were made. For the climatic matrix,calculations were made of the percentage occurrences of species across eightmajor climatic regions of southern Africa (Table 2). These quantitative climaticdata were derived from a presence or absence data matrix comprising 264 entriesfor each species. These entries comprised records for 202#1) squares of latitudeand longitude from which dung beetles were collected with the balance compris-ing separate records for each portion of a degree square partitioned by climaticboundaries. Presence records for each species were summed for each of the eightclimatic regions. These summed records were divided by the total number ofdegree squares in which collections were made in that region. These numberswere converted to percentage distributions across the eight climatic regions. Thetreatment of the data gave equal weighting both to each species, whose rangesdiffered in size, and to each of the climatic regions which differed in area.

The climatic distribution of the 220 species was classified using clusteranalysis. A similarity matrix was calculated using the Bray-Curtis (non-metric)similarity coefficient and this matrix was subjected to analysis by the aglomera-tive clustering technique, group average linking. The results were summarized asa dendrogram (not illustrated) from which seven species clusters of similarclimatic distribution were defined at the 50% level of similarity. One of theseclusters (F) was subdivided at the 65% level of similarity.

The results of the climatic analysis (Table 2) were used to define foursupergroups of species whose geographical distribution was also analysed usingcluster analysis. These groups comprised western climatic specialists (B, C, H, 47spp.), eastern climatic specialists (A, D, E, G, 71 spp.), subtropical/tropicalgeneralists (F1, F3, 74 spp.), and temperate to tropical generalists (F2, F4, F5, 28spp.). Geographical distribution matrices for each group were each analysedusing the same clustering methods as in the climatic analysis. Results weredepicted as dendrograms from which species clusters of similar geographicaldistribution were defined at either the 35% (Figs 2, 5) or 40% levels of similarity(Figs 7, 8).

14 A. L. V. Davis

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

Table 2. List of 220 species of dung beetles grouped according to the results of cluster analysis of theirpercentage distributions across eight climatic regions of southern Africa

GroupSpecies

Percentage frequency in climatic region

WR BR Late SR Kala. Highv. II3d EC Trop.

AGarreta malleolus (Kolbe) 0·0 0·0 0·0 0·0 0·0 0·0 0·0 100·0Sisyphus impressipennis Lansberge 0·0 0·0 0·0 0·0 0·0 0·0 0·0 100·0Copris armiger Gillet 0·0 0·0 0·0 0·0 0·0 0·0 0·0 100·0Onitis cryptodus Gillet 0·0 0·0 0·0 0·0 0·0 0·0 0·0 100·0Onitis inversidens Lansberge 0·0 0·0 0·0 0·0 0·0 0·0 0·0 100·0Diastellopalpus infernalis Lansberge 0·0 0·0 0·0 0·0 0·0 0·0 0·0 100·0Diastellopalpus quinquedens Bates 0·0 0·0 0·0 0·0 0·0 0·0 0·0 100·0Onthophagus anomalus (Klug) 0·0 0·0 0·0 0·0 0·0 0·0 0·0 100·0Onthophagus jeaneli d’Orbigny 0·0 0·0 0·0 0·0 0·0 0·0 0·0 100·0Mean 0·0 0·0 0·0 0·0 0·0 0·0 0·0 100·0

BScarabaeus rugosus (Hausman) 100·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0Copris anceus Olivier 100·0 0·0 0·0 0·0 0·0 0·0 0·0 0·0Copris capensis Waterhouse 91·6 8·4 0·0 0·0 0·0 0·0 0·0 0·0Epirinus aeneus Wiedeman 61·0 20·4 18·6 0·0 0·0 0·0 0·0 0·0Epirinus flagellatus (Fabricius) 62·7 28·8 0·0 0·0 8·5 0·0 0·0 0·0Onthophagus minutus Hausman 73·1 26·9 0·0 0·0 0·0 0·0 0·0 0·0Onitis confusus Bohaeman 69·7 16·0 8·4 0·0 5·9 0·0 0·0 0·0Onthophagus cameloides d’Orbigny 77·9 15·9 6·2 0·0 0·0 0·0 0·0 0·0Scarabaeus suri (Hausman) 84·5 15·5 0·0 0·0 0·0 0·0 0·0 0·0Chironitis scabrosus (Fabricius) 42·8 27·6 26·7 0·0 2·9 0·0 0·0 0·0Metacatharsius latifrons Harold 36·5 0·0 28·0 30·5 4·9 0·0 0·0 0·0Mean 72·7 14·5 8·0 2·7 2·8 0·0 0·0 0·0

COnthophagus giraffa Hausman 24·5 60·2 0·0 4·3 11·1 0·0 0·0 0·0Onitis aygulus (Fabricius) 9·7 44·8 23·3 6·8 15·4 0·0 0·0 0·0Mean 17·1 52·5 11·7 5·6 13·3 0·0 0·0 0·0

DNeosisyphus mirabilis Arrow 0·0 0·0 0·0 0·0 0·0 0·0 100·0 0·0Sisyphus sp. nr sordidus 0·0 0·0 0·0 0·0 0·0 0·0 100·0 0·0Catharsius sp. nr pandion 0·0 0·0 0·0 0·0 0·0 0·0 100·0 0·0Copris inhalatus santaluciae 0·0 0·0 0·0 0·0 0·0 0·0 100·0 0·0Nguyen-Phung

Onthophagus sp. 0·0 0·0 0·0 0·0 0·0 0·0 100·0 0·0Onthophagus sp. nr sugillatus 0·0 0·0 0·0 0·0 0·0 0·0 100·0 0·0Proagoderus aureiceps d’Orbigny 0·0 0·0 0·0 0·0 0·0 0·0 94·1 5·9Onthophagus juvencus Klug 0·0 0·0 0·0 0·0 0·0 0·0 95·8 4·3Proagoderus aciculatus Fahraeus 0·0 0·0 0·0 0·0 0·0 0·0 96·3 3·8Copris puncticollis Boheman 0·0 0·0 0·0 0·0 0·0 0·0 90·2 3·5Metacatharsius pseudoopacus Ferreira 0·0 0·0 0·0 9·8 0·0 0·0 90·3 0·0Litocopris muticus Boheman 0·0 0·0 0·0 0·0 0·0 0·0 76·3 23·8Onthophagus beiranus Péringuey 0·0 0·0 0·0 0·0 0·0 0·0 84·3 15·8Sisyphus sordidus Boheman 0·0 0·0 0·0 0·0 0·0 0·0 84·9 15·1Mean 0·0 0·0 0·0 0·0 0·0 0·0 93·7 5·2

Table 2 continued on next page

Associations of southern African dung beetles 15

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

Table 2. continued from previous page

GroupSpecies

Percentage frequency in climatic region

WR BR Late SR Kala. Highv. II3d EC Trop.

EScarabaeus natalensis zur Strassen 0·0 0·0 6·6 0·0 64·8 28·6 0·0 0·0Copris jacchoides Nguyen-Phung 0·0 0·0 0·0 0·0 74·2 16·4 9·5 0·0Onthophagus obtutus Péringuey 0·0 8·3 0·0 0·0 72·9 18·8 0·0 0·0Copris corniger Sahlberg 0·0 9·9 0·0 0·0 65·6 22·5 0·0 2·0Xinidium dentilabris Harold 0·0 0·0 0·0 0·0 54·0 33·4 9·7 3·0Neosisyphus barbarossa Wiedeman 10·4 19·0 0·0 0·0 49·0 21·6 0·0 0·0Onitis perpunctatus Balthasar 0·0 7·0 0·0 0·0 36·0 47·7 9·2 0·0Onthophagus vigens d’Orbigny 0·0 0·0 0·0 0·0 39·3 60·7 0·0 0·0Copris caelatus Fabricius 0·0 0·0 0·0 0·0 49·3 50·8 0·0 0·0Sisyphus caffer Boheman 0·0 0·0 0·0 0·0 91·9 0·0 0·0 8·1Proagoderus lanista Castelnau 0·0 0·0 3·9 0·0 83·1 0·0 9·9 3·1Epirinus obtusus Boheman 0·0 25·8 26·9 0·0 48·1 0·0 0·0 0·0Onthophagus fritschi d’Orbigny 0·0 25·6 17·8 0·0 56·6 0·0 0·0 0·0Onthophagus cyaneoniger d’Orbigny 0·0 17·5 18·2 0·0 64·3 0·0 0·0 0·0Onthophagus lugubris Fahraeus 0·0 28·0 0·0 0·0 72·0 0·0 0·0 0·0Copris antares Ferreira 0·0 27·0 3·5 0·0 69·5 0·0 0·0 0·0Neosisyphus macroruber Paschalidis 0·0 0·0 18·8 20·6 53·2 0·0 0·0 7·4Euoniticellus triangulatus (Harold) 21·4 28·6 0·0 0·0 22·3 12·2 14·1 1·5Euoniticellus africanus (Harold) 13·9 21·2 12·2 4·8 37·5 4·8 5·6 0·0Sisyphus costatus Thunberg 0·0 32·2 0·0 0·0 35·6 18·3 10·6 3·3Onthophagus asperulus d’Orbigny 0·0 26·4 0·0 0·0 46·7 18·0 3·5 5·4Onthophagus bubalus Harold 0·0 22·1 13·4 2·1 37·9 16·7 4·8 3·0Litocopris simplex Harold 0·0 51·2 0·0 0·0 37·6 0·0 11·2 0·0Onitis pecuarius Lansberge 0·0 47·0 0·0 0·0 34·5 0·0 18·5 0·0Drepanocerus sulcicollis (Castelnau) 0·0 36·2 0·0 0·0 40·0 0·0 23·8 0·0Oniticellus pictus (Hausman) 5·6 46·0 0·0 0·0 30·1 11·6 6·7 0·0Onthophagus binodis Thunberg 8·8 42·9 2·8 0·0 39·5 6·1 0·0 0·0Gymnopleurus leei (Fabricius) 0·0 37·7 6·5 0·0 41·5 14·3 0·0 0·0Mean 2·2 20·0 4·6 1·0 52·9 14·4 4·9 1·3

F1Pachylomerus femoralis (Kirby) 0·0 0·0 7·8 28·5 0·0 22·8 26·4 14·4Kheper lamarcki (M’Leay) 0·0 0·0 8·7 23·8 0·0 19·0 33·0 15·4Scarabaeus goryi Harold 0·0 0·0 2·6 25·0 0·0 22·2 32·2 18·0Onthophagus vinctus Erichson 0·0 0·0 0·0 14·9 2·1 19·8 38·2 25·0Onitis deceptor Péringuey 0·0 0·0 8·9 9·7 0·0 19·5 33·8 28·1Heliocopris andersoni Bates 0·0 0·0 5·8 12·6 0·0 25·2 29·2 27·3Heliocopris japetus Klug 0·0 0·0 6·7 19·5 0·0 29·2 11·3 33·4Copris elphenor Klug 0·0 0·0 6·7 25·5 4·7 29·1 8·4 25·6Metacatharsius troglodytes Boheman 0·0 0·0 3·0 29·8 2·1 26·4 7·7 31·0Onitis uncinatus Klug 0·0 0·0 7·2 17·7 3·8 31·4 15·9 24·1Copris evanidus Klug 0·0 0·0 0·0 17·6 3·8 35·2 17·0 26·4Allogymnopleurus thalassinus Klug 0·0 0·0 7·1 21·2 10·1 26·7 18·1 16·9Heliocopris faunus Boheman 0·0 0·0 20·6 18·7 0·0 29·9 17·3 13·5Scarabaeus galenus (Westwood) 0·0 0·0 15·5 16·9 0·0 27·1 23·5 17·1Onthophagus pallidipennis Fahraeus 0·0 0·0 2·6 30·6 0·0 33·4 19·3 14·1Scarabaeus zambesianus Péringuey 0·0 0·0 0·0 37·3 0·0 24·9 28·8 9·0

Table 2 continued on next page

16 A. L. V. Davis

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

Table 2. continued from previous page

GroupSpecies

Percentage frequency in climatic region

WR BR Late SR Kala. Highv. II3d EC Trop.

F1 continuedOnthophagus signatus Fahraeus 0·0 0·0 13·5 34·4 0·0 9·8 22·8 19·5Pedaria sp. 0·0 4·2 2·2 12·0 15·5 38·4 27·8 0·0Neosisyphus confrater Kolbe 0·0 0·0 0·0 0·0 21·4 26·5 30·7 21·5Onitis picticollis Boheman 0·0 0·0 0·0 0·0 24·1 24·8 28·7 22·4Proagoderus brucei Reiche 0·0 0·0 0·0 0·0 25·2 26·0 30·1 18·7Drepanocerus fastiditus Péringuey 7·0 0·0 0·0 0·0 14·2 29·2 33·8 15·8Onthophagus obtusicornis Fahraeus 0·0 0·0 3·4 9·1 21·3 29·2 21·2 15·8Neosisyphus spinipes Thunberg 0·0 11·3 0·0 1·3 11·6 30·8 38·6 6·5Proagoderus loricatus Klug 0·0 0·0 0·0 8·5 0·0 33·9 39·3 18·4Onthophagus stellio Erichson 0·0 0·0 0·0 4·4 0·0 35·2 50·9 9·5Proagoderus tersidorsis d’Orbigny 0·0 0·0 0·0 0·0 8·5 39·2 45·3 7·1Hyalonthophagus alcyonides 0·0 0·0 0·0 2·9 11·3 34·9 40·4 10·5(D’Orbigny)

Gymnopleurus virens Erichson 0·0 0·0 0·0 8·2 5·3 40·8 23·6 22·1Copris amyntor Klug 0·0 0·0 0·0 5·1 3·3 41·0 23·7 28·8Drepanocerus laticollis Fahraeus 0·0 0·0 0·0 12·0 0·0 40·1 23·2 24·6Phalops smaragdinus Harold 0·0 4·0 0·0 6·8 2·9 36·0 26·1 24·3Euonthophagus carbonarius Klug 0·0 0·0 0·0 11·4 3·0 36·5 21·1 28·0Copris denticulatus Nguyen-Phung 0·0 0·0 0·0 4·7 2·0 37·4 28·9 27·0Onthophagus fimetarius Roth 0·0 0·0 1·2 8·0 10·4 37·5 18·6 24·2Caccobius nigritulus Klug 0·0 0·0 0·0 4·8 0·0 38·4 22·2 34·6Phalops flavocinctus Klug 0·0 0·0 0·0 6·1 7·9 40·5 28·1 17·5Oniticellus formosus Chevrolat 0·0 0·0 1·7 7·5 9·7 37·5 26·0 17·6Onthophagus pugionatus Fahraeus 0·0 0·0 0·0 2·7 3·5 53·6 24·8 15·5Onthophagus flavolimbatus d’Orbigny 0·0 0·0 0·0 7·2 0·0 47·9 27·7 17·3Onthophagus rasipennis d’Orbigny 0·0 0·0 0·0 7·7 0·0 46·2 26·7 19·4Catharsius philus Kolbe 0·0 0·0 0·0 11·5 2·5 45·9 22·2 18·0Sisyphus seminulum Gerstaecker 0·0 0·0 0·0 3·5 4·5 42·0 32·4 17·7Onthophagus ebenus Péringuey 0·0 0·0 0·0 3·4 4·4 40·9 31·6 19·7Tiniocellus spinipes (Roth) 0·0 0·0 0·0 0·0 4·2 39·4 30·4 26·0Heliocopris neptunus Boheman 0·0 0·0 0·0 0·0 3·5 42·6 30·9 23·1Neosisyphus fortuitus Péringuey 0·0 6·0 0·0 0·0 4·4 40·9 31·5 17·2Pedaria sp. 0·0 0·0 0·0 0·0 0·0 53·6 20·7 25·8Pedaria sp. 0·0 0·0 0·0 0·0 0·0 42·3 26·2 28·6Phalops ardea Klug 0·0 0·0 0·0 11·8 0·0 56·8 11·0 20·5Onthophagus depressus Harold 0·0 0·0 0·0 8·2 0·0 54·9 19·1 17·8Onthophagus bicavifrons d’Orbigny 0·0 0·0 0·0 12·0 0·0 48·1 13·9 26·0Onthophagus lamelliger Gerstaecker 0·0 0·0 0·0 15·4 0·0 44·0 15·3 25·4Phalops boschas Klug 0·0 0·0 0·0 14·6 0·0 45·5 18·8 21·1Neosisyphus calcaratus Klug 0·0 0·0 0·0 11·2 0·0 44·9 19·5 24·3Kheper nigroaeneus (Boheman) 0·0 0·0 0·0 9·9 9·6 19·8 28·6 32·1Copris mesacanthus (Harold) 0·0 0·0 0·0 4·5 11·6 27·0 26·0 30·8Sisyphus gory Harold 0·0 0·0 1·2 8·0 10·4 26·8 21·7 31·9Onthophagus aeruginosus Roth 0·0 0·0 0·0 9·9 14·6 28·2 26·1 21·3Euonthophagus sp. 0·0 0·0 4·0 4·3 5·6 34·7 20·1 31·3Catharsius sesostris Waterhouse 0·0 0·0 0·0 2·9 11·2 34·6 20·1 31·2Onitis fulgidus Klug 0·0 0·0 0·0 0·0 5·4 33·1 28·7 32·8

Table 2 continued on next page

Associations of southern African dung beetles 17

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

Table 2. continued from previous page

GroupSpecies

Percentage frequency in climatic region

WR BR Late SR Kala. Highv. II3d EC Trop.

F1 continuedHeteronitis castelnaui (Harold) 0·0 0·0 0·0 3·8 0·0 30·7 26·7 38·8Onitis mendax Gillet 0·0 0·0 0·0 0·0 0·0 27·8 32·2 40·1Garreta nitens (Olivier) 0·0 0·0 0·0 8·6 2·8 25·9 30·0 32·7Anachalcos convexus Boheman 0·0 0·0 0·0 9·2 0·0 27·5 31·9 31·4Onitis viridulus Boheman 0·0 0·0 0·0 1·3 6·6 30·7 35·6 25·8Onthophagus ?sugillatus Klug 0·0 0·0 0·0 7·6 0·0 30·2 35·0 27·2Kheper subaeneus (Harold) 0·0 0·0 0·0 3·8 0·0 30·5 35·4 30·3Hyalonthophagus alcedo (d’Orbigny) 0·0 0·0 0·0 6·2 0·0 49·3 0·0 44·5Caccobius ferrugineus Fahraeus 0·0 0·0 6·5 7·1 0·0 42·5 8·2 35·8Gymnopleurus humanus M’Leay 0·0 0·0 0·0 14·4 0·0 28·7 0·0 56·9Mean 0·1 0·4 1·9 9·8 4·6 34·5 25·3 23·5

F2Catharsisus tricornutus de Geer 9·8 12·7 0·0 3·0 13·3 20·5 21·4 19·3Digitonthophagus gazella (Fabricius) 4·2 20·6 6·0 8·0 8·5 20·4 18·6 13·7Euoniticellus intermedius (Reiche) 8·0 12·9 7·2 10·5 14·9 20·9 13·3 12·4Liatongus militaris (Castelnau) 0·0 17·0 1·4 3·0 19·3 26·8 20·7 11·8Drepanocerus kirbyi (Kirby) 0·0 16·6 0·0 1·6 18·3 31·5 21·9 10·2Oniticellus planatus Castelnau 0·0 23·5 0·0 2·1 20·0 20·6 19·1 14·8Onthophagus sp. nr sugillatus 0·0 22·7 5·5 5·2 23·3 24·0 11·9 7·4Onitis caffer Boheman 13·8 21·6 5·3 3·6 20·6 23·1 8·4 3·7Chironitis sp. nr scabrosus 0·0 15·2 7·9 12·3 24·0 19·7 5·7 15·1Onitis alexis Klug 0·0 9·3 9·1 14·6 16·7 16·4 16·3 17·7Chironitis hoplosternus (Harold) 10·1 4·7 14·6 10·6 20·6 31·8 0·0 7·7Drepanocerus patrizii (Boucomont) 0·0 7·1 3·7 8·0 15·6 48·2 0·0 17·4Phalops dregei Harold 0·0 7·3 11·4 14·6 16·1 41·6 0·0 9·0Sarophorus costatus (Fahraeus) 0·0 13·3 1·7 1·9 4·9 45·4 21·9 10·9Heliocopris hamadryas (Fabricius) 0·0 17·1 0·0 3·9 10·1 38·9 9·0 21·0Neosisyphus ruber Paschalidis 0·0 7·8 0·0 5·4 24·2 32·1 14·5 16·1Onthophagus cribripennis d’Orbigny 0·0 0·0 0·0 2·9 33·2 34·2 13·2 16·5Onitis tortuosus Houston 0·0 0·0 0·0 3·5 32·9 32·3 21·4 10·0Copris obesus Boheman 0·0 0·0 0·0 7·2 31·2 38·6 5·6 17·4Caccobius obtusus Fahraeus 0·0 11·0 0·0 0·0 32·4 37·6 14·5 4·5Cyptochirus ambiguus Kirby 0·0 19·0 0·0 1·8 32·6 28·7 16·6 1·3Copris macer Péringuey 0·0 0·0 0·0 0·0 22·4 52·0 10·0 15·6Onthophagus parumnotatus Fahraeus 0·0 0·0 0·0 0·0 27·3 48·3 7·0 17·4Garreta unicolor (Fahraeus) 0·0 0·0 0·0 0·0 17·5 54·1 23·5 4·9Mean 1·9 10·8 3·1 5·2 20·8 32·8 13·1 12·3

F3Onthophagus albipodex d’Orbigny 0·0 0·0 0·0 5·8 0·0 69·3 0·0 25·0Onthophagus quadrinodosus Fahraeus 0·0 0·0 0·0 0·0 0·0 67·0 12·9 20·1Onthophagus ?pullus Roth 0·0 0·0 0·0 0·0 0·0 76·2 14·7 9·2Mean 0·0 0·0 0·0 1·9 0·0 70·8 9·2 18·1

F4Copris fidius Olivier 0·0 30·1 0·0 0·0 5·5 51·4 9·9 3·1

Table 2 continued on next page

18 A. L. V. Davis

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

Table 2. continued from previous page

GroupSpecies

Percentage frequency in climatic region

WR BR Late SR Kala. Highv. II3d EC Trop.

F5Caccobius viridicollis Fahraeus 0·0 0·0 8·3 27·1 11·7 36·1 10·4 6·5Scarabaeus bohemani Harold 0·0 0·0 22·4 20·4 5·3 49·0 0·0 2·9Mean 0·0 0·0 15·4 23·8 8·5 42·6 5·2 4·7

GScarabaeus deludens zur Strassen 0·0 0·0 0·0 7·7 0·0 0·0 53·5 38·9Proagoderus bicallosus Klug 0·0 0·0 0·0 13·6 0·0 0·0 47·2 39·2Onthophagus lacustris Harold 0·0 0·0 0·0 0·0 0·0 0·0 54·6 45·4Onitis robustus Boheman 0·0 0·0 0·0 0·0 0·0 0·0 51·7 48·3Caccobius sp. 0·0 0·0 0·0 12·8 0·0 0·0 59·4 27·8Copris bootes Klug 0·0 0·0 0·0 0·0 0·0 0·0 65·8 34·2Proagoderus dives Harold 0·0 0·0 0·0 4·1 0·0 16·3 47·2 32·4Milichus apicalis Fahraeus 0·0 0·0 0·0 0·0 0·0 23·7 54·9 21·4Neosisyphus infuscatus Klug 0·0 0·0 0·0 3·7 9·5 14·7 51·0 21·2Metacatharsius exiguus Boheman 0·0 0·0 10·2 22·2 0·0 0·0 51·5 16·1Onitis obscurus Lansberge 0·0 0·0 0·0 31·6 0·0 0·0 0·0 68·4Onitis reichei Lansberge 0·0 0·0 0·0 11·0 0·0 0·0 25·5 63·5Onitis westermanni Lansberge 0·0 0·0 0·0 13·2 0·0 0·0 15·3 71·5Onthophagus plebejus Klug 0·0 0·0 0·0 0·0 0·0 0·0 39·1 60·9Proagoderus rectefurcatus Fairmaire 0·0 0·0 0·0 0·0 0·0 0·0 34·9 65·1Copris sp. nr macer 0·0 0·0 0·0 10·0 0·0 20·0 23·2 46·9Catharsius heros Boheman 0·0 0·0 8·9 19·5 0·0 0·0 22·5 49·1Kheper cupreus (Castelnau) 0·0 0·0 0·0 29·0 0·0 0·0 22·3 48·7Onthophagus interstitialis Fahraeus 0·0 0·0 2·4 0·0 36·5 10·3 41·6 9·3Scarabaeus funebris (Boheman) 0·0 0·0 18·5 10·1 26·1 0·0 23·4 21·9Mean 0·0 0·0 2·0 9·4 3·6 4·3 39·2 41·5

HScarabaeus viator Péringuey 17·5 32·2 50·3 0·0 0·0 0·0 0·0 0·0Euonthophagus vicarius Péringuey 0·0 35·4 64·6 0·0 0·0 0·0 0·0 0·0Chironitis audens (Péringuey) 0·0 22·2 57·8 6·3 0·0 0·0 0·0 13·7Phalops euplynes Bates 4·6 12·7 55·1 14·4 6·2 0·0 0·0 6·9Gymnopleurus sericatus Erichson 6·3 11·5 60·1 13·1 4·2 0·0 0·0 4·7Metacatharsius marani Balthasar 10·4 0·0 74·8 10·9 0·0 0·0 0·0 3·9Onthophagus probus Péringuey 17·1 0·0 73·9 9·0 0·0 0·0 0·0 0·0Gymnopleurus asperrimus Felsche 0·0 0·0 100·0 0·0 0·0 0·0 0·0 0·0Gymnopleurus andreaei Ferreira 0·0 0·0 100·0 0·0 0·0 0·0 0·0 0·0Gymnopleurus aenescens Wiedeman 0·0 0·0 4·3 60·4 0·0 18·6 0·0 16·8Onthophagus verticalus Fahraeus 0·0 0·0 6·3 41·1 0·0 27·4 7·9 17·3Onitis obenbergeri Balthasar 0·0 0·0 0·0 47·9 0·0 38·3 0·0 13·8Metacatharsius opacus Waterhouse 0·0 0·0 0·0 42·3 0·0 0·0 13·1 44·7Copris laioides Boucomont 0·0 0·0 0·0 58·1 0·0 0·0 0·0 41·9Heliocopris atropos Boheman 0·0 0·0 0·0 57·4 0·0 0·0 19·0 23·7Pachylomerus opaca Lansberge 0·0 0·0 51·2 20·9 0·0 27·9 0·0 0·0Scarabaeus satyrus (Boheman) 14·1 6·5 37·2 22·1 0·0 14·8 0·0 5·3Scarabaeus ambiguus (Boheman) 0·0 0·0 25·6 20·9 27·1 13·9 0·0 12·6Phalops wittei Harold 0·0 0·0 31·6 34·4 15·7 8·1 0·0 10·2

Table 2 continued on next page

Associations of southern African dung beetles 19

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

Clusters of similar geographical distribution from this serial climatic/geographical analysis were assessed for validity by comparison with the resultsfrom a second analysis conducted solely on geographical distribution. Classi-fication of the geographical distribution of the 220 species was used to define foursubgroups of species whose geographical distribution matrices were classifiedseparately using the same clustering methods as in the climatic/geographicalanalysis. The results are not illustrated. However, on the dendrograms con-structed from the first analysis (Figs 2, 5, 7, 8), core species are marked with anasterisk if they formed similar clusters to those shown in the second analysis.Species which change in association between the two analyses are marked witha cross. This assessment allows spurious groupings and species with outlierdistributions to be identified.

As collecting intensity on different soil, vegetation and dung types variedregionally (Table 1), an assessment was made of its influence on distributionalresults for the 220 species (Figs 2, 5, 7, 8). In each of the 25 climatic regions ofsouthern Africa (Walter & Lieth, 1964), the numbers of collections for eachspecies were summed for fine-grained vs. coarse-grained (sand) soils, for pasture/grassland vs. shrubland/open woodland, and for ruminant vs. non-ruminantherbivore dung types. The overall number of collections for each species on eachhabitat variable were divided by the total number of collections made in theclimatic regions from which that species was collected. For each pair of variables,these numbers were converted to percentages. Where possible, these standardizedresults for collecting bias were compared with quantitative results for habitatassociations.

Table 2. continued from previous page

GroupSpecies

Percentage frequency in climatic region

WR BR Late SR Kala. Highv. II3d EC Trop.

H continuedScarabaeus flavicornis (Boheman) 0·0 0·0 30·0 39·2 0·0 26·1 0·0 4·7Copris cassius Péringuey 0·0 0·0 24·5 49·7 5·0 15·3 0·0 5·5Kheper prodigiosus (Erichson) 0·0 0·0 26·2 42·9 0·0 0·0 0·0 30·9Copris gracilis Waterhouse 0·0 0·0 32·3 42·3 0·0 0·0 0·0 25·4Proagoderus sappharinus Péringuey 0·0 0·0 33·0 35·9 0·0 0·0 0·0 31·1Copris subsidens Péinguey 0·0 0·0 41·1 37·4 0·0 0·0 0·0 21·6Catharsius ulysses Boheman 0·0 0·0 20·6 45·0 11·7 0·0 0·0 22·7Onthophagus quadraticeps Harold 0·0 0·0 24·5 49·1 0·0 0·0 10·3 16·1Onthophagus sp. nr variegatus 0·0 0·0 26·9 64·6 0·0 0·0 0·0 8·5Catharsius calaharicus Kolbe 0·0 0·0 37·0 55·1 0·0 0·0 0·0 7·9Scarabaeus damarensis Janssens 0·0 0·0 45·7 49·8 0·0 0·0 0·0 4·5Onthophagus sp. 0·0 0·0 46·1 41·9 0·0 0·0 0·0 12·1Copris cornifrons Boheman 0·0 0·0 52·2 42·7 0·0 0·0 0·0 5·1Metacatharsius sp. 0·0 0·0 61·6 38·4 0·0 0·0 0·0 0·0Scarabaeus proboscideus Guérin 12·6 0·0 36·3 46·3 0·0 0·0 0·0 4·8Mean 2·4 3·5 39·1 33·5 2·1 5·6 1·5 12·2

WR, winter rainfall; BR, bimodal rainfall; Late SR, late summer rainfall; Kala., Kalahari; Highv.,highveld; EC, east coast; Trop, north-east subtropical/tropical—see Fig. 1.

20 A. L. V. Davis

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

Biogeographical relationships were assessed for all 582 species of dung beetleswhich were recorded in southern Africa by the DBRU. Pan-African distributiondata were drawn from the reference collection of the former DBRU, Ferreira(1972, 1978), Cambefort (1982, 1991a), Scholtz & Howden (1987a, b), Howden& Scholtz (1987), Nguyen-Phung (1988a, b, c) and Nguyen-Phung & Cambefort(1986, 1987). Biogeographical regions are as in Davis & Dewhurst (1993) exceptthat southern Africa is defined as lying south of 15)S instead of 20)S. The sixdifferent biogeographical distribution patterns shown by the species are definedin Table 3.

Cross-climatic variation in biogeographical composition of the dung beetlefauna was assessed both for the total 582 species recorded and for the 220 speciesshowing the greatest frequency in collections. Within each of the eight climaticregions, the numbers of species showing each biogeographical distributionpattern were converted to percentage representation to remove species/area bias.

Cross-climatic variation in dung beetle community structure was assessedusing data for the entire 582 species recorded. The numbers of species recordedin each of the 25 climatic regions (Walter & Lieth, 1964) were divided amongstthe nine tribes of dung beetles. These numbers were converted to percentage

Table 3. Biogeographical composition of the total 582 species of dung beetles recorded and the 220 speciesrecorded most frequently in eight climatic regions of southern Africa

Biogeographicaldistributionpattern*

Percentage biogeographical composition of specieswithin each climatic region

Overall %compositionin southern

AfricaWinterrainfall

Bimodalrainfall

Latesummerrainfall

Mid-summer rainfall

Kalahari Highveld II3dEastcoast

Subtropical/tropical

220 species1 80·6 71·2 72·9 48·1 59·1 45·9 40·7 44·3 55·02 3·2 6·8 8·2 21·8 13·6 21·8 24·1 24·7 20·03 12·9 16·9 10·6 16·5 19·1 19·5 22·1 18·4 15·04 3·2 3·4 5·9 11·3 7·3 9·8 10·3 10·3 8·25 0·0 0·0 2·4 1·5 0·0 1·5 1·4 1·1 0·96 0·0 1·7 0·0 0·8 0·9 1·5 1·4 1·1 0·9No.species 31 59 85 133 110 133 145 174 220

582 species1 90·5 79·1 77·6 60·3 69·9 58·4 55·5 57·6 71·82 1·6 4·7 6·0 16·3 9·8 17·3 19·7 17·7 11·73 6·3 11·6 7·8 12·0 13·7 13·4 15·1 11·1 7·44 1·6 2·3 4·3 8·2 5·9 7·4 6·7 7·6 5·05 0·0 1·2 4·3 2·2 0·0 1·0 0·8 2·2 1·56 0·0 1·2 0·0 1·1 0·7 2·5 2·1 3·8 2·6No.species 63 86 116 184 151 202 238 368 582

*1, Recorded only in southern Africa south of latitude 15)S. 2, Recorded in southern, southern central andeast Africa. 3, Pan-African distribution, east, west/northern central, southern central, southern and,infrequently, west central Africa. 4, Recorded in southern and southern central Africa. 5, Recorded insouthern, southern central and west central Africa. 6, Recorded in southern, southern central, west centraland east Africa.

Associations of southern African dung beetles 21

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

22 A. L. V. Davis

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

tribal composition within each climatic region to remove species/area bias. Meanpercentage occurrence for each tribe was calculated for each of the four majorclimatic regions of southern Africa (Davis, 1987). One-way analysis of variancewas used to test for statistical significance of cross-climatic differences in tribalcomposition.

Results and discussion

The dung beetle fauna of southern Africa shows clear climatic and biogeographi-cal associations. Increasing endemism to the south-west in both dung beetles(Table 3) and Coleoptera as a whole (Endrödi-Younga, 1978) is associatedespecially with arid late summer, winter and bimodal rainfall climate types.Geographical groups of southern African endemics are centred to the south-west(Figs 2–4) and also on the south-eastern highlands and the subtropical east coast(Figs 4–6). However, most species groups centred to the north-east in themid-summer rainfall region comprise primarily widespread elements with broadtropical biogeographical associations (Figs 6–8). Some widespread speciespenetrate into the south-western climate types, chiefly across the highveld andalong the moist southern coastline. The numbers of widespread and highveldspecies decline sharply to the west of George (34)00*S 22)15*E) (Figs 4, 6).George is situated at the westerly limit of climate Type V (Walter & Lieth, 1964)in which substantial bimodal rain falls throughout the year. Beyond George,there is increasing emphasis on the spring peak in rainfall of the bimodal climateType IV(V). Most of the widespread, summer rainfall species, which penetratebeyond George to the Western Cape, are active in the dry summer (Davis, 1987,1993).

Increasing endemism to the arid west and cooler south-west is paralleled byreduced species richness (Table 3) and changing community structure (Table 4;Davis, 1994c). Functional complexity of the dung beetle fauna is reduced to thesouth-west (Davis, 1994c) by the virtual loss of endocoprids (some Oniticellini),which breed within dung in situ, and by the decline or loss of kleptocoprid species(some Onthophagini) which use dung buried by other beetles. TunnellingCoprinae (Dichotomiini to Oniticellini) manifest few cross-climatic changes incommunity structure except for reduced percentage occurrence of Onthophaginito the south-west. This tribe includes many kleptocoprids in communities to the

Fig. 2. Dendrogram showing percentage geographical overlap between species of the western climaticspecialist group defined from Table 2. Species marked with an asterisk or a cross show, respectively,similar or different cluster associations using different methods for analysing spatial distribution.*Superscripted numbers represent the biogeographical distribution pattern shown by each species.Numbers in box brackets are doubtful distribution patterns. **Standardized percentage of collection biasto sand as opposed to finer-grained soils, numbers in brackets are percentage occurences of specieson sand in Gauteng from quantitative data (Davis, 1996), S, sand, C, clay, G, soil generalist,asterisk=statistically significant relationship (P<0·05); **standardized percentage of collection bias topasture/grassland as opposed to shrubland/open woodland, numbers in brackets are percentageoccurences of species in pasture/grassland in the Western Cape and Gauteng from quantitative data(Davis, 1993, 1996), P, pasture; S, shrubland; OW, open woodland; G, vegetation generalist, forest=>75%of collections of species made in forest; **standardized percentage of collection bias to ruminant asopposed to non-ruminant dung, numbers in brackets are percentage occurences of species on ruminantdung in Gauteng from quantitative data (Davis, 1994b).

Associations of southern African dung beetles 23

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

24 A. L. V. Davis

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

north-east. Increased representation by ball-rolling Scarabaeinae to the westand south-west (Table 4) reflects the southern African centres of distribution inboth the Canthonini (Scholtz & Howden, 1987a, b; Howden & Scholtz, 1987)and the Scarabaeini (Mostert & Scholtz, 1986). Sisyphini, and to a lesser extent,Gymnopleurini, show an opposite trend.

There is also increased prominence of Gondwanaland Coleoptera to thesouth-west and these are thought to be the oldest faunal members (Endrödi-Younga, 1978). In Gondwanaland dung beetles (Halffter & Matthews, 1966;Halffter, 1974), increased prominence to the south-west is true of the Canthoninibut not of the Dichotomiini, which are centred in the summer rainfall tropics(Ferreira, 1972; Davis, 1993) south of the equator (Cambefort, 1991b) with ataxonomic disjunction between tropical and winter/bimodal rainfall elements(Davis, 1993). Southern Gondwanaland taxa may have a south temperate(palaeantarctic) origin (Halffter, 1974; Endrödi-Younga, 1978) with tropicalrelicts resulting from the 15–18) northward drift of the African continent fromthe late Cretaceous to the Miocene (Axelrod & Raven, 1978). Alternatively,tropical Gondwanaland taxa may have entered Africa via a tropical west Africanroute (Halffter, 1974). There is circumstantial support for Cambefort’s competi-tive exclusion hypothesis (1991b), which explains the distribution of AfricanCanthonini, since Anachalcos is the only widespread tropical canthonine genuswhereas Cape canthonines are maximized to cool seasonal conditions (Davis,1993) which reduces overlap with other Scarabaeinae. Survival and radiation oftropical Dichotomiini may result from dietary, behavioural (Cambefort, 1991b),size (Davis, 1990) and distributional specializations.

Endrödi-Younga (1978) has defined seven biogeographical regions for south-ern Africa based on the distribution of ground Coleoptera, mainly Tenebrionidae.The present study on dung beetles partly supports this zonation although somemodifications are proposed. These are based on species distribution of majordendrogram clusters (Figs 2–8, Table 5) with minor clusters ignored. Members ofthe western (Fig. 2) and eastern climatic specialists (Fig. 5) mostly form similarclusters in both the climatic/geographical and the purely geographical analyses.However, there are greater differences between clusters defined from thesubtropical/tropical (Fig. 7) and temperate to tropical generalists (Fig. 8) by thetwo analyses. Even so, most species added to clusters in the climatic/geographicalanalysis (7C, 7D, 8A) generally comprise blocks of species from no more thanone or two different clusters in the purely geographical analysis.

The winter and bimodal rainfall cluster (2B) is primarily restricted to sand onthe western and southern coastline of South Africa (Figs 2, 3, Table 5). Itsdistribution largely conforms to the Cape Zone (Endrödi-Younga, 1978) exceptthat it includes Namaqualand but excludes the east coastline beyond EastLondon (33)01*S, 27)58*E). A few species occupy the entire winter and bimodalrainfall regions, Copris capensis, Epirinus flagellatus. However, most species arerestricted to subregional distribution patterns. One subgroup is associated with

Fig. 3. Geographical distribution of species clusters of dung beetles defined from Fig. 2 (the numbers ofspecies occurring in each 4) square of latitude and longitude are size-coded: largest size=>75% of speciescomprising each dendrogram cluster, second largest=50–75% of species, second smallest=25–50% ofspecies, smallest size=<25% of species comprising each dendrogram cluster).

Associations of southern African dung beetles 25

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

Fig.4.Geographicaldistributionofspeciesclustersofdung

beetlesdefinedfrom

Figs2and5(seenotesinlegend

toFig.3

forkey

tospeciesnumbers).

26 A. L. V. Davis

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

Fig.5.Dendrogramshowingpercentagegeographicaloverlapbetweenspeciesoftheeasternclimaticspecialistgroupdefinedfrom

Table2(*, **seenotesinlegend

toFig.2).

Associations of southern African dung beetles 27

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

Fig.6.Geographicaldistributionofspeciesclustersofdung

beetlesdefinedfrom

Figs5,7and8(seenotesinlegend

toFig.3

for

keytospeciesnumbers).

28 A. L. V. Davis

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

Fig.7.Dendrogramshowingpercentagegeographicaloverlapbetweenspeciesofthesubtropical/tropicalclimaticspecialist

groupdefinedfrom

Table2(*,**seenotesinlegend

toFig.2).

Associations of southern African dung beetles 29

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

Fig.8.Dendrogramshowingpercentagegeographicaloverlapbetweenspeciesofthetemperatetotropicalclimaticgeneralist

groupdefinedfrom

Table2(*,**seenotesinlegend

toFig.2).

30 A. L. V. Davis

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

the dry west coastal sands of South Africa. Several species occur along the entirecoastline, Scarabaeus rugosus, Kheper bonellii M’Leay. Others appear in themoister regions to the south, Copris anceus, Epirinus scrobiculatus Harold,E. granulatus Scholtz & Howden, Neosisyphus quadricollis Gory. Anothersubgroup extends from the south-western coast of the Western Cape along thesouthern coastline to the Eastern Cape, Sarophorus tuberculatus (Castelnau),Onthophagus giraffa, O. minutus, with further species restricted to the southerncoastline, Copris jacchus (Fabricius), Onitis minutus Lansberge, Scarabaeussavignyi M’Leay. A number of species also occupy restricted or wider distri-butions in the south-west of the Western Cape, Onthophagus immundusPéringuey, Epirinus comosus Péringuey, Scarabaeus spretus zur Strassen. Finally,small numbers of species occupy arid ranges in Namaqualand, Scarabaeusalienus Péringuey, Byrrhidium namakwensis Scholtz & Howden, B. ovale Harold,or ranges restricted to the central Eastern Cape, Scarabaeus ambulans, Chironitissp., Epirinus striatus Scholtz & Howden, at the limits, respectively, of the winterand bimodal rainfall regions.

Cluster 2A comprises a loose assemblage of species ranging from the winterand bimodal rainfall regions across the arid karoo into the late summer rainfallregion (Figs 2, 3, Table 5). These species comprise both spring-active elements,Epirinus aeneus, Onthophagus cameloides (Davis, 1993), which have probablyexpanded their ranges to the north-east, and summer-active elements, Chironitisscabrosus, Onitis aygulus, which have expanded their ranges to the south-west.There are also some karoo-centred elements, Scarabaeus viator, Euonthophagusvicarius, Onthophagus albipennis Péringuey, O. suturalis Péringuey. This range

Table 4. Percentage subfamily and tribal composition of the dung beetle fauna in four major climaticregions of southern Africa

Subfamily/tribe

Mean percentage species composition&S.D.in climate types comprising each climatic region

Resul;ts ofANOVA (F)(d.f.=3,21)

Winterrainfall

Bimodalrainfall

Late summerrainfall

Mid-summerrainfall

SubfamilyScarabaeinae 45·6&17·3b 22·5&2·2a 26·7&7·9a 20·7&3·4a 8·09***Coprinae 54·4&17·3a 77·5&2·2b 73·3&7·9b 79·3&3·4b 8·09***TribesScarabaeini 28·0&15·5b 4·7&2·1a 15·8&7·5ab 7·1&5·0a 6·99**Gymnopleurini 0·9&1·7a 2·8&1·3ab 7·2&1·7b 4·3&3·1ab 4·89**Sisyphini 1·3&1·6a 6·1&4·7ab 1·1&1·4a 7·4&3·4b 6·72**Canthonini 15·4&5·6c 8·9&3·6bc 2·6&1·3ab 1·9&1·5a 21·99***Dichotomiini 4·0&2·2 5·6&2·4 4·5&2·6 5·5&2·5 0·48Coprini 13·3&2·6 9·9&4·4 12·6&5·6 14·9&2·2 1·48Onitini 12·4&6·9 18·8&4·8 16·3&4·0 13·1&4·0 1·43Onthophagini 15·7&8·0a 28·5&3·4b 35·5&2·2bc 38·8&4·7c 21·37***Oniticellini 9·0&5·2ab 14·6&3·8b 4·4&3·1a 6·9&3·1a 4·38*Total number ofspecies in region 63 86 116 517

*P<0·05, **P<0·01, ***P<0·001. In each line, values followed by a different letter differed significantly(P<0·05, Tukey’s HSD).

Associations of southern African dung beetles 31

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

largely equates to the southern part of the central arid zone (Endrödi-Younga,1978).

Cluster 2C is centred on the Karoo and arid regions of Namibia (Figs 2, 3,Table 5). This region equates to the south-western zone plus the southernand western parts of the central arid zone (Endrödi-Younga, 1978). It alsoequates to the arid late summer rainfall region where 69% of observations weremade. Various species extend throughout the entire Karoo/Namib system,Chironitis audens, Phalops euplynes, Gymnopleurus sericatus, although blueand green varieties of G. sericatus appear in the southern Karoo in contrastto the more widespread copper-red variety. Other distribution patternsinclude, south-western Angola to the Northern Cape, Gymnopleurus andreaei,Onthophagus semiflavus Boheman, and southern Namibia to the Karoo,Onthophagus probus, O. ochropygus d’Orbigny. The relict species, Gymnopleurusasperrimus, is centred on the Namibian/Northern Cape border zone whereas

Table 5. Climatic distributions of 14 major geographical species groups defined from dendrograms (Figs2, 5, 7, 8)

Speciesclusters

Mean standardized percentage climatic distribution of species&S.D.

Numberof

speciesWinterrainfall

Bimodalrainfall

Latesummerrainfall

Mid-summer rainfall

Kalahari Highveld II3dEastcoast

Subtropical/tropical

2A 34·8 29·4 31·6 1·1 3·0 0·0 0·0 0·0 6&28·1 &9·5 &19·8 &2·5 &5·6

2B 75·8 19·5 1·0 0·5 3·2 0·0 0·0 0·0 8&23·3 &18·4 &2·8 &1·4 &4·3

2C 6·6 6·6 69·9 9·5 1·3 1·8 0·0 4·3 8&6·3 &7·7 &20·6 &7·0 &2·3 &4·9 &4·3

2D 0·0 0·0 24·5 45·9 0·0 0·0 0·0 29·6 3&17·7 &8·8 &8·8

2E 0·0 0·0 13·7 46·8 4·8 7·5 5·0 22·1 8&11·4 &13·0 &9·2 &10·3 &7·0 &10·7

2F 3·8 0·0 38·6 41·1 2·0 6·0 0·8 7·9 13&10·0 &11·3 &8·9 &4·3 &10·0 &2·8 &8·1

5A 0·0 0·0 0·0 3·7 0·0 1·5 18·4 76·4 11&5·4 &4·7 &23·2 &25·4

5B 0·0 0·0 0·8 5·6 0·0 2·2 37·7 53·7 11&2·6 &9·8 &6·8 &23·7 &25·4

5D 0·0 0·0 0·0 0·7 0·5 0·0 95·1 3·7 13&2·6 &1·7 &5·7 &5·4

5G 2·2 20·1 3·6 0·3 50·6 15·3 6·6 1·4 27&5·2 &16·7 &6·5 &1·0 &17·6 &16·5 &9.4 &2·5

7A 0·0 0·0 6·5 29·8 0·0 19·8 28·6 15·3 5&4·8 &5·3 &5·3 &3·8 &3·6

7C 0·0 0·0 3·4 14·4 3·9 29·2 20·8 28·3 13&3·1 &7·5 &4·6 &5·4 &9·8 &6·0

7D 0·2 0·1 0·1 6·0 5·5 39·1 25·4 23·7 34&1·2 &0·7 &0·4 &5·0 &6·3 &9·7 &6·4 &5·8

8A 2·2 15·0 2·8 5·0 19·7 27·4 15·9 11·9 16&4·2 &6·0 &3·3 &4·1 &8·2 &8·0 &5·0 &5·4

32 A. L. V. Davis

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

Phalops densegranosus d’Orbigny and Onthophagus phalopsides Frey haveonly been recorded in arid climate type III2 at the edge of the Namib Desert(latitudes 20)–25)S). Despite some regionalism, the composite parts of theKaroo/Namib system probably form a distinct biogeographical entity in terms ofdung beetles.

Although the south-western zone (Endrödi-Younga, 1978) holds good forTenebrionidae which have diversified in arid climates, it is less valid in terms ofdung beetles which have limited diversification in deserts. There is a flightlessgroup of related species (formerly the genus Pachysoma, now synonymized withScarabaeus (Mostert & Holm, 1982) which is endemic to the arid west coastalsands from the Western Cape to Swakopmund (22)33*S, 14)35*E) in Namibia.However, cluster analysis (Davis, 1990) of numerical taxonomic data for thesespecies (Holm & Scholtz, 1979) shows that there are three distinct taxonomicgroups. Essentially, these are centred on the south-west of the Western Cape(winter rainfall), Namaqualand/southern Namibia (winter/summer rainfall), andsouthern Namibia (summer rainfall).

Cluster 2D occurs mainly on finer-grained soils in the moister northernNamibia limited by arid climate to the west/south-west and by lower-lyingKalahari sands to the east/south-east (Figs 2, 3, Table 5). Other species showinga north Namibian distribution include, Onitis mnizechi Lansberge, O. obscurus,Phalops prasinus Erichson, P. pyroides d’Orbigny. Some of these species showa distribution extending into Angola, O. obscurus, P. prasinus. A few speciesoccurring as rarities in Etosha National Park, Neosisyphus macroruber,Proagoderus lanista, show a disjunct distribution from their principal range,respectively, in the Northern Cape and the highveld, and on the highveldsouthwards to the Eastern Cape. A similar disjunct distribution is shown byScarabaeus ambiguus and Catharsius ulysses (cluster 2E), which are abundantat the edge of the Kalahari both in northern Namibia and in South Africa.These northern Namibian outliers may be relicts of Pleistocene northwardsexpansion.

The biogeographical status of the Kalahari region is debatable. It may be thenorth-eastern part of the central arid zone (Endrödi-Younga, 1978) or a poorlydifferentiated subregion of the summer rainfall, savanna region (Holm &Scholtz, 1983, 1984). Although it cannot be regarded as a distinct biogeographi-cal region (Barker, 1993), there is a definite cluster (2F) of sand specialist dungbeetle species centred to the south-west of the Kalahari in the Northern Capeand south-western Botswana (Figs 2, 4, Table 5). This suggests that the aridsouth-west does act as a biogeographical focal point combining the selectivefactors of climate and soil type. Furthermore, this centring to the south-west hasbeen noted in other families of Coleoptera including, Buprestidae, Carabidaeand Trogidae (Holm & Scholtz, 1983). Although zoogeographical affinities ofthese families are to the north-east (Holm & Scholtz, 1984), at least one groupof dung beetles has speciated between the Kalahari (Scarabaeus flavicornis),southern Namib (S. fritschi Harold) and Namaqualand/Western Cape regions(S. canaliculatus Fairmaire) (Davis, 1993). Similar observations have been madefor south-western Kalahari Tenebrionidae whose ancestral relationships arelargely to the north-east with a minority showing south-westerly Namaqualandaffinities (Penrith, 1984). Endemicity is low, as in grasshoppers (Acrididae)

Associations of southern African dung beetles 33

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

(Barker, 1993), since most of the Kalahari-centred dung beetles show distri-butions outside of the Kalahari as defined by Barker (1993). Extended distri-butions occur, especially, in sand outliers in Gauteng and Northern Province,Pachylomerus opaca, Copris cassius, Proagoderus sappharinus; southwardsthrough Namaqualand along the west coast of the Western Cape, Scarabaeusproboscideus,Metacatharsius latifrons; and northwards into Angola, Proagoderussappharinus var., Copris cassius ssp. angolensis Ferreira.

Clusters 2E and 7A are loose groupings of species which each occur in threeor four different clusters in the purely geographical analysis. Their circum-Kalahari or northern KwaZulu/Natal centres of distribution (Table 5) reflect abias to greater frequency on tropical sands. Most species show a relatively broaddistribution in the mid-summer rainfall region whereas some with more wide-spread biogeographical affiliations are found at the northernmost limits of themega-Kalahari sands (Thomas, 1988) in Zaıre, Pachylomerus femoralis, Kheperlamarcki (Walter, 1978).

The highveld/bimodal rainfall (5G) and east coast (5D) clusters (Figs 4–6,Table 5) are centred, respectively, in the eastern part of the mountain zone andthe south-eastern coastal region of the tropical zone of Endrödi-Younga (1978).Several highveld species are widespread beyond the regional centre from theNorthern Province/Mapumalanga highlands to climate Type V in the bimodalrainfall region, Euoniticellus africanus, Onthophagus asperulus. Other speciesoccurring the entire length of the region are either distributed along the highrainfall zone to the east of Lesotho, Sisyphus costatus, Litocopris simplex, orlargely distributed in the drier regions to the west of Lesotho, Copris antares,Gymnopleurus leei. Further species are restricted to the summer rainfall high-lands occurring from Northern Province southwards beyond Lesotho, Coprisjacchoides, C. corniger. Elements from probable northwards expansion of theCape canthonine fauna occur in the extreme highland regions of the KwaZulu/Natal Drakensberg and the Mapumalanga highlands, Epirinus asper Péringuey,E. mucrodentatus Scholtz & Howden, and at lower altitudes in more southerlylatitudes, Epirinus obtusus. Few highveld species occurred in the easternhighlands of Zimbabwe where endemism was limited to four species, Onitisautumnalis Davis, Heliocopris marshalli Péringuey, Xinidium davisi Cambefortand Copris sp. nr integer. The east coast endemics comprise mainly sandspecialists with a few clay specialists, Onthophagus beiranus, Kheper clericus(Boheman) (Doube, 1991). Some of these species are distributed from southernKwaZulu/Natal to central northern Moçambique, sand: Copris puncticollis,Proagoderus aciculatus, clay: Onthophagus beiranus. However, most arecentred on the high rainfall coastline of northern KwaZulu/Natal and southernMoçambique where there is appreciable overlap between species of the temperateto tropical (5A, 5B, 7A, 7C, 7D, 8A) and highveld (5G) clusters. Species of theeast coast cluster show tropical or highveld affinities. For instance, Onthophagusjuvencus, is a pan-African tropical element and the dune forest endemic,Scarabaeus bornemisszai zur Strassen, is closely related to a highveld species,Scarabaeus caffer (Boheman) (zur Strassen, 1980). The presence of Coprisinhalatus Quedenfeldt ssp. santaluciae and Scarabaeus galenus var. in theSt Lucia (27)45*S 32)30*E) region also indicate recent links with the dry sandveldof the interior.

34 A. L. V. Davis

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

Cluster 5B shows a widespread but fragmented distribution throughout themid-summer rainfall region (Fig. 6). Collections of these species were madeprimarily in game reserves (71·3%, n=171) with an extreme bias to greaterfrequency on non-ruminant dung (Fig. 5). Of the 28·8% of collections of thesespecies made outside of reserves, 12·1% (n=29) were made on non-ruminantdung and 16·7% (n=40) on other food types. This distribution reflects thefragmented range of non-ruminant mammals.

Clusters 5A, 5B, 7C, 7D and 8A show primarily (78·8%) broad tropicalbiogeographical affiliations (Figs 4–8, Table 5). Most groups are centred on thetrans-Botswana transitional area and the tropical subregion of Endrödi-Younga(1978) without any obvious faunal separation between the two regions. Cluster8A comprises species showing pan-southern African or pan-eastern southernAfrican distributions which are considered to be mostly recent elements. There isa reduction in the size of ranges from that occupied by cluster 8A to those of thethe pan mid-summer rainfall region (7C) and game reserve (5B) clusters. Afurther reduction in range is shown by the largest cluster of species (7D) whichoccupies the moist eastern part of the mid-summer rainfall region and by tropicalspecies (5A) which are largely centred on climate type II2B (45·8% of obser-vations) in eastern Zimbabwe and central Moçambique. Thus, in widespreadspecies, there is a regression in distribution from tolerance of mild temperateconditions to restriction to moist tropical regions.

The biogeographical analysis suggests that southern Africa comprises sixprincipal centres which focus regional distributions. These are, the south-westerly winter and bimodal rainfall zone comprising up to five subzones, thewestern arid zone of the Namib, Namibia and the Karoo, the south-westernKalahari arid zone, the south-eastern highland zone, the east coastal zone andthe warm temperate to tropical zone in the north and north-east. Some of thesezones are centres of generic endemism which is concentrated along the coastalregions and at high altitude in the highlands. Endemic Gondwanaland generaoccur in the winter and bimodal rainfall regions, Dichotomiini: Macroderes(Ferreira, 1972), Canthonini: Aphengoecus, Byrrhidium, Outenikwanus (Scholtz &Howden, 1987b). Others occur in the Drakensberg, Canthonini: Peckolus(Scholtz & Howden, 1987b) or in the northern highveld and eastern highlandsof Zimbabwe, Dichotomiini: Xinidium (Cambefort, 1985). Endemic onitinegenera occur on the subtropical east coast associated with non-ruminant dung,Anonychonitis in Hluhluwe and Umfolozi Game Reserves, Tropidonitis innorth KwaZulu/Natal coastal sandveld. Endemism in the scarabaeine genus,Drepanopodus, is centred around the south-western Kalahari, Namaqualand.

Biogeographical associations of the dung beetle fauna have probably beenshaped principally by the reduced influence of the easterlies and increasedinfluence of the westerlies since the Pliocene &3 My ago (Deacon, 1983).Pleistocene climatic oscillation has been responsible for waves of penetration oftemperate elements to the north and tropical elements to the south (Endrödi-Younga, 1978). However, winter rainfall climate is not thought to have evershifted more than 1) of latitude further north than at present (Deacon et al.,1992). Northern expansion has occurred particularly along the cooler easternhighlands and the coastline with outlier relicts of cooler Pleistocene climateoccurring in the eastern Zimbabwe highlands and the northen Namibian

Associations of southern African dung beetles 35

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

highveld. Southwards faunal expansion in the present interglacial, dating from10 000 years, has probably been enhanced by recent fragmentation of the naturalshrubland habitat in the winter rainfall region (Davis, 1993). Biogeographicalgroup distributions from the present analysis (clusters 2D, 7C, 7D) suggest thatthe arid west and the central Kalahari sandveld basin comprise barriers tosouthward movement by all but dry-tolerant and psammophile species. Theeastern highveld is less of a barrier but has clearly filtered out distinctly tropicalelements. Northward movement is presently limited by the Karoo/Namib,Kalahari and tropical northern lowlands.

AcknowledgmentsI thank Dr George Bornemissza, Dr Bernard Doube, Dr Jane Wright and myother colleagues at the Australian CSIRO Dung Beetle Research Unit whoseefforts were responsible for the reference collection on which this study is based.The collection is now part of the National Collection of Insects, Pretoria, SouthAfrica. Dr John Hoffmann kindly criticized the manuscript.

ReferencesA, D.I. & R, P.H. (1978) Late Cretaceous and Tertiary vegetation history of Africa In:

Biogeography and Ecology of Southern Africa (Eds M.J.A. Werger and A.C. van Bruggen). Junk, TheHague.

B, J.F. (1993) Distribution patterns of Kalahari Desert Acridoidea (Orthoptera: Caelifera). Afr.Entomol. 1, 81–91.

C, Y. (1982) Les coléoptères Scarabaeidae s. str. de Lamto (Côte d’Ivoire): structure despeuplements et rôle dans l’écosystème. Annls Soc. Entomol. Fr. (N.S.) 18, 433–459.

C, Y. (1985) Révision du genre Xinidium Harold (Coleoptera, Scarabaeidae). Annls Soc.Entomol. Fr. (N.S.) 21, 95–102.

C, Y. (1991a) Dung beetles in tropical savannas. In: Dung Beetle Ecology (Eds I. Hanski and Y.Cambefort). Princeton University Press, Princeton.

C, Y. (1991b) Biogeography and evolution. In: Dung Beetle Ecology (Eds I. Hanski and Y.Cambefort). Princeton University Press, Princeton.

D, A.L.V. (1987) Geographical distribution of dung beetles (Coleoptera: Scarabaeidae) and theirseasonal activity in south-western Cape Province. J. Entomol. Soc. Sth. Afr. 50, 275–285.

D, A.L.V. (1990) Climatic Change, Habitat Modification and Relative Age of Dung Beetle Taxa(Coleoptera: Scarabaeidae, Staphylinidae, Hydrophilidae, Histeridae) in the South-western Cape. PhDthesis, University of Cape Town.

D, A.L.V. (1993) Biogeographical groups in a southern African, winter rainfall, dung beetleassemblage (Coleoptera: Scarabaeidae)—consequences of climatic history and habitat fragmentation.Afr. J. Ecol. 31, 306–327.

D, A.L.V. (1994a) Habitat fragmentation in southern Africa and distributional response patterns offive specialist or generalist dung beetle families (Coleoptera). Afr. J. Ecol. 32, 192–207.

D, A.L.V. (1994b) Associations of Afrotropical Coleoptera (Scarabaeidae, Aphodiidae, Staphylinidae,Hydrophilidae, Histeridae) with dung and decaying matter: implications for selection of fly controlagents for Australia. J. Nat. Hist. 28, 383–399.

D, A.L.V. (1994c) Community organization in a South African, winter rainfall, dung beetleassemblage (Coleoptera: Scarabaeidae). Acta Oecol. 15, 727–738.

D, A.L.V. (1996) Habitat associations in a South African summer rainfall, dung beetle community(Coleoptera: Scarabaeidae, Aphodiidae, Staphylinidae, Histeridae, Hydrophilidae). Pedobiologia 40,260–280.

D, A.L.V. & D, C.F. (1993) Climatic and biogeographical associations of Kenyan andnorthern Tanzanian dung beetles (Coleoptera: Scarabaeidae). Afr. J. Ecol. 31, 290–305.

D, H.J. (1983) An introduction to the fynbos region, time scales and palaeoenvironments. In:Fynbos Palaeoecology: a Preliminary Synthesis (Eds H.J. Deacon, Q.B. Hendey and J.J. Lambrechts).South African National Scientific Report no. 75, CSIR, Pretoria.

36 A. L. V. Davis

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

D, H.J., J, M.R. & E, F. (1992) Selective regime and time. In: The Ecology of Fynbos:Nutrients, Fire and Diversity (Ed. R.M. Cowling). Oxford University Press, Cape Town.

D, R.V., S, W.G. & N, A.R. (1983)Mesozoic and Tertiary Geology of Southern Africa.Balkema, Rotterdam.

D, B.M. (1983) The habitat preference of some bovine dung beetles (Coleoptera: Scarabaeidae) inHluhluwe Game Reserve, South Africa. Bull. Entomol. Res. 73, 357–371.

D, B.M. (1991) Dung beetles of southern Africa. In: Dung Beetle Ecology (Eds I. Hanski and Y.Cambefort). Princeton University Press, Princeton.

E-Y, S. (1978) Coleoptera. In: Biogeography and Ecology of Southern Africa (Eds M.J.A.Werger and A.C. van Bruggen). Junk, The Hague.

F, M.C. (1972) Os escaribådeos de Africa (sul do Saára). Revta Entomol. Moçam. 11, 5–1088.F, M.C. (1978) The genus Onitis F. of Africa south of the Sahara (Scarabaeidae, Coleoptera).

Mem. Nas. Mus. 10, 1–410.F, G.T., S, T.B. & D, R. (1970) Attraction of coprophagous beetles to feces of various

animals. J. Parasit. 56, 378–383.H, G. (1974) Elements anciens de l’entomofaune néotropical: ses implications biogéographiques.

Quaest. Entomol. 10, 223–262.H, G. & M, E.C. (1966) The natural history of dung beetles of the subfamily

Scarabaeinae (Coleoptera, Scarabaeidae). Folia Entomol. Mex. 12–14, 1–312.H, E. & S, C.H. (1979) A revision of the genus Pachysoma M’Leay with an evaluation of the

subtribe Pachysomina Ferreira and its genera (Coleoptera: Scarabaeidae). J. Entomol. Soc. Sth. Afr.42, 225–244.

H, E. & S, C.H. (1983) A zoogeographical delimitation of the Kalahari subregion (SouthAfrica), based on excluded species. J. Arid Environs 8, 165–169.

H, E. & S, C.H. (1984) The boundaries of the Kalahari region as derived from distributionmaps of three beetle genera. In: Notes on the Coleopterous Fauna of the Kalahari (Ed. E. Holm).Koedoe 27 (Suppl.) 154–157.

H, H.F. & S, C.H. (1987a) A revision of the African genus, Odontoloma Boheman(Coleoptera: Scarabaeidae: Scarabaeinae). J. Entomol. Soc. Sth. Afr. 50, 155–192.

K, A.A. & R-S, T.J. (1986) Dung beetle distribution patterns in the Iberian Peninsula.Entomophaga 31, 183–190.

M, L.E. & H, E. (1982) Notes on the flightless Scarabaeina (Coleoptera: Scarabaeidae) with adescription of a new species. Cimbebasia (A) 5, 273–284.

M, L.E. & S, C.H. (1986) Systematics of the subtribe Scarabaeinae (Coleoptera:Scarabaeidae). Dept Agric. Water Supply, Rep. S. Afr. Entomol. Mem. 65, 1–25.

N, V.G. (1977) Habitat associations and community analysis of south Texas dung beetles(Coleoptera: Scarabaeinae). Can. J. Zool. 55, 138–147.

N-P, T. (1988a) Révision des espèces afrotropicales du genre Copris Müller 1764. IV. Legroupe fidius Olivier [Coleoptera, Scarabaeidae]. Rev. Franc. Entomol. (N.S.) 10, 5–15.

N-P, T. (1988b) Révision des espèces afrotropicales du genre Copris Müller 1764. VI. Legroupe bootes Klug (Coleoptera, Scarabaeidae). Nouv. Rev. Entomol. (N.S.) 5, 247–258.

N-P, T. (1988c) Révision des espèces afrotropicales du genre Copris Müller 1764. VII. Legroupe corniger Sahlberg [Col. Scarabaeidae]. Bull. Soc. Entomol. Fr. 92, 209–220.

N-P, T. & C, Y. (1986) Révision des espèces afrotropicales du genre Copris Müller1764. I. Le groupe integer Reiche (Coleoptera, Scarabaeidae). Nouv. Rev. Entomol. 3, 401–416.

N-, T. & C, Y. (1987) Révision des espèces afrotropicales du genre Copris Müller1764. II. Le groupe jacchus (Fabricius) (Coleoptera, Scarabaeidae s. str.). Annls Soc. Entomol. Fr.(N.S.) 23, 67–75.

P, M.-L. (1984) Origin of sand-adapted tenebrionid beetles of the Kalahari. In: Notes on theColeopterous Fauna of the Kalahari (Ed. E. Holm). Koedoe 27 (Suppl.) 159–165.

S, C.H. & H, H.F. (1987a) A revision of the southern African genus, Epirinus Reiche(Coleoptera: Scarabaeidae: Scarabaeinae). J. Entomol. Soc. Sth. Afr. 50, 121–154.

S, C.H. & H, H.F. (1987b) A revision of the southern African Canthonina (Coleoptera:Scarabaeidae: Scarabaeinae). J. Entomol. Soc. Sth. Afr. 50, 75–119.

T, D.S.G. (1988) The nature and depositional setting of arid and semi-arid Kalahari sediments,Southern Africa. J. Arid Environs 14, 17–26.

Associations of southern African dung beetles 37

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38

T, P.D. (1986) Climatic Change and Variability in Southern Africa. Oxford University Press, CapeTown.

W, H. & L, H. (1964) Klimadiagramm-Weltatlas. Gustav Fischer, Jena.W, P. (1978) Recherches Écologiques et Biologiques sur les Scarabéides Coprophages d’une Savane du

Zaıre. PhD thesis, Université des Sciences et Techniques du Languedoc, Montpellier.W, M.J.A. (1978) Biogeographical division of southern Africa. In: Biogeography and Ecology of

Southern Africa (Eds M.J.A. Werger and A.C. van Bruggen). Junk, The Hague.Z , R. (1980) A new species of Scarabaeus Linnaeus 1758 (Coleoptera: Scarabaeidae) from

coastal sand areas in Natal. J. Entomol. Soc. Sth Afr. 43, 107–112.

(Manuscript accepted 21 May 1996)

38 A. L. V. Davis

? East African Wild Life Society, Afr. J. Ecol., 35, 10–38