Fluid slide

Embed Size (px)

Citation preview

  • 7/25/2019 Fluid slide

    1/16

    9/22/2015

    1

    4 (Bernoulli Equation)

    Daniel Bernoulli (1700 1782)

    Born 8 February 1700:

    Broningen, Netherlands

    Died 8 March 1782 (aged 82):

    Basel, Switzerland

    Residence Trizzy

    Known for Bernoulli's

    Principle, early Kinetic theory

    of gases, Thermodynamics

    Intro. Fluid Mechanics 2

  • 7/25/2019 Fluid slide

    2/16

    9/22/2015

    2

    First Published Bernoullis principle Bernoulli's principle

    is named after the

    Dutch-Swiss

    mathematician

    Daniel Bernoulli

    who published his

    principle in his

    bookHyd odynam ca in

    1738.

    Intro. Fluid Mechanics 3

    Intro. Fluid Mechanics 4

    (Bernoulli Equation)

    (frictionless flow, inviscid flow)

    2

    constant (J/k2

    g)p V

    gz

  • 7/25/2019 Fluid slide

    3/16

    9/22/2015

    3

    Intro. Fluid Mechanics 5

    (Bernoulli Equation)

    Intro. Fluid Mechanics 6

    (Bernoulli Equation)

    valid

  • 7/25/2019 Fluid slide

    4/16

    9/22/2015

    4

    Intro. Fluid Mechanics 7

    (Bernoulli Equation)

    valid

    Intro. Fluid Mechanics 8

    (Bernoulli Equation)

    net net system

    cv cs

    Q W e d e V dAt

    4

    1. (shaft work) CS

    2. (normal stress work)

    3. (viscouse stress work)

    4. (other work)

  • 7/25/2019 Fluid slide

    5/16

    9/22/2015

    5

    Intro. Fluid Mechanics 9

    steady state, incompressible flow, frictionless flow inviscid flow,,- 1 intensive properties

    (Bernoulli Equation)

    2 2

    2 2 1 1, 2 2 1 12 2

    net shaft net

    p V p Vq w u gz u gz

    net shaft shear other net

    cv cs

    pQ W W W e d e V dA

    t

    2 2

    1 1 2 2, 1 2 2 1

    2 2shaft net net

    p V p Vw gz gz u u q

    Intro. Fluid Mechanics 10

    (Bernoulli Equation)

    2 2

    1 1 2 2, 1 2 2 1

    2 2shaft net net

    p V p Vw gz gz u u q

    4

    2 2

    1 1 2 21 2

    2 2

    p V p Vgz gz

    2constant

    2

    p Vgz

  • 7/25/2019 Fluid slide

    6/16

    9/22/2015

    6

    Intro. Fluid Mechanics 11

    (Bernoulli Equation)

    2

    ( kgJ/ )2

    p Vgz const

    Intro. Fluid Mechanics 12

    (mechanical energy per unit mass of working fluid)

    2 2

    1 1 2 21 2

    (J/ )2 2

    kgp V p V

    gz gz

    2

    2

    V

    gz

    (flow energy)

    (kinetic energy)

    (potential energy)

    (Bernoulli Equation)

  • 7/25/2019 Fluid slide

    7/16

    9/22/2015

    7

    Intro. Fluid Mechanics 13

    (mechanical energyper unit weight)

    (Bernoulli Equation)

    2 2

    1 1 2 21 2

    = (J/ m)2 2

    Np V p V

    z z Hg g g g

    2

    2

    V

    g

    z

    (pressure head)

    (velocity head)

    (elevation head)

    H (total head)

    Intro. Fluid Mechanics 14

    (Bernoulli Equation)

    2 2

    1 1 2 2 = (J/ m)2 2

    Np V p V

    Hg g g g

  • 7/25/2019 Fluid slide

    8/16

    9/22/2015

    8

    Intro. Fluid Mechanics 15

    (Bernoulli Equation)

    2 221 2

    1 1 2 2 (N/m )2 2

    V Vp gz p gz

    2

    2

    V

    z

    (static pressure)

    (dynamic pressure)

    (hydrostatic pressure)

    Intro. Fluid Mechanics 16

    : 4.1

    0.1 0.02 m2 50 m/s

  • 7/25/2019 Fluid slide

    9/16

    9/22/2015

    9

    4.1

    Intro. Fluid Mechanics 17

    2 21 21 2

    ( ) ( )

    2 2

    atm g atm g P P P Pv v

    g g g g

    2 21 21 2

    ( ) ( )

    2 2

    g gP Pv v

    g g g g

    23

    2 2 2 2 31 2 1 2

    1.0

    50 10 1.2 102 2

    g

    kg

    g mmP v v Pag s

    2

    3 2 2 2 2

    .

    . .

    kg m kg kg m

    m s m s m s

    1 2m m

    1 1 2 2A v A v 2

    2 2 21 2

    1 1

    A v Dv v

    A D

    1

    0.02 5010 /

    0.1v m s

    Intro. Fluid Mechanics 18

    : 4.2

    1 m 7 m

  • 7/25/2019 Fluid slide

    10/16

    9/22/2015

    10

    4.2

    (1) (Steady flow)

    (2) (Incompressible flow)

    (3) (Inviscid fluid)

    (4) (5) (V

    1= 0)

    Intro. Fluid Mechanics 19

    2

    2

    221

    2

    11

    22gz

    vPgz

    vP

    4.2() 1 2

    1 2

    P1

    = P2

    V1 V

    1= 0

    Intro. Fluid Mechanics 20

    smms

    mzzgv

    gzv

    gz

    gz

    vP

    gz

    vP

    /7.117807.92)(2

    2

    22

    2212

    2

    2

    21

    2

    2

    22

    1

    2

    11

  • 7/25/2019 Fluid slide

    11/16

    9/22/2015

    11

    4.2() A 1

    Continuity equation VA

    = V2

    V1 V

    1= 0

    Intro. Fluid Mechanics 21}5.78{8.22

    .

    .)1(807.91000

    .

    .

    2

    7.111000)10013.1(

    )(2

    )(2

    22

    0;

    22

    )(

    2

    23

    2

    2

    22

    32

    5

    1

    2

    21

    1

    2

    21

    1

    2

    11

    2

    2

    12

    1

    2

    11

    2

    gageabs

    AA

    AA

    AA

    A

    AAA

    kPakPa

    mkg

    sNm

    s

    m

    m

    kg

    mkg

    sN

    s

    m

    m

    kg

    m

    N

    zzgv

    PP

    zzgvPP

    gzvP

    gzvP

    vvv

    gzvP

    gzvP

    Intro. Fluid Mechanics 22

    : 4.3

    0.45 m 50mm (uniform flow)

    2

  • 7/25/2019 Fluid slide

    12/16

    9/22/2015

    12

    Intro. Fluid Mechanics 23

    : 4.4

    2 2

    1 1 2 21 2

    (J/ )2 2

    kgp V p V

    gz gz

    1 1atmp gD 2 2atmp p gD

    2 2

    1 21 2

    2 2

    atm atmp gD p gDV V

    2 2

    1 21 2

    2 2

    V VD gD

    Intro. Fluid Mechanics 24

    : 4.4

    2 2

    1 21 2

    2 2

    V VD gD

    2 1 22

    2 9.81 0.45 0.005

    2.8 m s

    V g D D

  • 7/25/2019 Fluid slide

    13/16

    9/22/2015

    13

    Intro. Fluid Mechanics 25

    : 4.4

    540 mm2 10 kW

    3 m

    Intro. Fluid Mechanics 26

    :

    Wall pressure tab Static pressure probe

  • 7/25/2019 Fluid slide

    14/16

    9/22/2015

    14

    Intro. Fluid Mechanics 27

    : (stagnation pressure)

    22 (N/m )

    2stag

    Vp p

    2 2

    2 2

    stag

    stag

    V Vp p

    Intro. Fluid Mechanics 28

    pitot tube Pitot

    : (stagnation pressure)

    Henry de Pitot (1695-1771)

  • 7/25/2019 Fluid slide

    15/16

    9/22/2015

    15

    A flow of air into a venturi meter. The

    kinetic energy increases at the

    expense of the fluid pressure, as

    shown by the difference in height of

    the two columns of water.

    This article is about Bernoulli's principle and Bernoulli's equation in fluid dynamics.

    For an unrelated topic in ordinary differential equations, see Bernoulli differential

    equation.

    A flow of air into a venturi meter. The kinetic energy increases at the expense of the

    fluid pressure, as shown by the difference in height of the two columns of water.In

    fluid dynamics, Bernoulli's principle states that for an inviscid flow, an increase in

    the speed of the fluid occurs simultaneously with a decrease in pressure or a

    decrease in the fluid's potential energy.[1][2]Intro. Fluid Mechanics 29

    Intro. Fluid Mechanics 30

    3

    :

    22 (N/m )

    2stag

    Vp p

  • 7/25/2019 Fluid slide

    16/16

    9/22/2015

    16

    Intro. Fluid Mechanics 31

    : Pitot-Static Probe

    Intro. Fluid Mechanics 32

    : 4.5

    pitottube static tube

    30 mm