53
STUDY OF HYBRID COMPOSITE USING WOVEN ROVING MAT PROJECT MEMBERS V.Anand babu S.Ashok P.Kathiravan N.Udhaya kumar PROJECT GUIDE Mrs.V.Senthil Selvi M.E

Study of hybrid composite beam using woven roving mat

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Study of hybrid composite beam using woven roving mat

STUDY OF HYBRID COMPOSITE USING WOVEN ROVING MAT

• PROJECT MEMBERS V.Anand babu S.Ashok P.Kathiravan N.Udhaya kumar

• PROJECT GUIDE Mrs.V.Senthil Selvi M.E

Page 2: Study of hybrid composite beam using woven roving mat

ABSTRACT

From the 19th century the study of versatility of fibers and its applications in different branches of engineering is came to light , particularly in civil engineering as a construction material. From which wrapping techniques is one of the upcoming topics of interest.

The aim of this project is to spread awareness of fibers as a construction material in civil engineering. And also Effective utillization of coir fiber which is cheaply available in our zone (Ramnad).

Page 3: Study of hybrid composite beam using woven roving mat

• The experimental test on the RCC beams for flexural behavior using continuous hybrid fibre reinforced polymer (GFRP) sheets are carried out. Externally the GFRP(WRM),CFRP(COIR) sheets fibers were wrapped over RCC beams with epoxy were tested to failure using a symmetrically two point loading system. Four sets of beams were tested for this project. First type, the three ordinary (conventional) beams. Then glass type, and next three for coir, and out of three for sand wich.

Page 4: Study of hybrid composite beam using woven roving mat

INTRODUCTION

HISTORICAL PERSPECTIVE• Fibers have been used as reinforcement since

ancient times. • Historically, horsehair was used in mortar and

straw in mud bricks. • In the early 1900s, asbestos fibers were used in

concrete. • By the 1960s, steel, glass (GFRC), and synthetic

fibers such as polypropylene fibers were used in concrete, and research into new fiber reinforced concretes continues today.

Page 5: Study of hybrid composite beam using woven roving mat

FIBRE COMPOSITE• Composite is when two or more different materials are

combined together to create a superior and unique material.

HYBRID COMPOSITE• Hybrid composites are materials made by combining

two or more different type of fibres in common matrix. • They offer a range of properties that cannot be obtained

with a single type of reinforcement.• The hybridization of two types short fibres having

different lengths and diameters offers some advantages over each fibre alone being used in a single polymer matrix.

Page 6: Study of hybrid composite beam using woven roving mat

ADVANTAGE OF COMPOSITE• Corrosion resistance• Light weight• High strength• Fast installation• Large pre-fabricated parts• Easy to install and transport as well. APPLICATION OF COMPOSITE• This is a leading manufacturer for Fiber Reinforced Polymer (FRP)

bridge decks, bridge superstructures etc.,• It’s are also some of the popular composite material, used in

industries for aerospace.

Page 7: Study of hybrid composite beam using woven roving mat

FIBERS

• Fibers are the principal constituents in a fiber -reinforced composite material .

• Proper selection of the fiber type, fiber volume fraction , fiber length, and fiber orientation is very important.

Page 8: Study of hybrid composite beam using woven roving mat

TYPES OF FIber Natural fiber Synthetic fiber Natural fiber• The interest in natural fiber-reinforced polymer composite

materials is rapidly growing both in terms of their industrial applications and fundamental research.

• They are renewable, cheap, completely or partially recyclable, and biodegradable.

• Plants, such as flax, cotton, hemp, jute, sisal, kenaf, pineapple, bamboo, banana, etc.,

Page 9: Study of hybrid composite beam using woven roving mat

COIR FIBRE

Page 10: Study of hybrid composite beam using woven roving mat

COCONUT FIBRES

Page 11: Study of hybrid composite beam using woven roving mat

WOVEN COIR FABRIC ROLL

Page 12: Study of hybrid composite beam using woven roving mat

Advantages of Natural Fiber Composites

• Low specific weight, resulting in a higher specific strength and stiffness than glass fiber.

• It is a renewable source, the production requires little energy, and CO2 is used while oxygen is given back to the environment.

Page 13: Study of hybrid composite beam using woven roving mat

Synthetic fibre

• Synthetic fibres are man-made fibres

Page 14: Study of hybrid composite beam using woven roving mat

PROPERTIES OF ARTIFICIAL FIBRES

• Artificial fibres are divided into cellulose fibres (derived from wood or cotton) and synthetic fibres.

• Microfibre clothing is skin-friendly, containing no allergenic substances. The open air channels in microfibres guarantee a healthy exchange of heat and moisture.

• Microfibres do not absorb moisture, they conduct it away from the skin. This property is particularly important in high-quality sportswear.

Page 15: Study of hybrid composite beam using woven roving mat

CARBON FIBRE

Page 16: Study of hybrid composite beam using woven roving mat
Page 17: Study of hybrid composite beam using woven roving mat
Page 18: Study of hybrid composite beam using woven roving mat
Page 19: Study of hybrid composite beam using woven roving mat

STEEL FIBRES

Page 20: Study of hybrid composite beam using woven roving mat
Page 21: Study of hybrid composite beam using woven roving mat

Types of Resins

Epoxy resins : since they are less porous than the rest of the available types and present a remarkable ability to cover fillings. They are the most expensive type of resins.

Polyester resins :. On the contrary, they are more suitable for GRP boats. They are the cheapest ones.

Vinyl ester resins: They offer more effective moisture protection than the polyesters, and a more reasonable price than the epoxies, although the latter are considered to be the top in moisture resistance. Vinyl ester resins also present great mechanical properties; they are tougher and more flexible than polyesters.

Page 22: Study of hybrid composite beam using woven roving mat

Basic Ingredients of Concrete1.Cement – It is the basic binding material in concrete. 2. Water – It hydrates cement and also makes concreteWorkable. 3. Coarse Aggregate – It is the basic building component of

concrete. 4. Fine Aggregate – Along with cement paste it forms mortar grout

and fills the voids in the coarse aggregates. 5. Admixtures – They enhance certain properties of concrete

e.g.gain of strength, workability, Imperviousness etc.

Page 23: Study of hybrid composite beam using woven roving mat

LITRATURE REVIEW

• S.M. Sapuan*, M.N.M. Zan, E.S. Zainudin and Prithvi Raj Arora, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Malaysia,31 March 2005.

Tensile and flexural strengths for the coconut spathe-fibrereinforced composite ranged from 7.9 to 11.6 MPa and from 25.6 to 67.2 MPa respectively, implying that the tensile strength of coconut spathe-fibre is inferior to other natural fibres such as cotton, coconut coir and banana fibres. Used by INSTRON Material Test System

Page 24: Study of hybrid composite beam using woven roving mat

M. A. A. Saafan, Czech Technical University in Prague, Acta Polytechnica Vol. 46 No. 1/2006

Using the hand lay-up technique, successive layers of a woven fiber glass fabric were bonded along the shear span to increase the shear capacity and to avoid catastrophic premature failure modes. The test results of 18 beams are reported. The results indicated that significant increases in the shear strength and improvements in the overall structural behavior of beams with insufficient shear capacity could be achieved by proper application of GFRP wraps.

Page 25: Study of hybrid composite beam using woven roving mat

N. Pannirselvam, V. Nagaradjane and K.Chandramouli, ARPN Journal of Engineering and Applied Sciences, NOVEMBER 2009 .

Beams bonded with four different types of Glass Fibre Reinforced Polymer (GFRP) having 3.50 mm thickness were used. The study parameters of this investigation included first crack load, yield load, ultimate load, first crack deflection, yield deflection, ultimate deflection, of the test beams. The performance of FRP plated beams was compared with that of un plated beam. The test results showed that the beams strengthened with GFRP exhibited better performance.

Page 26: Study of hybrid composite beam using woven roving mat

A. Yusof & A. L. Saleh, Universiti Teknologi Malaysia , Malaysia March 2003.

Seven timber beams of Yellow Meranti species with the dimensions of 100 × 200 × 3000 mm were tested. One of the beams was used as a control beam (unstrengthened)while the remaining six beams were strengthened to used glass fibre ,before tested to failure under four point loading.The ultimate load has increased between 20 -30% for the strengthened beams when compared to the control beam

Page 27: Study of hybrid composite beam using woven roving mat

METHODOLOGY• Preparation of M25 concrete beam

• Wrapped with fibre composite

• Study of stress strain behaviour of composite beam with conventional beam.

Page 28: Study of hybrid composite beam using woven roving mat

SPECIMEN DETAILS

BEAM SAMPLES TYPES

3 BEAMS FOR CONVENSIONAL

3 BEAM FOR COIR FIBRE( WRAPING)

3 BEAM FOR GLASS FIBRE( WRAPING) (WRM)

3 BEAM FOR SANDWITCH (BOTH COIR & GLASS FIBRE) (WRM)

Page 29: Study of hybrid composite beam using woven roving mat

GLASS FIBER (WRM)

Page 30: Study of hybrid composite beam using woven roving mat

COIR FIBRE

Page 31: Study of hybrid composite beam using woven roving mat

PRELIMINARY TEST ON CONCRETE

• Specific gravity of fine aggregate• Specific gravity of coarse aggregate• Specific gravity of cement• Water absorption a)coarse aggregate b)fine aggregate• Sieve analysis of coarse and fine aggregate

Page 32: Study of hybrid composite beam using woven roving mat

DETERMINATION OF QUANTITY OF MATERIALS REQUIRED FOR CONCRETE BEAM

Volume of beam mould = 0.50x0.IOx0.10 = 0.005 m3

For 1 m3 of concrete required = 479 kg of cement

Hence 0.005 m3 of concrete required = 479 x 0.005= 2.395 kg

Page 33: Study of hybrid composite beam using woven roving mat

For M 25 mix design:

Cement = 2.395 kgFine Aggregate = 2.395 kg Coarse Aggregate = 4.79 kgWater = 0.4 x 2395

= 958 ml

Page 34: Study of hybrid composite beam using woven roving mat

REINFORCEMENT DETAILS

• Fe 415 Main bar diameter is 8mm. Stirrups bar diameter is 6mm.

Page 35: Study of hybrid composite beam using woven roving mat

DEMOULDED BEAMS

Page 36: Study of hybrid composite beam using woven roving mat

TESTING• The testing procedure for the entire specimen

was same. After the curing period 28 days was over.

• The most commonly used load arrangement for testing of beams will consist of two point loading system.

• Enabling bending capacity of the central portion to be assessed .

• The two points loads to measure deflection of the beam.

Page 37: Study of hybrid composite beam using woven roving mat

METHOD OF WRAPPING FIBRES USING EPOXY RESIN

• Here, the fibres were bonded to the specimens by hand layup technique. The surface of the specimen was slightly chipped so as to form good bond with the resin. The mixer of resin and hardener poured over the entire cleaned surface of the specimen.

Page 38: Study of hybrid composite beam using woven roving mat

BONDING TECHNIQUES • The surface was repaired to the required

standard, the epoxy resin was mixed in accordance with manufacture instructions. Mixing was carried out in a plastic and continued until mixture was in uniform color. When his was completed and the fabric had been cut to size. The epoxy resin was applied to the concrete. Then the second layer of epoxy resin was applied GFRP,CFRP sheet was then placed on top of the epoxy resin coating

Page 39: Study of hybrid composite beam using woven roving mat

BEAM WRAPPED BY GLASS FIBER

Page 40: Study of hybrid composite beam using woven roving mat

• These operation was carried out at room temperature. Concrete beam strengthened with glass and coir fabric were cured for 24 hours at room temperature before testing.

Page 41: Study of hybrid composite beam using woven roving mat

RESULTS AND DISCUSSION

• INITIAL AND ULTIMATE CRACKING LOADS OF VARIOUS BEAMS

TYPE OF BEAM INITIAL CRACKING(KN) ULTIMATE LOAD(KN)

CO 21.33 38.33

GL(WRM) 53.9 61.8

COI 57.45 61

HY(WRM) 60.5 75

Page 42: Study of hybrid composite beam using woven roving mat

• INTIAL CRACKING LOADS FOR VARIOUS BEAM

LOAD (KN)

TYPE OF BEAM

CO GL COI HY0

10

20

30

40

50

60

70

21.33

53.9 57.45 60.5

INTIALCRACKING

Page 43: Study of hybrid composite beam using woven roving mat

• ULTIMATE LOADS FOR VARIOUS BEAMS

LOAD (KN)

TYPE OF BEAM

CO COI GL HY0

10

20

30

40

50

60

70

80

38.33

61.8 61

75

ULTIMATE LOAD

Page 44: Study of hybrid composite beam using woven roving mat

• LOAD Vs DEFLECTION CURVE FOR CO AND COI-BEAMS

LOAD (KN)

DEFLECTION(MM)

0 1 2 3 4 5 6 7 8 9 100

10

20

30

40

50

60

70

CONVEN

COIR

Page 45: Study of hybrid composite beam using woven roving mat

LOAD Vs DEFLECTION CURVE FOR CO AND GL-BEAMS

0 1 2 3 4 5 60

10

20

30

40

50

60

70

CONVEN GLASS

Page 46: Study of hybrid composite beam using woven roving mat

LOAD Vs DEFLECTION CURVE FOR GL AND COI-BEAMS

LOAD(KN) DEFLECTION (MM)

0 1 2 3 4 5 6 7 8 9 100

10

20

30

40

50

60

70

GLASS

COIR

Page 47: Study of hybrid composite beam using woven roving mat

LOAD Vs DEFLECTION CURVE FOR CO AND HY-BEAMS

LOAD

(KN)

DEFLECTION (MM)

0 10 20 30 40 50 60 70 80 900

10

20

30

40

50

60

70

80

90

CONVEN

HYBRID

Page 48: Study of hybrid composite beam using woven roving mat

LOAD Vs DEFLECTION CURVE FOR GL AND HY-BEAMS

LOAD (KN)

DEFLECTION(MM)

0 1 2 3 4 5 6 7 8 90

10

20

30

40

50

60

70

80

90

GLASS

HYBRID

Page 49: Study of hybrid composite beam using woven roving mat

CONCLUSION

• The flexural strength of GL (WRM)-BEAMS was found to be significantly improved when compared with the CON-BEAMS.

• The flexural strength of HY (WRM)-BEAMS was found to be significantly improved when compared with the CON-BEAMS.

• The flexural strength of COI-BEAMS was found to be significantly improved when compared with the GL (WRM)-BEAMS.

Page 50: Study of hybrid composite beam using woven roving mat

• The flexural strength of HY (WRM)-BEAMS was found to be significantly improved when compared with the GL (WRM)-BEAMS.

• The flexural strength of HY (WRM)-BEAMS was found to be significantly improved when compared with the COI-BEAMS.

• The flexural strength of HY (WRM)-BEAMS was found to be significantly improved when compared with the COI, GL(WRM) AND CON-BEAMS

Page 51: Study of hybrid composite beam using woven roving mat

REFERENCE S.M. Sapuan*, M.N.M. Zan, E.S. Zainudin and

Prithvi Raj Arora, Journal of Tropical Agriculture 43 (1-2): 63-65, 2005 (Tensile and flexural strengths of coconut spathe-fibre reinforced epoxy composites)

M. A. A. Saafan, Acta Polytechnica Vol 46, jan 2006 (Shear Strengthening of Reinforced Concrete Beams Using GFRP Wraps)

Page 52: Study of hybrid composite beam using woven roving mat

Al-Sulaimani, G. J., Sharif, A., Basunbul, I. A., Baluch, M. H.,Ghaleb, B. N, ACI Structural Journal,Vol. 91, MARCH 1994, (Shear Repair for Reinforced Concrete by Fiber glass Plate Bonding)

Majid Ali, Second international conference on sustainable construction materials and technologies, JUNE 30,2010, (Coconut Fibre – A Versatile Material and its Applications in Engineering)

Page 53: Study of hybrid composite beam using woven roving mat

Thank you