45
Stresses Around Pin Loaded Holes in Mechanically Fastened Joints By Neville A. Tomlinson, PhD Howard University Washington DC January 2007

Utech Presentation

Embed Size (px)

Citation preview

Page 1: Utech Presentation

Stresses Around Pin Loaded Holes in

Mechanically Fastened Joints

ByNeville A. Tomlinson, PhD

Howard UniversityWashington DC

January 2007

Page 2: Utech Presentation

Abstract

• An analytical method for determining the stress distribution in pin loaded orthotropic plates is presented based on the complex stress function approach. The method assumes that the contact boundary at the pin-plate interface is unknown a priori and must be determined as part of the solution. It is further assumed that the pin is rigid, clearance exists between pin and plate, and the coefficient of friction remains constant throughout the contact zone. The boundary conditions at the pin-plate interface are specified in terms of the unknown contact angle and a trigonometric series used to represent the displacement field in the contact zone. Numerical results are presented for normal, tangential and shear stresses on the cavity for different lay-ups of graphite/epoxy laminates.

Page 3: Utech Presentation

Introduction

• The increasing use of composite materials has caused engineers to increase their efforts to understand the stress fields associated with these materials.

• One application that has received much attention is the stresses associated with the mechanical joining of composites

• Mechanical joining includes bolted, riveted and pinned joints which are relatively easy to assemble and disassemble.

• These joints are however prone to high stress concentrations which occurs in the vicinity of the hole, which is undesirable, and is often the source of premature failure.

Page 4: Utech Presentation

Schematic of Pin joint

pin

plate

Fig 1.

Page 5: Utech Presentation

Problem Definition

loadpinP

anglecontac

disppinu

clearance

radiuspinr

radiusholer

B

p

====

==

θ

λ.0

Fig. 2

Page 6: Utech Presentation

Exaggerated view of deformed hole by rigid pin

Fig 3

Page 7: Utech Presentation

The contact equation

• The equation that governs an ellipse can be written as

Consider triangle BAD in Fig.3. Point B has coordinates

2 2

2 21

x y

a b+ =

(1)

( )0 cospx u rλ ψ= + + (2)

' sin By R θ= (3)

Page 8: Utech Presentation

The contact equation

• From the ellipse

• Substituting (2-4) in (1) yields

• Equation (5) is the non-linear contact equation.

rb

rua p

++= 0λ(4)

( ) ( ) ( ){ }( ) ( ){ } ( )

222 2

0 0

2 22 2 2 20 0

cos 1 cos *

cos 1 cos 0

B p B

B B p p

u r u

r u r r u r

λ θ λ θ

θ θ λ λ

+ + − + −

+ − + + − + + = (5)

Page 9: Utech Presentation

Boundary conditions at the pin-plate interface

• The b.c. can be described as

• , •

• , • •

0u u= 0v = 0θ =

1 0u uα=Bθ θ=

0rθτ =0rσ =

Bθ θ≥ ±

0( ) cos sinu u vθ θ− = B Bθ θ θ− ≤ ≤

(6)

(7)

(8)

(10)

(9)Bθ θ≥ ±

Page 10: Utech Presentation

Intrduction of Friction

• Friction is introduced into the constitutive model by assuming a Coulomb frictional relation as

• Work done by shear can be written as

• Using (10) and (11) and considering symmetry yields

rf

r

θτµσ

= − (11)

B

B

s rW rdθ

θθ

τ θ−

= ∫ (12)

0 0

B B

rr frd rdθ θ

θτ θ µ σ θ= −∫ ∫ (13)

Page 11: Utech Presentation

Displacement field along hole boundary

• Assume displacement in the form

• This tree trems trig. series was chosen to facilitate the simultaneous solution of equations (8), (9) and (13)

• To determine the constants in (14) an additional condition was introduced which is described as

1 2 3

1 2 3

cos 2 cos 4 cos6

sin 2 sin 4 sin 6

u u u u

v v v v

θ θ θθ θ θ

= + += + +

(14)

2 0u uα= (15)

Page 12: Utech Presentation

Coefficients of u

.

( )

4 2

1 0 0 0 0 21

0 2 0

sec 2 222 3 564 1 2

BB

B B

B BB

co Sec u u u cos u cosu

u cos u coscos

θθ α θ α θα θ θθ+ + −

= − ++

( ) ( )

4

0 1 0 0 2

2 0 0 2

0

2sec2

2 2 38 1 2cos 1 2cos 2cos 2

4

BB

B BB B B

B

u u u cosco

u u cos u cos

u cos

θ α α θθ α θ

θ θ θθ

+ − − = + − + + + +

( )

4 2

0 1 0 0

3 0 2 0 2

0

sec sec2 2

2 2 264 1 2cos cos 2 cos3

3

B BB

B BB B B

B

u u u cosco

u u cos u cos

u cos

θ θ α θα θ α θ

θ θ θθ

− − − − = + + + + + −

(16)

(17)

(18)

Page 13: Utech Presentation

Coefficients of v

.1 0 0 1 2 3 2 0 0 1 2 3

2 0 0 1 2 3 2 0 1

2 3 2 0 1

1

9 7 4 2 ( 2 12 12 9 7 )cos2

3 3( 4 4 9 11 11 )cos 4 cos 7 cos

2 2 2

3 311 cos 12 cos 6 cos 2 6 cos 2

2 2

v ( 1)

B

B B B

B BB B

u u u u u u u u u u

u u u u u u u

u u u u

W

θα α

θ θ θα α

θ θα θ θ

− + + + + − − + + + + − − + + + − + +

+ − + +

=

2

3 2 0 0 1 2

3 2 0 0 1 2 3

0 1 2

8 cos 2

5 5 5 510 cos 2 2 cos 6 cos 7 cos 5 cos

2 2 2 2

55 cos 2 cos3 6 cos3 7 cos3 4 cos3 2 cos3

2

7 76 cos 5 cos 4 cos

2 2

B

B B B BB

BB B B B B

B B

u

u u u u u

u u u u u u

u u u

θ

θ θ θ θθ α

θα θ θ θ θ θ

θ θ

+

− − + + + − − + + +

− + + 3 0

1 2 3 1 2

3 2 3 3

7 73 cos 2 cos 4

2 2

9 93 cos 4 4 cos 4 4 cos 4 cos 3 cos

2 2

9 114 cos cos5 3 cos5 cos

2 2

B BB

B BB B B

B BB B

u u

u u u u u

u u u u

θ θθ

θ θθ θ θ

θ θθ θ

+ − + + + + + + + + +

(19)

Page 14: Utech Presentation

Coefficients of v

.6 4 2

2

cos s s4 4 2

1

2048 1 2cos2

B B B

B

ec ec ec

W

θ θ θ

θ

− = +

Page 15: Utech Presentation

Coefficients of v

.

(20)

1 0 2 0 0 1 2 3 0 1 2 3

2 0 0 1 2 3 0

1 2 3 2 0

0 1

2

4 5 6 6 ( 10 10 11 12 )cos2

3( 8 4 11 10 9 )cos 12 cos

2

3 3 312 cos 9 cos 6 cos 6 cos 2

2 2 2

6 cos 2 10 cos 2

( 2)

B

BB

B B BB

u u u u u u u u u u

u u u u u u

u u u u

u u

v W

θα α

θα θ

θ θ θ α θ

θ θ

− − + + + + − + + + + − − + + + − +

+ + − −

+=

2 3 0

1 2 3 2 0

0 1 2 3 0

1 2 3

58 cos 2 6 cos 2 8 cos

2

5 5 58 cos 7 cos 6 cos 2 cos3

2 2 2

72 cos3 5 cos3 6 cos3 6 cos3 2 cos

2

7 7 72 cos 4 cos 6 cos

2 2 2

B

B B BB

BB B B B

B B B

u u u

u u u u

u u u u u

u u u

θθ θ

θ θ θ α θ

θθ θ θ θ

θ θ θ

+ + − + + + − −

+ + + − + + +

1

2 3 2 3 3

cos 4

9 92 cos 4 4 cos 4 cos 2 cos cos5

2 2

B

B BB B B

u

u u u u u

θ

θ θθ θ θ

+ + + + + +

Page 16: Utech Presentation

Coefficients of v

.6 2 2

2

cos s s4 4 2

2

512 1 2cos 1 2cos 2cos2 2

B B B

B BB

ec ec ec

W

θ θ θ

θ θθ

=

+ + +

Page 17: Utech Presentation

Coefficients of v

. 1 0 2 0 0 1 2 3

2 0 0 1 2 3

2 0 0 1 2 3

2 0 0 1

3 2 3

4 7 10 8 5

( 6 14 18 15 11 )cos2

( 6 10 15 13 11 )cos

3 3 32 cos 8 cos 11 cos

2 2 2

3 3( 3) 11 cos 10 cos

2 2

B

B

B B B

B B

u u u u u u

u u u u u

u u u u u

u u u

v W u u

α αθα

α θθ θ θα

θ θ

− − + + + +

− − + + + + − − + + + −

− + + = + −

2 0

0 1 2 3

0 1 2

3 1 2 3

2 3 3

2 cos 2

4 cos 2 6 cos 2 8 cos 2 10 cos 2

5 3 32 cos 3 cos 5 cos

2 2 2

38 cos cos3 3 cos3 5 cos3

2

7 3cos 3 cos cos 4

2 2

B

B B B B

B B B

BB B B

B BB

u

u u u u

u u u

u u u u

u u u

α θ

θ θ θ θθ θ θ

θ θ θ θ

θ θ θ

+ + + −

+ + + + + + +

+ +

(21)

Page 18: Utech Presentation

Coefficients of v

.6 2

2

cos s4 4

33

2048 1 cos cos 1 2cos 2cos2 2 2

B B

B B BB

ec ec

W

θ θ

θ θ θθ

− = + + + +

Page 19: Utech Presentation

Determination of stress functions

• Lekhnitskii (1) has shown that if the displacements at the hole edge can be written in the form

• Then the stress functions can be written as

0

0

m mm m

m

m mm m

m

u

v

ϑ ϑ ς ϑ ς

ρ ρ ς ρ ς

= + +

= + +

∑∑

(22)

( ) ( ) ( )

( ) ( ) ( )

2 4 61 1 1 1 2 1 2 1 2 2 2 2 1 3 2 3 2 1

2 4 62 2 2 1 1 1 1 2 2 1 2 1 2 3 1 3 1 2

1( ) ln

21

( ) ln2

A u q iv p u q iv p u q iv pD

B u q iv p u q iv p u q iv pD

φ ξ ξ ξ ξ ξ

φ ξ ξ ξ ξ ξ

− − −

− − −

= + − + − + −

= − − + − + − (23)

Page 20: Utech Presentation

Definition of stress function terms.where

( )( ) ( ) ( )

1 1 1 2 1 2 12 22 1 2 1 2

1 1 2 1 1 2

a aPA

i

µ µ µ µ µ µ µ µ µ µπ µ µ µ µ µ µ

+ + −=

− − −

( )( ) ( ) ( )

2 2 2 1 2 1 12 22 1 2 1 2

1 1 2 1 1 2

a aPB

i

µ µ µ µ µ µ µ µ µ µπ µ µ µ µ µ µ

+ + −=

− − −

2 2 2(1 )

(1 )k k k

kk

z z R

r i

µξ

µ± − +

=−

1,2k =

1 2 2 1D p q p q= −

221 12 1 16

1

aq a aµ

µ= + − 22

2 12 2 262

aq a aµ

µ= + −

Page 21: Utech Presentation

Determination of stresses

.

Where

( ) ( )2 ' 2 '1 1 1 2 2 22x eR z zσ µ φ µ φ = +

( ) ( )' '1 1 2 22y eR z zσ φ φ = +

( ) ( )' '1 1 2 2 22xy eR z zτ µφ µ φ = − +

(24)

(25)

(26)

' k kk

k kz

φ ξφξ

∂ ∂=

∂ ∂

Page 22: Utech Presentation

Stress Transformation

• Transformation relation from Cartesian to polar coordinates

2 2

2 2

2 2

cos sin 2sin cos

sin cos 2sin cos

2sin cos 2sin cos cos sin

r x

y

r xy

θ

θ

σ θ θ θ θ σσ θ θ θ θ στ θ θ θ θ θ θ τ

= −

(27)

Page 23: Utech Presentation

Complex stresses

.1 2 1 2 1 1 1 1 1 1 2 1 1 2

1 2 1 2 1 1

1 1 2 1 1 2 2 1 1 2 1 11 2

1 2 1 2 1 1 1 1

1 2 1 2 1

( ) 1sin

2

( ) 1cos

2

1

2

2 Rer

u q iv p u q iv p u q v pA B

iu q v pir iDr

u q i v p q u i v pA B

iu q v p iq u v piR iDr

u q iv p u q

iDr

µ µθ

µ µ

µ µ µ µµ µ θ

σ

− − + − − + + + + − − + − + + + + + − −

− + ++

=

1 1 1 1 2 1 1 1 2 1 1 2

2 1 1 2 2 2 2

2 1 2 1 1 2 2 1 2 2 2 1 2 1 2

1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 2 1 1

1 1 1 2 2 1 2 2

2 2 1 2 2

2 2 sin 3

2 2 2 2 2 2

12 2

22 2

iv p iu q v p iu q

v p u q iv p

u q iv p i u q p v iu q v p

u q i v p u q iv p iu q v p iu q

v p q u i p viDr

u q i v p

µ µ µµ θ

µ µ µµ µ µ µ

µ µµ µ

− − − + + + − − + − − + +

− − + − − ++ + + −

− + 1 2 2 2 2 2 1 2 1

2 2 2 2 1 2 2 1 1 2 2 2 1 2

2 1 2 2 1 2 3 2 3 2 3 1 3 1

1 3 2 1 3 2 2 3 1 2 1 1

2 2 1

cos3

2 2 2 2

2 2 2 2 2 21

2 2 3 3 3 3 sin 52

3 3 3 3

2 21

2

iu q v p iu q v p

u q iv p q u iv p i q u v p

iu q v p u q iv p u q iv piDr

i u q v p i u q v p

u q i

iDr

θ

µ µµ µ θ

µ µ µ µµ µ

+ + − − − + + − − −

+ + + + − − + − − + +

−+

1 2 2 2 1 2 2 2 1 2 1 2

2 2 2 2 2 1 2 1 1 3 2 1 3 2

2 3 1 2 3 1 3 2 3 2 3 1 3 1

3 2 3 2 3 1 3 1 1 3 2 1 3 2

2 3 1 2 3 1

2 2 2

2 2 2 2 3 3 cos5

3 3 3 3 3 3

3 3 3 3 3 31

3 32

v p q u i v p i p v

iu q v p iu q v p u q i v p

u q i v p iu q v p iu q v p

u q iv p u q iv p i u q v p

i u q v piDr

µ µ µµ µ θ

µ µµ µ

µ µ

− + + − − + + + − − + + + − − − + + − − −

+ + +

1 3 2 1 3 2 2 3 1 2 3 1 3 2

3 2 3 1 3 1

sin 7

3 3 3 3 31cos 7

3 3 32

u q i v p u q i v p iu q

v p iu q v piDr

θ

µ µ µ µθ

− − + − + − + +

(28)

Page 24: Utech Presentation

Complex stresses

. 1 2 1 2 1 1 1 1 1 1 21 2

1 1 2 1 2 1 2 1 1

1 2 1 2 1 1 1 1 1 2 1

1 2 1 1 1 2 1 1 2

1 2 1 2

( ) 1sin

2

( ) 1cos

2

1

2

2 Rer

iu q v p iu q v p u qA B

i v p iu q i v pir iDr

u q iv p q u iv p iu qA B

v p iq u v pir iDr

iu q v p i

iDr

θ

µµ µ θµ µ µ

µθ

µ µ µ

τ

+ − − + + + − − + − + + − + + + + + − −

+ −+

=

1 1 1 1 1 2 1 1 2 1

1 1 2 2 1 1 2 2 2 2 2 1

2 1 1 2 2 1 2 2 2 1 2 2 1 2

1 1 2 1 2 1 1 1 1 1 2 1 1 2 1

1 1 2 1 1 2 2 2 2 2 2 1 2 1

2 2 2 sin 3

2 2 2 2 2

12 2 2 2

2

u q v p u q iv p

u q i v p iu q v p iu q

v p u q i p v u q iv p

u q iv p u q iv p iu q v p

iu q v p q u ip v u q iv piDr

µ µµ µ θ

µ µ µ µµ µ

µ µ

− − + + − + + + − + − − − − + + − − − +

+ + − + + −+ 2 2 1 2 2 1 2 1 2 2 1 2

2 2 2 2 1 2 2 1 1 2 2

2 1 2 2 1 2 2 1 2 1 3 2

1 3 2 2 3 1 2 3 1 3 2 3 2

3 1 3 1

cos3

2 2 2 2

2 2 2 2 2

2 2 2 31sin 5

3 3 3 3 32

3 3

2

1

2

iu q v p iu q v p

iu q v p iq u v p q u

iv p u q iv p u q

i v p u q i v p iu q v piDr

iu q v p

iDr

θµ µ µ µ

µµ µ µ µ

θµ µ µ

+ − −

+ − − − + + − + − + − + + + − − −

+

2 2 2 2 1 2 2 1 2 2 1

1 2 2 2 2 2 2 1 2 3 2 3 2

3 1 3 1 1 3 2 1 3 2 2 3 1

2 3 1

1 3 2 1 3 2 2 3 1 2 3 1

3 2 3 2 3 1

2 2 2 2

2 2 2 3 3cos5

3 3 3 3 3

3

3 3 3 31

3 3 3 32

u q iv p q u iv p iu q

p v iu q v p u q iv p

u q iv p i u q v p i u q

v p

u q i v p u q i v p

iu q v p iu q viDr

µµ µ µ

θµ µ µ

µµ µ µ µ

+ + − − − + + − + + − + + − − − + + − +

++ − − 3 1

3 2 3 2 3 1 3 1 1 3 2

1 3 2 2 3 1 2 3 1

sin 7

3 3 3 3 31cos7

3 3 32

p

u q iv p u q iv p i u q

v p i u q v piDr

θ

µθ

µ µ µ

− + + − − + − + +

(29)

Page 25: Utech Presentation

Complex stresses

.2 2

1 2

1 2

( sin cos ) ( sin cos )2 Re

sin cos sin cos

A Bi

rθµ θ θ µ θ θ

σθ µ θ θ µ θ

+ +−= + − −

( ) ( )( ) ( )( ) ( )

1 2 1 2

2 2 2 2

3 2 3 2

( 2) cos 2 sin 21

( 4) cos 4 sin 42

( 6) cos 6 sin 6

u q iv p i

A A u q iv p iD

u q iv p i

θ θ

θ θ

θ θ

− − −

= + + − − − + − − −

( ) ( )( ) ( )( ) ( )

1 1 1 1

2 1 2 1

3 1 3 1

( 2) cos 2 sin 21

( 4) cos 4 sin 42

( 6) cos 6 sin 6

u q iv p i

B B u q iv p iD

u q iv p i

θ θ

θ θ

θ θ

− − −

= − + − − − + − − −

(30)

Page 26: Utech Presentation

Real stresses

• By defining two real parameters

• And by defining

221 2

11

ak

aµµ=− = (31)

661 2 12

11

( ) 2( )a

n i ka

µ µ υ= − + = − + (32)

12 21 22 66(1 )g a a kυ υ= − + (33)

Page 27: Utech Presentation

Real stresses

.( )1 2 3 4 5cos cos3 cos5 cos 7r H H H H Hσ θ θ θ θ= + + + +

1 2 3 4 5( )sin sin 3 sin 5 sin 7r I I I I Iθτ θ θ θ θ= + + + +

1 2 3

4 5 61

cos cos cos 2 cos cos 42

cos cos 6 cos cos8 cos cos10

E

rEθ

θ

θ θ θ θ θσ

θ θ θ θ θ θΓ + Γ + Γ +

= Γ + Γ + Γ

Page 28: Utech Presentation

Stress coefficients

.( )

( )

1 2 22 1 12 1 1 11 111

22 1 2 12 1 2 1 23

11 11 2 11 1

22 12 2 22 12 22 3

24 12 11

11

1(1 ) ( ) ( )

2 2

( ( 1) 2 ( 1)) 2 21

2 2 ( ) ( )

(2 2 ) ( 3 3 3 )1

( 2 2

PH H a u n ka u v ka v n k

r a grk

a u n u n ka u u v vH

kga r ka v n k ka v n k

a a k n u a a k a n u

H a k a kkga r

π+ =− + + − + − +

− + + − − − − =−

+ + − − + − + − − −

= + − −

( )

( ) ( ) ( )( )

( ) ( )( ) ( )

11 2

212 11 11 3

25 22 12 22 3 12 11 11 3

11

1 2 22 1 12 1 1 11 111

22 1 2 12 1 2 1 2

311 11

2 )

( 3 3 3 )

1(3 3 3 ) ( 3 3 3 )

11

2 2

1 2 1 2 21

2 2

a kn v

a k a k a kn v

H a a a n u a k a k a kn vkga r

PI I a u n ka u v a v k n k

r kga r

a u n u n a k u u v vI

kga r a k

π

+ + − − −

= + − + − − +

+ =− − + + + + +

− − + − + − +=

− ( ) ( )( )

( )

2 1

22 12 22 2 22 12 22 3

4 2 211 12 11 11 2 12 11 11 3

25 22 12 22 3 12 11 11 3

11

( 2 2 2 ) ( 3 3 3 )1

(2 2 2 ) ( 3 3 3 )

1( 3 3 3 ) (3 3 3 )

v n k v n k

a a a n u a a k a n uI

kga r a k a k a kn v a k a k a kn v

I a a k a n u a k a k a kn vkga r

+ + − − − + + − − − +

= + − + − − −

= − − + + + −

Page 29: Utech Presentation

Stress coefficients

.

All constants not shown can be obtained from [2] Appendix A

( )( )( )

2 4 2 2 2 212 22 12 22

1 2 2 422 12 22

cos 2 cos sincos

2 2 2 sin

a k a a k a kP

a a k a k n

θ θ θθ

π θ

+ + − Γ = + + + −

( ) ( )( )( )22 22 1 3 2 3

11

124

8a k n u k

a gkΓ = Β + − + + Β + Β

( )( )( )( )( )33 22 1 2 11 1 3 3

11

13

16a k a k v v

a gkΓ = Μ + Μ + − − + Μ

( ) ( )( )( )( )3 34 1 11 2 1 3 2 3

11

12 3

8k a k v n n v v

a gk

−Γ = ϒ + − + − + ϒ + ϒ

Page 30: Utech Presentation

Stress coefficients

.

All constants not shown can be obtained from [2] Appendix A

( )( )5 1 2 311

1

16k

a gkΓ = Φ + Φ − Φ

( )( )( )6 22 1 2 311

1

8a k

a gkΓ = Ζ + Ζ +Ζ

( ) ( )( ) ( )( )

22 32 27

11 11 3 12 3 3

113 1 2

16

a n uk k n

a gk k a k n v a u v

− + + Γ = + + − − + − +

Page 31: Utech Presentation

Determination of

0 0

B B

rr frd rdθ θ

θτ θ µ σ θ= −∫ ∫

21,0 , ααu

0rσ =0rθτ =

Bθ θ=

),(

),(

),(

22

11

00

fB

fB

fBuu

µθααµθααµθ

=

=

=

Page 32: Utech Presentation

Determination of

),(00 fBuu µθ=

( ) ( ) ( ){ }( ) ( ){ } ( )

222 2

0 0

2 22 2 2 20 0

cos 1 cos *

cos 1 cos 0

B p B

B B p p

u r u

r u r r u r

λ θ λ θ

θ θ λ λ

+ + − + −

+ − + + − + + =

Page 33: Utech Presentation

Determination of Stresses

Substituting the values of and into

(16-21) yields

These values completely determines

21,0 , ααu

),,,(

),,,(

),,,(

),,,(

),,,(

),,,(

21033

21022

21011

21033

21022

21011

B

B

B

B

B

B

uvv

uvv

uvv

uuu

uuu

uuu

θααθααθααθααθααθαα

======

),,,,,,(

),,,,,,(

),,,,,,(

321321

321321

321321

θττθσσθσσ

θθ

θθ

vvvuuu

vvvuuu

vvvuuu

rr

rr

===

Page 34: Utech Presentation

Results

Page 35: Utech Presentation

Results

.

Radial stress for plate A (±45s )

Page 36: Utech Presentation

Results

Shear stress for plate A (±45s )

Page 37: Utech Presentation

Results

.

Tangential or hoop stress for plate A (±45s )

Page 38: Utech Presentation

Results

.

Page 39: Utech Presentation

Results

.

Radial stress for plate E ( [02/±45]s )

Page 40: Utech Presentation

Results

.

Shear stress for plate E ( [02/±45]s )

Page 41: Utech Presentation

Results

.

Tangential or hoop stress for plate E ( [02/±45]s )

Page 42: Utech Presentation

Results

.

Page 43: Utech Presentation

Conclusion

. A method has been presented for determining the stresses in pin loaded orthotropic plates.

. The method can be used to predict the stresses in joints with varying degrees of clearances including the case of perfectly fitting pins where clearance is zero.

. Although developed for use with orthotropic plates, the method can be used to evaluate the stresses in isotropic plates as well.

Page 44: Utech Presentation

Recommendations

. Better prediction of contact angle

. Further investigation into the no slip zone and its effect on stresses

. Investigation into the development and use of a non-Colulombic frictional model

. Use of non-trigonometric displacement functions

. Experimental inquiry

Page 45: Utech Presentation

References

• Lekhnitskii, S. G.,”Anisotropic Plates, English Edition (Translated by S. W. Tsai and . Cheron), Gordon and Beach, London (1968).

• Tomlinson, N. A. “ Stresses Around Pin Loaded Holes in Mechanically Fastened Joints” Thesis Howard University, Washington, DC.

• Zhang, Kai-Da and Ueng, Charles E. S., “Stresses Around a Pin-Loaded Hole In Orthotropic Plates”, Journal of Composite Materials, Vol. 18, Sept. 1984 pp. 432-446.

• de Jong, Th., “Stresses around Pin Loaded Holes in Orthotropic Materials”, Mechanics of Composite Materials Recent Advances, Pergamon Press, pp. 339-353, 1982.

• Hyer, H. W., Klang, E. C., “Contact Stresses in Pin-Loaded Orthotropic Plates”, Int. Journal of Solids and Structures, Vol. 21, 9, pp.957-975, 1985.