65
CHAPTER 13 TRIGONOMETRIC IDENTITIES Exercise 13A Page number: 583 Prove each of the following identities: Question 1: (i) (1 cos 2 θ) cosec 2 θ = 1 (ii) (1 + cot 2 θ) sin 2 θ = 1 Solution: (i) (1 cos 2 θ) cosec 2 θ = 1 L.H.S. = (1 cos 2 θ) cosec 2 θ = (sin 2 θ) × cosec 2 θ (Using identity sin 2 θ + cos 2 θ = 1) = 1 cosec 2 θ × cosec 2 θ = 1 = R.H.S. Hence Proved. (ii) (1 + cot 2 θ) sin 2 θ = 1 L.H.S. = (1 + cot 2 θ) × sin 2 θ = (cosec 2 θ) × sin 2 θ (Using identity 1 + cot 2 θ = cosec 2 θ) = 1 sin 2 θ × sin 2 θ © PRAADIS EDUCATION DO NOT COPY

583 Prove each of the following identities - Praadis Education

Embed Size (px)

Citation preview

CHAPTER – 13

TRIGONOMETRIC IDENTITIES

Exercise 13A

Page number: 583

Prove each of the following identities:

Question 1:

(i) (1 – cos2θ) cosec2θ = 1

(ii) (1 + cot2θ) sin2θ = 1

Solution:

(i) (1 – cos2θ) cosec2θ = 1

L.H.S. = (1 – cos2θ) cosec2θ

= (sin2θ) × cosec2θ (Using identity sin2θ + cos2 θ = 1)

= 1

cosec2 θ × cosec2θ

= 1

= R.H.S.

Hence Proved.

(ii) (1 + cot2θ) sin2θ = 1

L.H.S. = (1 + cot2θ) × sin2 θ

= (cosec2 θ) × sin2 θ (Using identity 1 + cot2 θ = cosec2 θ)

= 1

sin2 θ × sin2 θ

© PRAADIS

EDUCATION

DO NOT C

OPY

= 1

= R.H.S.

Hence Proved.

Question 2:

(i) (sec2θ − 1) cot2θ = 1

(ii) (sec2θ − 1) (cosec2θ − 1) = 1

(iii) (1− cos2θ) sec2θ = tan2θ

Solution:

(i) (sec2θ − 1) cot2θ = 1

L.H.S. = (sec2 θ – 1) × cot2 θ

= (tan2θ) × cot2θ (using identity 1 + tan2 θ = sec2 θ)

= 1

cot2θ × cot2θ

= 1

= R.H.S.

Hence Proved.

(ii) (sec2θ − 1) (cosec2θ − 1) = 1

L.H.S. = (sec2 θ – 1) (cosec2 θ – 1)

= (tan2θ) × cot2θ

(using identity 1 + cot2 θ = cosec2 θ and 1 + tan2 θ = sec2 θ)

= tan2θ ×1

tan2θ

= 1

© PRAADIS

EDUCATION

DO NOT C

OPY

= R.H.S.

Hence Proved.

(iii) (1− cos2θ) sec2θ = tan2θ

L.H.S. = (1 – cos2 θ) sec2 θ

= (sin2θ) × (1

cos2θ) (using identity sin2 θ = 1- cos2 θ)

= tan2 θ

= R.H.S.

Hence Proved.

Question 3: Prove

(i) 𝐬𝐢𝐧𝟐 𝜽 +𝟏

𝟏+𝐭𝐚𝐧𝟐 𝜽= 𝟏

(ii) 𝟏

𝟏+𝐭𝐚𝐧𝟐 𝜽+

𝟏

𝟏+𝐜𝐨𝐭𝟐 𝜽= 𝟏

Solution:

(i) L.H.S.

sin2 𝜃 +1

1+tan2 𝜃

= (sin2 𝜃) + (1

sec2 𝜃) (using 1 + tan2 𝜃 = sec2 𝜃)

= (sin2 𝜃) + (cos2 𝜃) We know, sin2 𝜃 + cos2 𝜃 = 1

= 1

= RHS.

Hence proved.

© PRAADIS

EDUCATION

DO NOT C

OPY

(ii) LHS.

1

1+tan2 𝜃+

1

1+cot2 𝜃

= (1

sec2 𝜃) + (

1

cosec2 𝜃)

(Using 1 + tan2 𝜃 = sec2 𝜃 and 1 + tan2 𝜃 = sec2 𝜃)

= (cos2 𝜃) + (sin2 𝜃) We know, sin2 𝜃 + cos2 𝜃 = 1

= 1

= RHS.

Hence proved.

Question 4: Prove

(i) (1 + cos θ) (1 − cos θ) (1 + cot2θ) = 1

(ii) cosec θ (1 + cos θ) (cosec θ − cot θ) = 1

Solution:

(i) (1 + cos θ) (1 − cos θ) (1 + cot2θ) = 1

LHS: (1 + cos θ) (1 − cos θ) (1 + cot2θ)

= (1 – cos2 θ) × cosec2 θ (Using sin2 θ + cos2 θ = 1)

= (sin2 θ) × cosec2 θ

= sin2 θ ×1

sin2 θ

= 1

= R.H.S.

Hence Proved

© PRAADIS

EDUCATION

DO NOT C

OPY

(ii) cosec θ (1 + cos θ) (cosec θ − cot θ) = 1

L.H.S.

cosec θ (1 + cos θ) (cosec θ − cot θ)

= (cosec θ + cosec θ cos θ) (cosec θ – cot θ)

We know, cosec θ = 1

sin θ and cot θ =

cosθ

sinθ

(sec θ + cot θ) (cosec θ – cotθ)

Apply formula: (a + b) (a – b) = a2 – b2

= cosec2 θ – cot2 θ

= 1

= R.H.S.

Hence proved.

Question 5: Prove

(i) 𝐜𝐨𝐭𝟐 𝛉 −𝟏

𝐬𝐢𝐧𝟐 𝛉= −𝟏

(ii) 𝐭𝐚𝐧𝟐 𝛉 −𝟏

𝐜𝐨𝐬𝟐 𝛉= −𝟏

(i) 𝐜𝐨𝐬𝟐 𝛉 −𝟏

𝟏+𝐜𝐨𝐭𝟐 𝛉= 𝟏

Solution:

(i)

L.H.S.

= cot2 θ – 1

sin2 θ

= cos2θ

sin2θ –

1

sin2 θ

© PRAADIS

EDUCATION

DO NOT C

OPY

= (cos2θ−1)

sin2 θ

= − sin2 θ

sin2 θ

= - 1

= R.H.S

(ii)

L.H.S.

= tan2 θ – 1

cos2θ

= sin2θ

cos2θ –

1

cos2θ

= (sin2θ – 1)

cos2θ

= −cos2θ

cos2θ

= -1

= R.H.S

(iii)

L.H.S.

= cos2 θ + 1

(1+cot2θ)

= cos2 θ + 1

cosec2θ

= cos2 θ + sin2θ

= 1

= R.H.S

© PRAADIS

EDUCATION

DO NOT C

OPY

Question 6: Prove

𝟏

𝟏+𝐬𝐢𝐧 𝛉+

𝟏

𝟏−𝐬𝐢𝐧 𝛉= 𝟐 𝐬𝐞𝐜𝟐 𝛉

Solution:

L.H.S.

= 1

(1+sin 𝜃)+

1

(1−sin 𝜃)

= (1−sin 𝜃)+(1+sin 𝜃)

(1+sin 𝜃)(1−sin 𝜃)

= 2

1−sin2 θ

= 2

cos2 𝜃

= 2 sec2 𝜃

= R.H.S.

Question 7: Prove

(i) sec θ (1 − sin θ) (sec θ + tan θ) = 1

(ii) sin θ (1 + tan θ) + cos θ (1 + cot θ) = (sec θ + cosec θ)

Solution:

(i) L.H.S.

= sec θ (1 − sin θ) (sec θ + tan θ)

= (1

cos 𝜃) ×(1 − sin θ) × (

1

cos 𝜃+

sin 𝜃

cos 𝜃)

= (1

cos 𝜃) ×(1 − sin θ) × (

1+sin 𝜃

cos 𝜃)

= 1+sin2 𝜃

cos2 𝜃

© PRAADIS

EDUCATION

DO NOT C

OPY

= cos2θ

cos2θ

= 1

= R.H.S.

(ii) L.H.S. = sin θ (1 + tan θ) + cos θ (1+ cot θ)

= sin θ (1 +sin θ

cos θ) + cos θ (

1+cos θ

sinθ)

= sin θ{(cosθ +sinθ)

cosθ} + cos θ{

(sinθ+cosθ)

sinθ}

= (cos θ + sin θ) (sinθ

cos θ+

cos θ

sinθ)

= (cos θ+sin θ)

cos θ sin θ

= cosec θ + sec θ

= R.H.S.

Question 8:

(i) 𝟏 +𝐜𝐨𝐭𝟐 𝜽

𝟏+𝐜𝐨𝐬𝐞𝐜 𝜽= 𝐜𝐨𝐬𝐞𝐜 𝜽

(ii) 𝟏 +𝐭𝐚𝐧𝟐 𝜽

𝟏+𝐬𝐞𝐜 𝜽= 𝐬𝐞𝐜 𝜽

Solution:

L.H.S. = 1 +cot2 𝜃

1+cosec 𝜃

= 1 +cos2 𝜃

sin2 𝜃

1+1

sin 𝜃

= 1 +cos2 𝜃

1+sin 𝜃×

sin 𝜃

sin2 𝜃

© PRAADIS

EDUCATION

DO NOT C

OPY

= 1 +cos2 𝜃

(1+sin 𝜃) sin 𝜃

= sin 𝜃+sin2 𝜃+cos2 𝜃

sin 𝜃+sin2 𝜃

= sin 𝜃+1

sin 𝜃(+1 sin 𝜃)

= 1

sin 𝜃

= cosec 𝜃

= RHS.

(ii)

L.H.S. = 1 +tan2 𝜃

1+sec 𝜃

= 1 +sin2 𝜃

cos2 𝜃

1+1

cos 𝜃

= 1 +sin2 𝜃

1+cos 𝜃×

cos 𝜃

cos2 𝜃

= 1 +sin2 𝜃

(1+cos 𝜃) cos 𝜃

= cos 𝜃+cos2 𝜃+sin2 𝜃

cos 𝜃+cos2 𝜃

= cos 𝜃+1

cos 𝜃(+1 cos 𝜃)

= 1

cos 𝜃

= sec θ

= R.H.S.

© PRAADIS

EDUCATION

DO NOT C

OPY

Question 9: Prove

(𝟏+𝐭𝐚𝐧𝟐 𝜽) 𝐜𝐨𝐭 𝜽

𝐜𝐨𝐬𝐞𝐜𝟐 𝜽= 𝐭𝐚𝐧 𝜽

Solution:

L.H.S. = (1+tan2 𝜃) cot 𝜃

cosec2 𝜃

= (1+

sin2 𝜃

cos2 𝜃)×

cos 𝜃

sin 𝜃1

sin2 𝜃

= cos2 𝜃+sin2 𝜃

cos2 𝜃×

cos 𝜃

sin 𝜃× sin2 𝜃

= 1 ×sin 𝜃

cos 𝜃

= tan 𝜃

= R.H.S.

Question 10: Prove

(i) 𝐭𝐚𝐧𝟐 𝜽

(𝟏+𝐭𝐚𝐧𝟐 𝜽)+

𝐜𝐨𝐭𝟐 𝜽

(𝟏+𝐜𝐨𝐭𝟐 𝜽)= 𝟏

Solution:

L.H.S. = tan2 𝜃

1+tan2 𝜃+

cot2 𝜃

1+cot2 𝜃

=

sin2 𝜃

cos2 𝜃

1+sin2 𝜃

cos2 𝜃

+cos2 𝜃

sin2 𝜃

1+cos2 𝜃

sin2 𝜃

= sin2 𝜃

1+sin2 𝜃+

cos2 𝜃

1+cos2 𝜃

= sin2 𝜃+sin2 𝜃 cos2 𝜃+cos2 𝜃+cos2 𝜃 sin2 𝜃

(1+sin2 𝜃)(1+cos2 𝜃)

© PRAADIS

EDUCATION

DO NOT C

OPY

= sin2 𝜃+sin2 𝜃 cos2 𝜃+cos2 𝜃+cos2 𝜃 sin2 𝜃

sin2 𝜃+sin2 𝜃 cos2 𝜃+cos2 𝜃+cos2 𝜃 sin2 𝜃

= 1

= R.H.S.

Question 11:

𝐬𝐢𝐧𝛉

𝟏+𝐜𝐨𝐬𝛉+

(𝟏+𝐜𝐨𝐬𝛉)

𝐬𝐢𝐧𝛉= 𝟐𝐜𝐨𝐬𝐞𝐜𝛉

Solution:

LHS =sinθ

1+cosθ+

(1+cosθ)

sinθ

= sin2θ+(1+cosθ)2

(1+cosθ)sinθ

= sin2θ+1+cos2θ+2cosθ

(1+cosθ)sinθ

= 1+1+2cosθ

(1+cosθ)sinθ

= 2+2cosθ

(1+cosθ)sinθ

= 2(1+cosθ)

(1+cosθ)sinθ

= 2

sinθ

= 2cosecθ

= RHS

Hence, LHS = RHS

Question 12: 𝐭𝐚𝐧𝛉

(𝟏−𝐜𝐨𝐭𝛉)+

𝐜𝐨𝐭𝛉

(𝟏−𝐭𝐚𝐧𝛉)= (𝟏 + 𝐬𝐞𝐜𝛉 𝐜𝐨𝐬𝐞𝐜𝛉)

© PRAADIS

EDUCATION

DO NOT C

OPY

Solution:

LHS = tanθ

(1−cotθ)+

cotθ

(1−tanθ)

= tanθ (1 −cosθ

sinθ) + cotθ (1 −

sinθ

cosθ)

= sinθ tanθ

(sinθ−cosθ)+

cosθ cotθ

(cosθ−sinθ)

= sinθ×

sinθ

cosθ−cosθ×

cosθ

sinθ

(sinθ−cosθ)

= sin2θcosθ −cos2θsinθ

(sinθ−cosθ)

=sin3θ−cos3θ

cosθsinθ(sinθ−cosθ)

=(sinθ−cosθ)(sin2θ+sinθcosθ+cos2θ)

cosθsinθ(sinθ−cosθ)

= 1+sinθ

cosθcosθsinθ

=1

cosθsinθ+

sinθcosθ

cosθsinθ

= secθcosecθ + 1

= 1 + secθcosecθ

=RHS

Question 13: 𝐜𝐨𝐬𝟐𝛉

(𝟏−𝐭𝐚𝐧𝛉)+

𝐬𝐢𝐧𝟑𝛉

(𝐬𝐢𝐧𝛉−𝐜𝐨𝐬𝛉)= (𝟏 + 𝐬𝐢𝐧𝛉 𝐜𝐨𝐬𝛉)

Solution:

© PRAADIS

EDUCATION

DO NOT C

OPY

cos2θ

(1−tanθ)+

sin3θ

(sinθ−cosθ)= (1 + sinθ cosθ)

LHS = cos2θ

(1−tanθ)+

sin3θ

(sinθ−cosθ)

=cos2θ

(1+sinθ

cosθ)

+sin3θ

(sinθ−cosθ)

= cos3θ

(cosθ−sinθ)+

sin3θ

(sinθ−cosθ)

= cos3θsin3θ

(cosθ−sinθ)

= (cosθ−sinθ)(cos2θ+cosθsinθ+sin2θ)

(cosθ−sinθ)

= (sin2θ + cos2θ + cosθsinθ)

= (1 + sinθcosθ)

= RHS

Hence, L.H.S. = R.H.S.

Question 14: 𝐜𝐨𝐬𝛉

(𝟏−𝐭𝐚𝐧𝛉)+

𝐬𝐢𝐧𝟐𝛉

(𝐜𝐨𝐬𝛉−𝐬𝐢𝐧𝛉)= (𝐜𝐨𝐬𝛉 + 𝐬𝐢𝐧𝛉)

Solution:

LHS = cosθ

(1−tanθ)+

sin2θ

(cosθ−sinθ)

= cosθ

(1−sinθ

cosθ)

−sin2θ

(cosθ−sinθ)

= cos2θ

(cosθ−sinθ)−

sin2θ

(cosθ−sinθ)

© PRAADIS

EDUCATION

DO NOT C

OPY

= cos2θ−sin2θ

(cosθ−sinθ)

= (cosθ+sinθ)(cosθ−sinθ)

(cosθ−sinθ)

= (cosθ + sinθ)

= RHS

Hence, LHS = RHS

Question 15: (𝟏 + 𝐭𝐚𝐧𝟐𝛉)(𝟏 + 𝐜𝐨𝐭𝟐𝛉) =𝟏

(𝐬𝐢𝐧𝟐𝛉−𝐬𝐢𝐧𝟒𝛉)

Solution:

LHS =(1 + tan2θ)(1 + cot2θ)

= sec2θ. cosec2θ

(∵ sec2θ − tan2θ = 1 and cosec2θ − cot2θ = 1)

= 1

cos2θ.sin2θ

= 1

(1−sin2θ)sin2θ

= 1

(sin2θ−sin4θ)

= RHS

Hence, LHS = RHS

Question 16: 𝐭𝐚𝐧𝛉

(𝟏+𝐭𝐚𝐧𝟐𝛉)𝟐 +

𝐜𝐨𝐭𝛉

(𝟏+𝐜𝐨𝐭𝟐𝛉)𝟐 = 𝐬𝐢𝐧𝛉 𝐜𝐨𝐬𝛉

Solution:

© PRAADIS

EDUCATION

DO NOT C

OPY

LHS = tanθ

(1+tan2θ)2 +cotθ

(1+cot2θ)2

= tanθ

(sec2θ)2 +cotθ

(cosec2θ)2

= tanθ

sec4θ+

cotθ

cosec4θ

= sinθ

cosθ× cos4θ +

cosθ

sinθ× sin4θ

= sinθcos3θ + cosθsin3θ

= sinθcosθ(cos2θ + sin2θ)

= sinθcosθ

= RHS

Hence, LHS = RHS

Question 17:

(i) sin6θ + cos6θ = 1 – 3 sin2θ cos2θ

(ii) sin2θ + cos4θ = cos2θ + sin4θ

(iii) cosec4θ – cosec2θ = cot4θ + cot2θ

Solution:

(i) LHS = sin6θ + cos6θ

= (sin2θ)3 + (cos2θ)3

= (sin2θ + cos2θ) (sin4θ − sin2θcos2θ + cos4θ)

=1×{(sin2θ)2 + 2sin2θcos2θ + (cos2θ)2 − 3sin2θcos2θ}

= (sin2θ + cos2θ)2 − 3sin2θcos2θ

= (1)2 – 3 sin2θcos2θ

=1 – 3 sin2θcos2θ

© PRAADIS

EDUCATION

DO NOT C

OPY

= RHS

Hence, LHS = RHS

(ii) LHS = sin2θ + cos4θ

= sin2θ + (cos2θ)2

= sin2θ + (1 − sin2θ)2

= sin2θ + 1 − 2sin2θ + sin4θ

= 1 − sin2θ + sin4θ

= cos2θ + sin4θ

= RHS

Hence, LHS = RHS

(iii) LHS = cosec4θ − cosec2θ

= cosec2θ (cosec2θ−1)

= cosec2θ × cot2θ (∵ cosec2θ − cot2θ = 1)

= (1 + cot2θ) × cot2θ

= cot2θ + cot4θ

= RHS

Hence, LHS = RHS

Question 18:

(i) 𝟏−𝐭𝐚𝐧𝟐𝛉

𝟏+𝐭𝐚𝐧𝟐𝛉= (𝐜𝐨𝐬𝟐𝛉 − 𝐬𝐢𝐧𝟐𝛉)

(ii) 𝟏−𝐭𝐚𝐧𝟐𝛉

𝐜𝐨𝐭𝟐𝛉−𝟏= 𝐭𝐚𝐧𝟐𝛉

Solution:

© PRAADIS

EDUCATION

DO NOT C

OPY

(i) LHS = 1−tan2θ

1+tan2θ

=1−

sin2θ

cos2θ

1+sin2θ

cos2θ

= cos2θ−sin2θ

cos2θ+sin2θ

= cos2θ−sin2θ

1

= cos2θ − sin2θ

= RHS

(ii) LHS = 1−tan2θ

cot2θ−1

= 1−

sin2θ

cos2θ

cos2θ

sin2θ−1

=

cos2θ−sin2θ

cos2θ

cos2θ−sin2θ

sin2θ

= sin2θ

cos2θ

= tan2θ

= RHS

Question 19:

(i) 𝐭𝐚𝐧𝛉

(𝐬𝐞𝐜𝛉−𝟏)+

𝐭𝐚𝐧𝛉

(𝐬𝐞𝐜𝛉+𝟏)= 𝟐𝐜𝐨𝐬𝐞𝐜𝛉

(ii) 𝐜𝐨𝐭𝛉

(𝐜𝐨𝐬𝐞𝐜𝛉+𝟏)+

(𝐜𝐨𝐬𝐞𝐜𝛉+𝟏)

𝐜𝐨𝐭𝛉= 𝟐𝐬𝐞𝐜𝛉

Solution:

© PRAADIS

EDUCATION

DO NOT C

OPY

(i) LHS = tanθ

(secθ−1)+

tanθ

(secθ+1)

= tanθ {secθ+1+secθ−1

(secθ−1)(secθ+1)}

= tanθ {2secθ

(sec2θ−1)}

= tanθ ×2secθ

tan2θ

= 2secθ

tanθ

= 21

cosθsinθ

cosθ

= 21

sinθ

= 2 cosecθ

= RHS

Hence, LHS = RHS

(ii) LHS = cotθ

(cosecθ+1)+

(cosecθ+1)

cotθ

= cot2θ+(cosecθ+1)2

(cosecθ+1)cotθ

= cot2θ+cosec2θ+2cosecθ+1

(cosecθ+1)cotθ

= cot2θ+cosec2θ+2cosecθ+cosec2θ−cot2θ

(cosecθ+1)cotθ

= 2cosec2θ+2cosecθ

(cosecθ+1)cotθ

= 2cosecθ(cosecθ+1)

(cosecθ+1)cotθ

= 2cosecθ

cotθ

© PRAADIS

EDUCATION

DO NOT C

OPY

= 2 ×1

sinθ×

sinθ

cosθ

= 2secθ

= RHS

Hence, LHS = RHS

Question 20:

(i) 𝐬𝐞𝐜𝛉−𝟏

𝐬𝐞𝐜𝛉+𝟏=

𝐬𝐢𝐧𝟐𝛉

(𝟏+𝐜𝐨𝐬𝛉)𝟐

(ii) 𝐬𝐞𝐜𝛉−𝐭𝐚𝐧𝛉

𝐬𝐞𝐜𝛉+𝐭𝐚𝐧𝛉=

𝐜𝐨𝐬𝟐𝛉

(𝟏+𝐬𝐢𝐧𝛉)𝟐

Solution:

(i) LHS = secθ−1

secθ+1

=

1

cosθ−1

1

cosθ+1

=

1−cosθ

cosθ1+cosθ

cosθ

= 1−cosθ

1+cosθ

= (1−cosθ)(1+cosθ)

(1+cosθ)(1+cosθ)

{Dividing the numerator and denominator by (1 + cosθ)}

= 1 −cos2θ

(1+cosθ)2

= sin2θ

(1+cosθ)2

= RHS

© PRAADIS

EDUCATION

DO NOT C

OPY

(ii) LHS = secθ−tanθ

secθ+tanθ

=

1

cosθ−

sinθ

cosθ1

cosθ+

sinθ

cosθ

=

1−sinθ

cosθ1+sinθ

cosθ

= 1−sinθ

1+sinθ

= (1−sinθ)(1+sinθ)

(1+sinθ)(1+sinθ)

{Dividing the numerator and denominator by (1+sinθ)}

= (1−sin2θ)

(1+sinθ)2

= cos2θ

(1+sinθ)2

= RHS

Question 21: Prove each of the following identities:

(i) √𝟏+𝐬𝐢𝐧𝛉

𝟏−𝐬𝐢𝐧𝛉= (𝐬𝐞𝐜𝛉 + 𝐭𝐚𝐧𝛉)

(ii) √𝟏−𝐜𝐨𝐬𝛉

𝟏+𝐜𝐨𝐬𝛉= (𝐜𝐨𝐬𝐞𝐜𝛉 − 𝐜𝐨𝐭𝛉)

(iii) √𝟏+𝐜𝐨𝐬𝛉

𝟏−𝐜𝐨𝐬𝛉+ √

𝟏−𝐜𝐨𝐬𝛉

𝟏+𝐜𝐨𝐬𝛉= 𝟐𝐜𝐨𝐬𝐞𝐜𝛉

Solution:

(i) LHS = √1+sinθ

1−sinθ

© PRAADIS

EDUCATION

DO NOT C

OPY

= √(1 + sinθ)(1 − sinθ) × (1 + sinθ)(1 + sinθ)

= √(1+sinθ)2

1−sin2θ

= √(1+sinθ)2

cos2θ

= 1+sinθ

cosθ

= 1

cosθ+

sinθ

cosθ

= (secθ + tanθ)

= RHS

(ii) LHS

= √1−cosθ

1+cosθ

= √(1−cosθ)

(1+cosθ)×

(1−cosθ)

(1−cosθ)

= √(1−cosθ)2

1−cos2θ

= √(1−cosθ)2

sin2θ

= 1−cosθ

sinθ

= 1

sinθ−

cosθ

sinθ

= (cosecθ − cotθ)

= RHS

© PRAADIS

EDUCATION

DO NOT C

OPY

(iii) LHS = √1+cosθ

1−cosθ+ √

1−cosθ

1+cosθ

= √(1+cosθ)2

(1−cosθ)(1+cosθ)+ √

(1−cosθ)2

(1+cosθ)(1−cosθ)

= √(1+cosθ)2

(1−cos2θ)+ √

(1−cosθ)2

(1−cos2θ)

= √(1+cosθ)2

sin2θ+ √

(1−cosθ)2

sin2θ

= (1+cosθ)

sinθ+

1−cosθ

sinθ

= 1+cosθ+1−cosθ

sinθ

= 2sinθ

= 2cosecθ

= RHS

Question 22: 𝐜𝐨𝐬𝟑𝛉+𝐬𝐢𝐧𝟑𝛉

𝐜𝐨𝐬𝛉+𝐬𝐢𝐧𝛉+

𝐜𝐨𝐬𝟑𝛉−𝐬𝐢𝐧𝟑𝛉

𝐜𝐨𝐬𝛉−𝐬𝐢𝐧𝛉= 𝟐

Solution:

LHS = cos3θ+sin3θ

cosθ+sinθ+

cos3θ−sin3θ

cosθ−sinθ

= (cosθ+sinθ)(cos2θ−cosθsinθ+sin2θ)

(cosθ+sinθ)+

(cosθ−sinθ)(cos2θ+cosθsinθ+sin2θ)

(cosθ−sinθ)

= (cos2θ + sin2θ − cosθsinθ) + (cos2θ + sin2θ + cosθsinθ)

= (1 − cosθsinθ) + (1 + cosθsinθ)

= 2

© PRAADIS

EDUCATION

DO NOT C

OPY

= RHS

Hence, LHS = RHS

Question 23: 𝐬𝐢𝐧𝛉

(𝐜𝐨𝐭𝛉+𝐜𝐨𝐬𝐞𝐜𝛉)−

𝐬𝐢𝐧𝛉

(𝐜𝐨𝐭𝛉−𝐜𝐨𝐬𝐞𝐜𝛉)= 𝟐

Solution:

LHS = sinθ

(cotθ+cosecθ)−

sinθ

(cotθ−cosecθ)

= sinθ {(cotθ−cosecθ)−(cotθ+cosecθ)

(cotθ+cosecθ)(cotθ−cosecθ)}

= sinθ {−2cosecθ

(cot2θ−cosec2θ)}

= sinθ (−2cosecθ

−1) (∵ cosec2θ − cot2θ = 1)

= sinθ. 2cosecθ

= sinθ × 2 ×1

sinθ

= 2

= RHS

Question 24:

(i) 𝐬𝐢𝐧𝛉−𝐜𝐨𝐬𝛉

𝐬𝐢𝐧𝛉+𝐜𝐨𝐬𝛉+

𝐬𝐢𝐧𝛉+𝐜𝐨𝐬𝛉

𝐬𝐢𝐧𝛉−𝐜𝐨𝐬𝛉=

𝟐

(𝟐𝐬𝐢𝐧𝟐𝛉−𝟏)

(ii) 𝐬𝐢𝐧𝛉+𝐜𝐨𝐬𝛉

𝐬𝐢𝐧𝛉−𝐜𝐨𝐬𝛉+

𝐬𝐢𝐧𝛉−𝐜𝐨𝐬𝛉

𝐬𝐢𝐧𝛉+𝐜𝐨𝐬𝛉=

𝟐

(𝟏−𝟐𝐜𝐨𝐬𝟐𝛉)

Solution:

(i) LHS = sinθ−cosθ

sinθ+cosθ+

sinθ+cosθ

sinθ−cosθ

© PRAADIS

EDUCATION

DO NOT C

OPY

= (sinθ−cosθ)2+(sinθ+cosθ)2

(sinθ+cosθ)(sinθ−cosθ)

= sin2θ+cos2θ−2sinθcosθ+sin2θ+cos2θ+2sinθcosθ

sin2θ−cos2θ

= 1+1

sin2 θ−(1−sin2θ) (∵ sin2θ + cos2θ = 1)

= 2

sin2θ−1+sin2θ

= 2

2sin2θ−1

= RHS

(ii) LHS

= sinθ+cosθ

sinθ−cosθ+

sinθ−cosθ

sinθ+cosθ

= (sinθ+cosθ)2+(sinθ−cosθ)2

(sinθ−cosθ)(sinθ+cosθ)

= sin2θ+cos2θ+2sinθcosθ+sin2θ+cos2θ−2sinθcosθ

(sin2θ−cos2θ)

= 1+1

(1−cos2θ)−cos2θ (∵ sin2θ + cos2θ = 1)

= 2

1−2cos2θ

= RHS

Question 25:

𝟏+𝐜𝐨𝐬𝛉−𝐬𝐢𝐧𝟐𝛉

𝐬𝐢𝐧𝛉(𝟏+𝐜𝐨𝐬𝛉)= 𝐜𝐨𝐭𝛉

Solution:

LHS = 1+cosθ−sin2θ

sinθ(1+cosθ)

© PRAADIS

EDUCATION

DO NOT C

OPY

= (1+cosθ)−(1−cos2θ)

sinθ(1+cosθ)

= cosθ+cos2θ

sinθ(1+cosθ)

= cosθ(1+cosθ)

sinθ(1+cosθ)

= cosθ

sinθ

= cot θ

= RHS

Hence, L.H.S. = R.H.S.

Question 26:

(i) 𝐜𝐨𝐬𝐞𝐜𝛉+𝐜𝐨𝐭𝛉

𝐜𝐨𝐬𝐞𝐜𝛉−𝐜𝐨𝐭𝛉= (𝐜𝐨𝐬𝐞𝐜𝛉 + 𝐜𝐨𝐭𝛉)𝟐 = 𝟏 + 𝟐𝐜𝐨𝐭𝟐 + 𝟐𝐜𝐨𝐬𝐞𝐜𝛉 𝐜𝐨𝐭𝛉

(ii) 𝐬𝐞𝐜𝛉+𝐭𝐚𝐧𝛉

𝐬𝐞𝐜𝛉−𝐭𝐚𝐧𝛉= (𝐬𝐞𝐜𝛉 + 𝐭𝐚𝐧𝛉)𝟐 = 𝟏 + 𝟐𝐭𝐚𝐧𝟐𝛉 + 𝟐𝐬𝐞𝐜𝛉 𝐭𝐚𝐧𝛉

Solution:

(i) Here, cosecθ+cotθ

cosecθ−cotθ

= (cosecθ+cotθ)(cosecθ+cotθ)

(cosecθ−cotθ)(cosecθ+cotθ)

= (cosecθ+cotθ)2

(cosec2θ−cot2θ)

= (cosecθ+cotθ)2

1

= (cosecθ + cotθ)2

Again, (cosecθ + cotθ)2

= cosec2θ + cot2θ + 2cosecθcotθ

© PRAADIS

EDUCATION

DO NOT C

OPY

= 1 + cot2θ + cot2θ + 2cosecθcotθ (∵ cosec2θ − cot2θ = 1)

= 1 + 2cot2θ + 2cosecθcotθ

(ii) Here, secθ+tanθ

secθ−tanθ

= (secθ+tanθ)(secθ+tanθ)

(secθ−tanθ)(secθ+tanθ)

= (secθ+tanθ)2

sec2θ−tan2θ

=(secθ+tanθ)2

1

= (secθ + tanθ)2

Again, (secθ + tanθ)2

= sec2θ + tan2θ + 2secθtanθ

= 1 + tan2θ + tan2θ + 2secθtanθ

= 1 + 2tan2θ + 2secθtanθ

Question 27:

(i) 𝟏+𝐜𝐨𝐬𝛉+𝐬𝐢𝐧𝛉

𝟏+𝐜𝐨𝐬𝛉−𝐬𝐢𝐧𝛉=

𝟏+𝐬𝐢𝐧𝛉

𝐜𝐨𝐬𝛉

(ii) 𝐬𝐢𝐧𝛉+𝟏−𝐜𝐨𝐬𝛉

𝐜𝐨𝐬𝛉−𝟏+𝐬𝐢𝐧𝛉=

𝟏+𝐬𝐢𝐧𝛉

𝐜𝐨𝐬𝛉

Solution:

(i) LHS = 1+cosθ+sinθ

1+cosθ−sinθ

= {(1+cosθ)+sinθ}{(1+cosθ)+sinθ}

{(1+cosθ)−sinθ}{(1+cosθ)+sinθ}

{Multiplying the numerator and denominator by (1 + cosθ + sinθ)}

© PRAADIS

EDUCATION

DO NOT C

OPY

= {(1+cosθ)+sinθ}2

{(1+cosθ)2−sin2θ}

= 1+cos2θ+2cosθ+sin2θ+2sinθ(1+cosθ)

1+cos2θ+2cosθ−sin2θ

= 2+2cosθ+2sinθ(1+cosθ)

1+cos2θ+2cosθ−(1−cos2θ)

= 2(1+cosθ)+2sinθ(1+cosθ)

2cos2θ+2cosθ

= 2(1+cosθ)(1+sinθ)

2cosθ(1+cosθ)

= 1+sinθ

cosθ

= RHS

(ii) LHS = sinθ+1−cosθ

cosθ−1+sinθ

= (sinθ+1−cosθ)(sinθ+cosθ+1)

(cosθ−1+sinθ)(sinθ+cosθ+1)

{Multiplying and dividing by 1+ cos θ + sin θ}

= (sinθ+1)2−cos2θ

(sinθ+cosθ)2−12

= sin2θ+1+2sinθ−cos2θ

sin2θ+cos2θ+2sinθcosθ−1

= sin2θ+sin2θ+cos2θ+2sinθ−cos2θ

2sinθcosθ

= 2sin2θ+2sinθ

2sinθcosθ

= 2sinθ(1+sinθ)

2sinθcosθ

= 1+sinθ

cosθ

= RHS

© PRAADIS

EDUCATION

DO NOT C

OPY

Question 28: 𝐬𝐢𝐧𝛉

(𝐬𝐞𝐜𝛉+𝐭𝐚𝐧𝛉−𝟏)+

𝐜𝐨𝐬𝛉

(𝐜𝐨𝐬𝐞𝐜𝛉+𝐜𝐨𝐭𝛉−𝟏)= 𝟏

Solution:

LHS = sinθ

(secθ+tanθ−1)+

cosθ

(cosecθ+cotθ−1)

= sinθcosθ

1+sinθ−cosθ+

cosθsinθ

1+cosθ−sinθ

= sinθcosθ [1

1+(sinθ−cosθ)+

1

1−(sinθ−cosθ)]

= sinθcosθ [1−(sinθ−cosθ)+1+(sinθ−cosθ)

{1+(sinθ−cosθ)}{1−(sinθ−cosθ)}]

= sinθcosθ [1−sinθ+cosθ+1+sinθ−cosθ

1−(sinθ−cosθ)2 ]

= 2sinθcosθ

1−(sin2θ+cos2θ−2sinθcosθ)

= 2sinθcosθ

2sinθcosθ

= 1

= RHS

Hence, LHS = RHS

Question 29: 𝐬𝐢𝐧𝛉+𝐜𝐨𝐬𝛉

𝐬𝐢𝐧𝛉−𝐜𝐨𝐬𝛉+

𝐬𝐢𝐧𝛉−𝐜𝐨𝐬𝛉

𝐬𝐢𝐧𝛉+𝐜𝐨𝐬𝛉=

𝟐

(𝐬𝐢𝐧𝟐𝛉−𝐜𝐨𝐬𝟐𝛉)=

𝟐

(𝟐𝐬𝐢𝐧𝟐𝛉−𝟏)

Solution:

We have sinθ+cosθ

sinθ−cosθ+

sinθ−cosθ

sinθ+cosθ

= (sinθ+cosθ)2+(sinθ−cosθ)2

(sinθ−cosθ)(sinθ+cosθ)

= sin2θ+cos2θ+2sinθcosθ+sin2θ+cos2θ−2sinθcosθ

sin2θ−cos2θ

© PRAADIS

EDUCATION

DO NOT C

OPY

= 1+1

sin2θ−cos2θ

= 2

sin2θ−cos2θ

Again, 2

sin2θ−cos2θ

= 2

sin2θ−(1−sin2θ)

= 2

2sin2θ−1

Question 30: 𝐜𝐨𝐬𝛉 𝐜𝐨𝐬𝐞𝐜𝛉−𝐬𝐢𝐧𝛉 𝐬𝐞𝐜𝛉

𝐜𝐨𝐬𝛉+𝐬𝐢𝐧𝛉= 𝐜𝐨𝐬𝐞𝐜𝛉 − 𝐬𝐞𝐜𝛉

Solution:

LHS = cosθ cosecθ−sinθ secθ

cosθ+sinθ

=

cosθ

sinθ−

sinθ

cosθ

cosθ+sinθ

= cos2θ−sin2θ

cosθsinθ(cosθ+sinθ)

= (cosθ+sinθ)(cosθ−sinθ)

cosθsinθ(cosθ+sinθ)

= (cosθ−sinθ)

cosθsinθ

= 1

sinθ−

1

cosθ

= cosecθ − secθ

= RHS

Hence, LHS = RHS

© PRAADIS

EDUCATION

DO NOT C

OPY

Question 31: (𝟏 + 𝐭𝐚𝐧𝛉 + 𝐜𝐨𝐭𝛉)(𝐬𝐢𝐧𝛉 − 𝐜𝐨𝐬𝛉) = (𝐬𝐞𝐜𝛉

𝐜𝐨𝐬𝐞𝐜𝟐𝛉−

𝐜𝐨𝐬𝐞𝐜𝛉

𝐬𝐞𝐜𝟐𝛉)

Solution:

LHS = (1 + tanθ + cotθ)(sinθ − cosθ)

= sinθ + tanθsinθ + cotθsinθ − cosθ − tanθcosθ − cotθcosθ

= sinθ + tanθsinθ +cosθ

sinθ× sinθ − cosθ −

sinθ

cosθ× cosθ − cotθcosθ

= sinθ + tanθsinθ + cosθ − cosθ − sinθ − cotθcosθ

= tanθsinθ − cotθcosθ

= sinθ

cosθ×

1

cosecθ−

cosθ

sinθ×

1

secθ

= 1

cosecθ×

1

cosecθ× secθ −

1

secθ×

1

secθ× cosecθ

= secθ

cosec2θ−

cosecθ

sec2θ

= RHS

Hence, LHS = RHS

Question 32: Prove that 𝐜𝐨𝐭𝟐𝛉(𝐬𝐞𝐜𝛉−𝟏)

(𝟏+𝐬𝐢𝐧𝛉)+

𝐬𝐞𝐜𝟐𝛉(𝐬𝐢𝐧𝛉−𝟏)

(𝟏+𝐬𝐞𝐜𝛉)= 𝟎

Solution:

LHS = cot2θ(secθ−1)

(1+sinθ)+

sec2θ(sinθ−1)

(1+secθ)

=

cos2θ

sin2θ(

1

cosθ−1)

(1+sinθ)+

1

cos2θ(sinθ−1)

(1+1

cosθ)

=

cos2θ

sin2θ(1−

cosθ

cosθ)

(1+sinθ)+

(sinθ−1)

cos2θ

(cosθ+1

cosθ)

© PRAADIS

EDUCATION

DO NOT C

OPY

= cos2θ(1−cosθ)

sin2θcosθ(1+sinθ)+

(sinθ−1)cosθ

(cosθ+1)cos2 θ

= cosθ(1−cosθ)

(1−cos2θ)(1+sinθ)+

(sinθ−1)cosθ

(cosθ+1)(1−sin2θ)

= cosθ(1−cosθ)

(1−cosθ)(1+cosθ)(1+sinθ)+

−(1−sinθ)cosθ

(cosθ+1)(1−sinθ)(1+sinθ)

= cosθ

(1+cosθ)(1+sinθ)−

cosθ

(cosθ+1)(1+sinθ)

= 0

= RHS

Question 33:

{𝟏

(𝐬𝐞𝐜𝟐𝛉−𝐜𝐨𝐬𝟐𝛉)+

𝟏

(𝐜𝐨𝐬𝐞𝐜𝟐𝛉−𝐬𝐢𝐧𝟐𝛉)} (𝐬𝐢𝐧𝟐𝛉 𝐜𝐨𝐬𝟐𝛉) =

𝟏−𝐬𝐢𝐧𝟐𝛉𝐜𝐨𝐬𝟐𝛉

𝟐+𝐬𝐢𝐧𝟐𝛉 𝐜𝐨𝐬𝟐𝛉

Solution:

LHS = {1

(sec2θ−cos2θ)+

1

(cosec2θ−sin2θ)} (sin2θ cos2θ)

= {cos2θ

1−cos4θ+

sin2θ

1−sin4θ} (sin2θ cos2θ)

= {cos2θ

(1−cos2θ)(1+cos2θ)+

sin2θ

(1−sin2θ)(1+sin2θ)} (sin2θcos2θ)

= [cot2θ

1+cos2θ+

tan2θ

1+sin2θ] sin2θcos2θ

= cos4θ

1+cos2θ+

sin4θ

1+sin2θ

= (cos2θ)

2

1+cos2θ+

(sin2θ)2

1+sin2θ

= (1−sin2θ)

1+cos2θ+

(1−cos2θ)2

1+sin2θ

© PRAADIS

EDUCATION

DO NOT C

OPY

= (1−sin2θ)

2(1+sin2)+(1−cos2θ)

2(1+cos2θ)

(1+sin2θ)(1+cos2θ)

= cos4θ(1+sin2θ)+sin4θ(1+cos2θ)

1+sin2θ+cos2 θ+sin2θcos2θ

= cos4θ+cos4θsin2θ+sin4θ+sin4θcos2θ

1+1+sin2θcos2θ

= cos2θ+sin4θ+sin2θcos2θ(sin2θ+cos2θ)

2+sin2θcos2θ

= (cos2θ)

2+(sin2θ)

2+sin2θcos2θ(1)

2+sin2θcos2θ

= (cos2θ+sin2θ)

2−2sin2θcos2θ+sin2θcos2 θ(1)

2+sin2θcos2θ

= 12+cos2θsin2θ−2cos2θsin2θ

2+sin2θcos2θ

= 1−cos2θsin2θ

2+sin2θcos2θ

= RHS

Question 34: (𝐬𝐢𝐧 𝐀−𝐬𝐢𝐧 𝐁)

(𝐜𝐨𝐬 𝐀+𝐜𝐨𝐬 𝐁)+

(𝐜𝐨𝐬 𝐀−𝐜𝐨𝐬 𝐁)

(𝐬𝐢𝐧 𝐀+𝐬𝐢𝐧 𝐁)= 𝟎

Solution:

LHS = (sin A−sin B)

(cos A+cos B)+

(cos A−cos B)

(sin A+sin B)

= (sinA−sinB)(sinA+sinB)+(cosA−cosB)(cosA−cosB)

(cosA+cosB)(sinA+sinB)

= sin2A−sin2B+cos2A−cos2B

(cosA+cosB)(sinA+sinB)

= 0

(cosA+cosB)(sinA+sinB)

= 0

© PRAADIS

EDUCATION

DO NOT C

OPY

= RHS

Question 35: 𝐭𝐚𝐧 𝐀+𝐭𝐚𝐧 𝐁

𝐜𝐨𝐭 𝐀+𝐜𝐨𝐭 𝐁= 𝐭𝐚𝐧 𝐀 𝐭𝐚𝐧 𝐁

Solution:

LHS = tan A+tan B

cot A+cot B

= tanA+tanB

1

tanA+

1

tanB

= tanA+tanBtanA+tanB

tanAtanB

= tanAtanB(tanA+tanB)

(tanA+tanB)

= tanAtanB

= RHS

Hence, LHS = RHS

Question 36: Show that none of the following is an identity:

(i) cos2θ + cos θ = 1

(ii) sin2θ + sin θ = 2

(iii) tan2θ + sin θ = cos2θ

Solution:

(i) cos2θ + cos θ = 1

LHS = cos²θ + cosθ

=1 − sin2θ + cosθ

=1 − (sin2θ − cosθ)

© PRAADIS

EDUCATION

DO NOT C

OPY

Since LHS ≠ RHS, this is not an identity.

(ii) sin2θ + sinθ = 1

LHS = sin2θ + sinθ

= 1 − cos2θ + sinθ

= 1 − (cos2θ − sinθ)

Since LHS ≠ RHS, this is not an identity.

(iii) tan2θ + sinθ = cos2θ

LHS = tan2θ + sinθ

= sin2θ

cos2θ+ sinθ

= 1−cos2θ

cos2θ+ sinθ

= sec2θ − 1 + sinθ

Since LHS ≠ RHS, this is not an identity.

Question 37: Prove that (𝐬𝐢𝐧𝛉 − 𝟐𝐬𝐢𝐧𝟑𝛉) = (𝟐𝐜𝐨𝐬𝟑𝛉 − 𝐜𝐨𝐬𝛉)𝐭𝐚𝐧𝛉

Solution:

RHS = (2cos3θ − cosθ)tanθ

= (2cos2θ − 1)cosθ ×sinθ

cosθ

= [2(1 − sin2θ) − 1]sinθ

= (2 − 2sin2θ − 1)sinθ

= (1 − 2sin2θ)sinθ

= (sinθ − 2sin3θ)

=LHS

© PRAADIS

EDUCATION

DO NOT C

OPY

Question 38: If 1 + sin2θ = 3 sin θ cos θ then prove that tan θ = 1 or 𝟏

𝟐.

Solution:

1 + sin2(θ) = 3sin(θ) cos(θ)

Divide by cos2(θ) throughout to get: sec2(θ) + tan2(θ) = 3 tan(θ)

⇒ (1 + tan2(θ)) + tan2(θ) = 3 tan(θ)

⇒ 2tan2(θ) − 3 tan(θ) + 1 = 0, which is quadratic in tan(θ).

Solving using Quadratic formula, we get:

tan(θ) = +3 ± √(−3)2−4(2)(1)

2(2)= √

+3±9−8

4=

+3±1

4

⇒ tan(θ) = +4

4, +

2

4 = 1 or

1

2.

© PRAADIS

EDUCATION

DO NOT C

OPY

Exercise 13.2

Page number: 594

Question 1: If a cos θ + b sin θ = m and a sin θ − b cos θ = n, prove

that (m2 + n2) = (a2 + b2).

Solution:

a cos θ + b sin θ = m

Squaring equation, we get

a2 cos2 θ + b2 sin2 θ + 2ab cos θ sin θ = m2 …… (1)

Again Square equation, a sin θ – b cos θ = n

a2 sin2 θ + b2 cos2 θ – 2ab cos θ sin θ = n2 …… (2)

Add (1) and (2)

a2 cos2 θ + b2 sin2 θ + 2ab cos θ sin θ + a2 sin2 θ + b2 cos2 θ – 2ab cos θ

sin θ = m2 +n2

a2 (cos2 θ + sin2θ) + b2 (cos2 θ + sin2 θ) = m2 + n2

(Using cos2 θ + sin2θ = 1)

a2 + b2 = m2 + n2

Hence Proved.

Question 2: If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove

that (x2 − y2) = (a2 − b2).

Solution:

a sec θ + b tan θ = x

a tan θ + b sec θ = y

Squaring above equations:

© PRAADIS

EDUCATION

DO NOT C

OPY

a2 sec2 θ + b2 tan2 θ + 2ab sec θ tan θ = x2 …. (1)

a2 tan2 θ + b2 sec2 θ + 2ab sec θ tan θ = y2 …. (2)

Subtract equation (2) from (1):

a2 (sec2 θ – tan2 θ) + b2 (tan2 θ – sec2 θ) = x2 – y2

(using sec2 θ = 1 + tan2 θ)

or a2 – b2 = x2 – y2

Hence proved.

Question 3: If (𝒙

𝒂𝐬𝐢𝐧 𝜽 −

𝒚

𝒃𝐜𝐨𝐬 𝜽) = 𝟏 and (

𝒙

𝒂𝐬𝐢𝐧 𝜽 +

𝒚

𝒃𝐜𝐨𝐬 𝜽) = 𝟏,

Prove that 𝒙𝟐

𝒂𝟐 +𝒚𝟐

𝒃𝟐 = 𝟐

Solution:

𝑥

𝑎 sin θ –

𝑦

𝑏 cos θ = 1

𝑥

𝑎 cos θ +

𝑦

𝑏 sin θ = 1

Squaring both the equations, we have

𝑥2

𝑎2 sin2 θ + 𝑦2

𝑏2 cos2 θ – 2 𝑥𝑦

𝑎𝑏 cos θ sin θ = 1 ….... (1)

𝑥2

𝑎2 cos2 θ + 𝑦2

𝑏2 sin2 θ + 2 𝑥𝑦

𝑎𝑏 cos θ sin θ = 1 …… (2)

Add (1) and (2), we get

𝑥2

𝑎2 (sin2 θ + cos2 θ) + 𝑦2

𝑏2 (sin2 θ + cos2 θ) = 1+1

(Using cos2 θ + sin2θ = 1)

𝑥2

𝑎2 + 𝑦2

𝑏2 = 2

© PRAADIS

EDUCATION

DO NOT C

OPY

Question 4: If (sec θ + tan θ) = m and (sec θ − tan θ) = n, show that

mn = 1.

Solution:

(sec θ + tan θ) = m … (1) and

(sec θ − tan θ) = n …. (2)

Multiply (1) and (2), we have

(sec θ + tan θ) (sec θ – tan θ) = mn

(sec2 θ – tan2 θ) = mn (Because sec2 θ – tan2 θ = 1)

1 = mn

Or mn = 1

Hence Proved

Question 5: If (cosec θ + cot θ) = m and (cosec θ − cot θ) = n, show

that mn = 1.

Solution:

(cosec θ + cot θ) = m … (1) and

(cosec θ − cot θ) = n … (2)

Multiply (1) and (2)

(cosec2 θ – cot2 θ) = mn (Because cosec2 θ – cot2 θ = 1)

1 = mn

Or mn = 1

Hence Proved

Question 6: If x = a cos3 θ and y = b sin3 θ, prove that

© PRAADIS

EDUCATION

DO NOT C

OPY

(𝑥

𝑎)

2

3+ (

𝑦

𝑏)

2

3= 1

Solution:

x = a cos3 θ

y = b sin3 θ

L.H.S.

(𝑥

𝑎)

2

3+ (

𝑦

𝑏)

2

3

= (𝑎 cos3 𝜃

𝑎)

2

3+ (

𝑏 sin3 𝜃

𝑏)

2

3

= (cos3 𝜃)2

3 + (sin3 𝜃)2

3

= cos2 θ + sin2 θ

= 1

= R.H.S.

Question 7: If (tan θ + sin θ) = m and (tan θ − sin θ) = n, prove that

(m2 − n2)2 = 16mn.

Solution:

(tan θ + sin θ) = m and (tan θ − sin θ) = n

To Prove: (m2 − n2)2 = 16mn

L.H.S. = (m2 − n2)2

= [(tan θ + sin θ)2 – (tan θ − sin θ)2]2

= (4tan θ sin θ)2

= 16 tan2 θ sin2 θ … (1)

© PRAADIS

EDUCATION

DO NOT C

OPY

R.H.S. = 16mn

= 16(tan θ + sin θ) (tan θ − sin θ)

= 16(tan2 θ − sin2 θ)

= 16 [sin2 θ(1 – cos2θ)

cos2θ]

= 16 × sin2θ

cos2θ × (1 – cos2 θ)

= 16 tan2 θ sin2 θ … (2)

From (1) and (2)

L.H.S. = R.H.S.

Question 8: If (cot θ + tan θ) = m and (sec θ − cos θ) = n, prove that

(𝐦𝟐𝐧)(𝟐

𝟑) – (𝐦𝐧𝟐)(

𝟐

𝟑) = 1.

Solution:

(cot θ + tan θ) = m and (sec θ − cos θ) = n

m = 1

tanθ + tan θ =

(1+tan2 θ)

tan θ=

(sec2θ)

tan θ

= 1

sinθcosθ

or m = 1

sinθcosθ

Again, n = sec θ − cos θ

= 1

cosθ− cosθ

= (1 – cos2 θ)

cos θ

= sin2 θ

cosθ

© PRAADIS

EDUCATION

DO NOT C

OPY

or n = sin2 θ

cosθ

To prove: (m2n)(2

3) – (mn2)(

2

3) = 1

L.H.S.

Substituting the values of m and n, we have

= (m2n)(2

3) – (mn2)(

2

3)

= [(1

sinθcosθ)

sin2 θ

cosθ]

2

3

– [(1

sinθcosθ) × (

sin2 θ

cosθ)

2

]

2

3

= [sin2 θ

sin2 θ cos3θ]

2

3 – [(

sin4 θ

sinθcos3θ)]

2

3

= [1

cos3θ]

2

3 – [(

sin3 θ

cos3θ)]

2

3

= 1

cos2θ−

sin2 θ

cos2 θ

= (1 – sin2 θ) cos2 θ (We know, 1 – sin2 θ = cos2 θ)

= cos2 θ

cos2 θ

= 1

=R.H.S.

Hence proved.

Question 9: If (cosec θ − sin θ) = a3 and (sec θ − cos θ) = b3, prove that

a2b2(a2 + b2) = 1.

Solution:

(cosec θ − sin θ) = a3 and (sec θ − cos θ) = b3

© PRAADIS

EDUCATION

DO NOT C

OPY

(cosec θ − sin θ) = a3

(1

sinθ− sin θ) = a3

cos2θ

sinθ = a3

And a2 = (a3)(2

3)

= (cos2θ

sinθ)

(2

3)

…..(1)

Again

(sec θ − cos θ) = b3

(1

cosθ− cos θ) = b3

= sin2 θ

cos θ = b3

And, b2 = (b3)(2

3)

= (sin2 θ

cos θ)

(2

3)

To Prove: a2b2(a2 + b2) = 1

L.H.S. a2b2(a2 + b2)

= [(cos2θ

sinθ)]

2

3× [(

sin2 θ

cos θ)]

2

3× ([(

cos2θ

sinθ)]

2

3+ [(

sin2 θ

cos θ)]

2

3)

= (cos2θsin2 θ

cos θ sinθ)

2

3× ([(

cos2θ

sinθ)]

2

3+ [(

sin2 θ

cos θ)]

2

3)

= (cos3θ)2

3 × (sin3θ)2

3

= sin2 θ + cos2 θ

= 1

=R.H.S.

Hence proved.

© PRAADIS

EDUCATION

DO NOT C

OPY

Question 10: If (2 sin θ + 3 cos θ) = 2, show that (3 sin θ − 2 cos θ) = ±

3.

Solution:

(2 sin θ + 3 cos θ) = 2 … (1)

(2 sin θ + 3 cos θ)2 + (3 sin θ – 2 cos θ)2

= 4sin2 θ + 9 cos2 θ + 12sin θ cos θ + 9 sin2 θ + 4 cos2 θ – 12 sin θ cos θ

= 13sin2 θ + 13 cos2 θ

= 13(sin2 θ + cos2 θ)

= 13 (Because (sin2 θ + cos2 θ) = 1)

⇒ (2 sin θ + 3 cos θ)2 + (3 sin θ – 2 cos θ)2 = 13

Using equation (1)

⇒ (2)2 + (3 sin θ – 2 cos θ)2 = 13

⇒ (3 sin θ – 2 cos θ)2 = 9

or (3 sin θ – 2 cos θ) = ± 3

Hence Proved.

Question 11: If (𝐬𝐢𝐧𝛉 + 𝐜𝐨𝐬𝛉) = √𝟐𝐜𝐨𝐬𝛉, show that 𝐜𝐨𝐭𝛉 = (√𝟐 +

𝟏).

Solution:

We have, (sinθ + cosθ) = √2cosθ

Dividing both sides by sinθ we get

sinθ

sinθ+

cosθ

sinθ=

√2cosθ

sinθ

© PRAADIS

EDUCATION

DO NOT C

OPY

⇒ 1 + cotθ = √2cotθ

⇒ √2cotθ − cotθ = 1

⇒ (√2 − 1)cotθ = 1

⇒ cotθ =1

(√2−1)

⇒ cotθ =1

(√2−1)×

(√2+1)

(√2+1)

⇒ cotθ =(√2+1)

2−1

⇒ cotθ =(√2+1)

1

∴ cotθ = (√2 + 1)

Question 12: If cos θ + sin θ = √𝟐 sin θ, show that sin θ − cos θ

= √𝟐 cos θ.

Solution:

Given: cos θ + sin θ = √2 sin θ

We have (sinθ + cosθ)2 + (sinθ − cosθ)2 = 2(sin2θ + cos2θ)

⇒ (√2sinθ)² + (sinθ − cosθ)² = 2

⇒ 2sin2θ + (sinθ − cosθ)2 = 2

⇒ (sinθ − cosθ)2 = 2 − 2sin2θ

⇒ (sinθ − cosθ)2 = 2(1 − sin2θ)

⇒ (sinθ − cosθ)2 = 2cos2θ

⇒ (sinθ − cosθ) = √2cosθ

Hence proved.

© PRAADIS

EDUCATION

DO NOT C

OPY

Question 13: If 𝐬𝐞𝐜𝛉 + 𝐭𝐚𝐧𝛉 = 𝒑, prove that

(i) 𝐬𝐞𝐜 𝜽 =𝟏

𝟐(𝒑 +

𝟏

𝒑) (ii) 𝐭𝐚𝐧𝛉 =

𝟏

𝟐(𝒑 −

𝟏

𝒑) (iii) 𝐬𝐢𝐧𝛉 =

𝒑𝟐−𝟏

𝒑𝟐+𝟏

Solution:

(i)We have, secθ + tanθ = 𝑝 .....(1)

⇒secθ+tanθ

secθ−tanθ

secθ−tanθ= 𝑝

⇒sec2θ−tan2θ

secθ−tanθ= 𝑝

⇒1

secθ−tanθ= 𝑝

⇒ secθ − tanθ =1

𝑝 ..... (2)

Adding (1) and (2), we get

2secθ = 𝑝 +1

𝑝

⇒ secθ =1

2(𝑝 +

1

𝑝)

(ii) Subtracting (2) from (1), we get

2tanθ = (𝑝 −1

𝑝)

⇒ tanθ =1

2(𝑝 −

1

𝑝)

(iii) Using (i) and (ii), we get

sinθ =tanθ

secθ

=

1

2(𝑝−

1

𝑝)

1

2(𝑝+

1

𝑝)

© PRAADIS

EDUCATION

DO NOT C

OPY

=(

𝑝2−1

𝑝)

(𝑝2+1

𝑝)

∴ sinθ =𝑝2−1

𝑝2+1

Question 14: If tan A = n tan B and sin A = m sin B, prove that

cos2A = (𝒎𝟐−𝟏)

𝒏𝟐−𝟏.

Solution:

We have tanA = 𝑛 tanB

⇒ cotB =𝑛

tanA ...(i)

Again, sinA = 𝑚 sinB

⇒ cosecB =𝑚

sinA ...(ii)

Squaring (i) and (ii) and subtracting (ii) from (i), we get

𝑚2

sin2A−

𝑛2

tan2A= 𝐜𝐨𝐬𝐞𝐜2𝐁 − cot2B

⇒𝑚2

sin2A−

n2cosA

sin²A= 1

⇒ 𝑚² − 𝑛2cos2A = sin2A

⇒ 𝑚² − 𝑛2 cos2A = 1 − cos2A

⇒ 𝑛2cos2A − cos2A = 𝑚2 − 1

⇒ cos2A(𝑛2 − 1) = (𝑚2 − 1)

⇒ cos2A = (𝑚2 − 1)(𝑛2 − 1)

∴ cos2A = (𝑚2 − 1)(𝑛2 − 1)

© PRAADIS

EDUCATION

DO NOT C

OPY

Question 15: If 𝒎 = (𝐜𝐨𝐬𝛉 − 𝐬𝐢𝐧𝛉) and 𝒏 = (𝐜𝐨𝐬𝛉 + 𝐬𝐢𝐧𝛉), then

show that √𝒎

𝒏+ √

𝒏

𝒎=

𝟐

√𝟏−𝐭𝐚𝐧𝟐𝛉.

Solution:

LHS = √𝑚

𝑛+ √

𝑛

𝑚

= √𝑚

√𝑛+

√𝑛

√𝑚

= 𝑚+𝑛

√𝑚𝑛

= (cosθ−sinθ)+cosθ+sinθ

√(cosθ−sinθ)(cosθ+sinθ)

= 2cosθ

√cos2θ−sin2θ

= (

2cosθ

cosθ)

(√cos2θ−sin2θ

cosθ)

= 2

√cos2θ

cos2θ−

sin2θ

cos2θ

= 2

√1−tan2θ

= RHS

© PRAADIS

EDUCATION

DO NOT C

OPY

Exercise 13.3

Page number: 596

Very Short and Short Answer Questions:

Question 1: Write the value of (1 – sin2 θ) sec2 θ.

Solution:

(1 – sin2θ) sec2 θ = (cos2 θ) × 1

cos2𝜃

= 1

Question 2: Write the value of (1-cos2θ) cosec2θ.

Solution:

(1-cos2θ) cosec2θ = sin2θ × 1

sin2θ

= 1

Question 3: Write the value of (1 + tan2θ) cos2θ.

Solution:

(1 + tan2θ) cos2θ = sec2 θ × 1

sec2θ

= 1

Question 4: Write the value of (1 + cot2θ) sin2θ.

Solution:

(1 + cot2θ) sin2θ = cose2θ × 1

cosec2𝜃

= 1

© PRAADIS

EDUCATION

DO NOT C

OPY

Question 5: Write the value of sin2θ + 𝟏

(𝟏+𝐭𝐚𝐧𝟐 𝜽)

Solution:

sin2θ + 1

(1+tan2 𝜃)

= sin2θ + 1

(sec2 𝜃)

= sin2θ + cos2θ

= 1

Question 6: Write the value of (𝐜𝐨𝐭𝟐𝛉 −𝟏

𝐬𝐢𝐧𝟐𝛉)

Solution:

(cot2θ −1

sin2θ) = (

cos2θ

sin2θ –

1

sin2θ)

= (cos2θ−1)

sin2θ

= −sin2θ

sin2θ

= −1

Question 7: Write the value of sin θ cos(90°-θ) + cos θ sin(90°-θ).

Solution:

sin θ cos(90°- θ) + cos θ sin(90°- θ) = sinθ × sinθ + cosθ × cosθ

= sin2θ + cos2θ

= 1

© PRAADIS

EDUCATION

DO NOT C

OPY

Question 8: Write the value of cosec2(90°-θ) – tan2θ.

Solution:

cosec2(90° - θ) – tan2θ = sec2θ – tan2θ

= 1

Question 9: Write the value of sec2 θ (1 + sin θ) (1 – sin θ).

Solution:

sec2θ (1 + sin θ) (1 – sin θ) = sec2θ (1 – sin2 θ)

= sec2θ × cos2θ

= 1

cos2θ × cos2θ

= 1

Question 10: Write the value of cosec2θ (1 + cos θ) (1 – cos θ).

Solution:

cosec2θ (1 + cos θ) (1 – cos θ) = cosec2θ (1 – cos2 θ)

= cosec2θ × sin2θ

= cosec2θ × 1

cosec2𝜃

= 1

Question 11: Write the value of sin2θ cos2θ (1 + tan2θ) (1 + cot2θ).

Solution:

sin2θ cos2θ (1 + tan2θ) (1 + cot2θ) = sin2 θ × cos2 θ × sec2 θ × cosec2 θ

= sin2θ × cos2θ × 1

cos2θ×

1

sin2θ =1

© PRAADIS

EDUCATION

DO NOT C

OPY

Question 12: Write the value of (1 + tan2θ) (1 + sin θ) (1 – sin θ).

Solution:

(1 + tan2θ) (1 + sin θ) (1 – sin θ) = sec2θ (1 – sin2 θ)

= sec2θ × cos2θ

= 1

cos2θ× cos2θ

= 1

Question 13: Write the value of 3 cot2θ – 3 cosec2θ.

Solution:

3 cot2θ – 3 cosec2θ = 3(cot2θ – cosec2θ)

= 3 × -1

= -3

Question 14: Write the value of 4tan2θ – 𝟒

𝐜𝐨𝐬𝟐𝛉

Solution:

4tan2θ – 4

cos2θ = 4 ×

sin2θ

cos2θ–

4

cos2θ

= (4(sin2θ – 1))

cos2θ

= 4(−cos2θ)

cos2θ

= -4

© PRAADIS

EDUCATION

DO NOT C

OPY

Question 15: Write the value of (𝐭𝐚𝐧2𝛉 – 𝐬𝐞𝐜2𝛉)

(𝐜𝐨𝐭2𝛉 – 𝐜𝐨𝐬𝐞𝐜2𝛉)

Solution:

(tan2θ – sec2θ)

(cot2θ – cosec2θ) =

−1

−1

= 1 (Using 1 + cot2θ = cose2θ and 1 + tan2θ = sec2θ)

Question 16: If 𝐬𝐢𝐧𝛉 =𝟏

𝟐, then write the value of (𝟑𝐜𝐨𝐭𝟐𝛉 + 𝟑).

Solution:

As, sinθ =1

2

So, cosec θ =1

sin θ= 2 .....(i)

Now,

3cot2θ + 3

= 3(cot2θ + 1)

= 3cosec2θ

= 3(2)2 [Using (i)]

= 3(4)

= 12

Question 17: If 𝐜𝐨𝐬𝛉 =𝟐

𝟑, the write the value of (𝟒 + 𝟒 𝐭𝐚𝐧𝟐𝛉).

Solution:

4 + 4 tan2θ

= 4(1 + tan2θ)

© PRAADIS

EDUCATION

DO NOT C

OPY

= 4sec2θ

=4

cos2θ

=4

(2

3)

2

=4

(4

9)

=4×9

4

= 9

Question 18: If 𝐜𝐨𝐬𝛉 =𝟕

𝟐𝟓, then write the value of (𝐭𝐚𝐧𝛉 + 𝐜𝐨𝐭𝛉).

Solution:

As sin2θ = 1 − cos2θ

= 1 − (7

25)

2

= 1 −49

625

=625−49

625

⇒ sin2θ =576

625

⇒ sinθ = √576

625

⇒ sinθ =24

25

Now,

tanθ + cotθ

© PRAADIS

EDUCATION

DO NOT C

OPY

=sinθ

cosθ+

cosθ

sinθ

=sin2θ+cos2θ

cosθ sinθ

=1

(7

25×

24

25)

=1

(168

625)

=625

168

Question 19: If 𝐜𝐨𝐬𝛉 =𝟐

𝟑, then write the value of

(𝐬𝐞𝐜𝛉−𝟏)

(𝐬𝐞𝐜𝛉+𝟏).

Solution:

sec θ−1

sec θ+1

= (1

cos θ−

1

1) (

1

cos θ+

1

1)

= (1−cos θ

cos θ) (

1+cos θ

cos θ)

=1−cosθ

1+cosθ

=(

1

1−

2

3)

(1

1+

2

3)

=(

1

3)

(5

3)

=1

5

Question 20: If 𝟓 𝐭𝐚𝐧𝛉 = 𝟒, then write the value of (𝐜𝐨𝐬𝛉−𝐬𝐢𝐧𝛉)

(𝐜𝐨𝐬𝛉+𝐬𝐢𝐧𝛉).

Solution:

We have,

© PRAADIS

EDUCATION

DO NOT C

OPY

5 tanθ = 4

⇒ tanθ =4

5

Now,

(cosθ−sinθ)

(cosθ+sinθ)

=(

cosθ

cosθ−

sinθ

cosθ)

(cosθ

cosθ+

sinθ

cosθ) (Dividing numerator and denominator by cosθ)

= (1−tanθ)

(1+tanθ)

=(

1

1−

4

5)

(1

1+

4

5)

=(

1

5)

(9

5)

=1

9

Question 21: If 𝟑 𝐜𝐨𝐭𝛉 = 𝟒, then write the value of (𝟐 𝐜𝐨𝐬𝛉+𝐬𝐢𝐧𝛉)

(𝟒 𝐜𝐨𝐬𝛉−𝐬𝐢𝐧𝛉).

Solution:

We have,

3 cotθ = 4

⇒ cotθ =4

3

Now, (2 cosθ+sinθ)

(4 cosθ−sinθ)

=(

2cosθ

sinθ+

sinθ

sinθ)

(4cosθ

sinθ−

sinθ

sinθ) (Dividing numerator and denominator by sinθ)

© PRAADIS

EDUCATION

DO NOT C

OPY

= (2cotθ+1)

(4cotθ−1)

=(2×

4

3+1)

(4×4

3−1)

=(

8

3+

1

1)

(16

3−

1

1)

=(

8+3

3)

(16−3

3)

=(

11

3)

(13

3)

=11

13

Question 22: If 𝐜𝐨𝐭𝛉 =𝟏

√𝟑, then write the value of

(𝟏−𝐜𝐨𝐬𝟐𝛉)

(𝟐−𝐬𝐢𝐧𝟐𝛉).

Solution:

We have,

cotθ =1

√3

⇒ cotθ = cot (π

3)

⇒ θ =π

3

Now, (1−cos2θ)

(2−sin2θ)

=1−cos2(

𝜋

3)

2−sin2(𝜋

3)

© PRAADIS

EDUCATION

DO NOT C

OPY

=1−(

1

2)

2

2−(√3

2)

2

=(

1

1−

1

4)

(2

1−

3

4)

=(

3

4)

(5

4)

=3

5

Question 23: If 𝐭𝐚𝐧𝛉 =𝟏

√𝟓, then write the value of

(𝐜𝐨𝐬𝐞𝐜𝟐𝛉−𝐬𝐞𝐜𝟐𝛉)

(𝐜𝐨𝐬𝐞𝐜𝟐𝛉+𝐬𝐞𝐜𝟐𝛉).

Solution:

(cosec2θ−sec2θ)

(cosec2θ+sec2θ)

= (1+cot2θ)−(1+tan2θ)

(1+cot2θ)+(1+tan2θ)

= (1+

1

tan2θ)−(1+tan2θ)

(1+1

tan2θ)+(1+tan2θ)

= (1+

1

tan2θ−1−tan2θ)

(1+1

tan2θ+1+tan2θ)

= (

1

tan2θ−tan2θ)

(1

tan2θ+tan2θ+2)

= (

√5

1)

2

−(1

√5)

2

(√5

1)

2

+(1

√5)

2+2

© PRAADIS

EDUCATION

DO NOT C

OPY

= (

5

1−

1

5)

(5

1+

1

5+

2

1)

= (

24

5)

(36

5)

= 24

36

= 2

3

Question 24: If 𝐜𝐨𝐭 𝑨 =𝟒

𝟑 and (𝐀 + 𝐁) = 𝟗𝟎°, then what is the value

of tan B?

Solution:

We have,

cotA =4

3

⇒ cot(90° − B) =4

3 (As, A + B = 90°)

∴ tanB =4

3

Question 25: If 𝐜𝐨𝐬𝐁 =𝟑

𝟓 and (𝐀 + 𝐁) = 𝟗𝟎°, then find the value of

𝐬𝐢𝐧𝐀.

Solution:

We have,

cosB =3

5

⇒ cos(90° − A) =3

5 (As, A + B = 90°)

© PRAADIS

EDUCATION

DO NOT C

OPY

∴ sinA =3

5

Question 26: If √𝟑 𝐬𝐢𝐧𝛉 = 𝐜𝐨𝐬𝛉 and θ is an acute angle, then find the

value of θ.

Solution:

We have,

√3 sinθ = cosθ

⇒sinθ

cosθ=

1

√3

⇒ tanθ =1

√3

⇒ tanθ = tan30°

∴ θ = 30°

Question 27: Write the value of tan10° tan20° tan70° tan80°.

Solution:

tan10° tan20° tan70° tan80°

= cot (90° − 10°) cot (90° − 20°) tan 70° tan 80°

= cot 80° cot 70° tan 70° tan 80°

= 1

tan 80°×

1

tan 70°× tan70° × tan80°

= 1

Question 28: Write the value of tan1° tan2° ... tan89°.

Solution:

© PRAADIS

EDUCATION

DO NOT C

OPY

tan1° tan2° ... tan89°=tan1° tan2° tan3° ... tan45° ...tan87° tan88° tan89°

= tan1° tan2° tan3° ... tan45° ...cot (90°−87°) cot (90°−88°) cot (90°−89°)

= tan1° tan2° tan3° ... tan45° ...cot3° cot2° cot1°

= tan1° × tan2° × tan3° × ... × 1 × ... × 1

tan 3° ×

1

tan 2° ×

1

tan 1°

= 1

Question 29: Write the value of cos1° cos2° ... cos180°.

Solution:

cos1° cos2° ... cos180°

= cos1° cos2° ... cos90° ... cos180°

= cos1° cos2° ... 0 ... cos180°

= 0

Question 30: If 𝐭𝐚𝐧𝐀 =𝟓

𝟏𝟐, then find the value of (sinA+cosA)secA.

Solution:

(sin A + cos A) sec A

= (sinA + cosA)1

cosA

=sinA

cosA+

cosA

cosA

= tanA + 1

=5

12+

1

1

=5+12

12

© PRAADIS

EDUCATION

DO NOT C

OPY

=17

12

Question 31: If 𝐬𝐢𝐧𝛉 = 𝐜𝐨𝐬(𝛉 − 𝟒𝟓°), where θ is acute, then find the

value of θ.

Solution:

We have,

sinθ = cos(θ − 45°)

⇒ cos(90° − θ) = cos(θ − 45°)

Comparing both sides, we get

90° − θ = θ − 45°

⇒ θ + θ = 90° + 45°

⇒ 2θ = 135°

⇒ θ = (135

2)

o

∴ θ = 67.5°

Question 32: Find the value of 𝐬𝐢𝐧𝟓𝟎°

𝐜𝐨𝐬𝟒𝟎°+

𝐜𝐨𝐬𝐞𝐜𝟒𝟎°

𝐬𝐞𝐜𝟓𝟎°− 𝟒𝐜𝐨𝐬𝟓𝟎° 𝐜𝐨𝐬𝐞𝐜𝟒𝟎°.

Solution:

sin50°

cos40°+

cosec40°

sec50°− 4cos50° cosec40°

= cos(90°−50°)

cos40°+

sec(90°−40°)

sec50°− 4sin(90° − 50°) cosec40°

= cos40°

cos40°+

sec50°

sec50°− 4 sin40° ×

1

sin40°

= 1 + 1 − 4 = −2

© PRAADIS

EDUCATION

DO NOT C

OPY

Question 33: Find the value of sin 48° sec 42° + cos 48° cosec 42°.

Solution:

sin 48° sec 42° + cos 48° cosec 42°

= sin 48° cosec (90° − 42°) + cos 48° sec (90° − 42°)

= sin48° cosec 48° + cos 48° sec 48°

= sin48° × 1

sin48° + cos48° ×

1

cos48°

= 1 + 1

= 2

Question 34: If 𝒙 = 𝒂 𝐬𝐢𝐧𝛉 and 𝒚 = 𝒃 𝐜𝐨𝐬 𝜽, then write the value of

(𝒃𝟐𝒙𝟐 + 𝒂𝟐𝒚𝟐).

Solution:

(𝑏2𝑥2 + 𝑎2𝑦2)

= 𝑏2(𝑎 sinθ)2 + 𝑎2(𝑏 cosθ)2

= 𝑏2𝑎2 sin2θ + 𝑎2𝑏2cos2θ

= 𝑎2𝑏2(sin2θ + cos2θ)

= 𝑎2𝑏2 (1)

= 𝑎2𝑏2

Question 35: If 𝟓𝒙 = 𝐬𝐞𝐜𝛉 and 𝟓𝒙 = 𝐭𝐚𝐧𝛉, then find the value of

𝟓 (𝒙𝟐 −𝟏

𝒙𝟐).

Solution:

© PRAADIS

EDUCATION

DO NOT C

OPY

5 (𝑥2 −1

𝑥2)

= 25

5(𝑥2 −

1

𝑥2)

=1

5(25𝑥2 −

25

𝑥2)

=1

5[(5𝑥)2 − (5𝑥)2]

=1

5[(secθ)2 − (tanθ)2]

=1

5(sec2θ − tan2θ)

=1

5(1)

=1

5

Question 36: If 𝐜𝐨𝐬𝐞𝐜𝛉 = 𝟐𝒙 and 𝐜𝐨𝐭𝛉 = 𝟐𝒙, then find the value of

𝟐 (𝒙𝟐 −𝟏

𝒙𝟐).

Solution:

2 (𝑥2 −1

𝑥2)

= 4

2(𝑥2 −

1

𝑥2)

= 1

2(4𝑥2 − 4𝑥2)

= 1

2[(2𝑥)2 − (2𝑥)2]

= 1

2[(cosecθ)2 − (secθ)2]

= 1

2(cosec2θ − sec2θ)

© PRAADIS

EDUCATION

DO NOT C

OPY

= 1

2(1)

= 1

2

Question 37: If 𝐬𝐞𝐜𝛉 + 𝐭𝐚𝐧𝛉 = 𝒙, then find the value of sec θ.

Solution:

We have,

secθ + tanθ = 𝑥 ..... (i)

⇒ secθ+tanθ

secθ−tanθ

secθ−tanθ= 𝑥

⇒ sec2θ−tan2θ

secθ−tanθ= 𝑥

⇒ 1

secθ−tanθ=

𝑥

1

⇒ secθ − tanθ =1

𝑥 ..... (ii)

Adding (i) and (ii), we get

2 secθ = 𝑥 +1

𝑥

⇒2 secθ =𝑥2+1

𝑥

∴ secθ =𝑥2+1

2𝑥

Question 38: Find the value of 𝐜𝐨𝐬𝟑𝟖° 𝐜𝐨𝐬𝐞𝐜𝟓𝟐°

𝐭𝐚𝐧𝟏𝟖° 𝐭𝐚𝐧𝟑𝟓° 𝐭𝐚𝐧𝟔𝟎° 𝐭𝐚𝐧𝟕𝟐° 𝐭𝐚𝐧𝟓𝟓°.

Solution:

cos38° cosec52°

tan18° tan35° tan60° tan72° tan55°

© PRAADIS

EDUCATION

DO NOT C

OPY

= cos38° sec(90°−52°)

cot(90°−18°) cot(90°−35°)tan60° tan72° tan55°

= cos38° sec38°

cot72° cot55° tan60° tan72° tan55°

=

cos38°×1

cos38°1

tan72°×

1

tan55°×√3×tan72°×tan55°

=1

√3

Question 39: If 𝐬𝐢𝐧 𝜽 = 𝒙, then write the value of cotθ.

Solution:

cotθ =cosθ

sinθ

= √1−sin2θ

sinθ

= √1−𝑥2

2

Question 40: If 𝐬𝐞𝐜𝛉 = 𝒙, then write the value of tan θ.

Solution:

As, tan2θ = sec2θ − 1

So, tanθ = √sec2θ − 1 = √𝑥2 − 1

© PRAADIS

EDUCATION

DO NOT C

OPY