45
CIGRE DC Grid Test System Description, justifications and simulation results J A Jardini - S Dennetière - J C Garcia Alonso [email protected] [email protected] [email protected] Workshop on DC Grid Modeling Paris, August 27 th , 2014 B4-57 Guide for the Development of Models for HVDC Converters in a HVDC Grid

Cigre test system description justifications and simulation results v3

  • Upload
    sebden

  • View
    530

  • Download
    5

Embed Size (px)

DESCRIPTION

DC GRID presentation

Citation preview

Page 1: Cigre test system   description justifications and simulation results v3

CIGRE DC Grid Test System

Description, justifications and simulation results

J A Jardini - S Dennetière - J C Garcia Alonso

[email protected]

[email protected]

[email protected]

Workshop on DC Grid Modeling

Paris, August 27th , 2014

B4-57 Guide for the Development of Models for HVDC Converters in a HVDC Grid

Page 2: Cigre test system   description justifications and simulation results v3

1 – Description and justifications

Page 3: Cigre test system   description justifications and simulation results v3

CIGRE DC Grid Test System

Developed by Members of the B4-57 and B4-58 Working Groups

• B4-58 K Linden (convener)

T K VranaY YangD Jovcic

• B4-57 R Wachal ( convener)

S DennetièreJ JardiniH Saad

Page 4: Cigre test system   description justifications and simulation results v3

Objective

To define a system to be used in all DC Grid groups discussions.

Like the CIGRE LCC system benchmark

IEEE n busses system for specific themes

Page 5: Cigre test system   description justifications and simulation results v3

DC Grid Test System Basic Configuration

Page 6: Cigre test system   description justifications and simulation results v3

Cd-E1

Cb-C2

Ba-A0

Ba-B0

Cb-D1

DC Sym. MonopoleDC BipoleAC OnshoreAC OffshoreCableOverhead line

AC-DC Converter StationDC-DC Converter Station

DCS1

200

200

200

50

300

200

200

400

500

200

300

200200

200

200

200

100

200

100

200

DCS2

DCS3

Ba-A1

Bm-A1

Bb-A1

Cm-A1

Cb-A1

Bb-C2

Bo-C2

Bo-C1

Bm-C1Cm-C1

Bb-D1

Bb-E1Bb-B4

Bb-B2

Bb-B1Bb-B1x

Bm-B2

Bm-B3 Bm-B5 Bm-F1

Bm-E1

Cm-B2

Cm-B3

Cm-E1

Cm-F1

Bo-D1

Bo-E1

Bo-F1

Cd-B1

Cb-B2

Cb-B1

Ba-B1

Ba-B2

Ba-B3

CIGRE B4 DC Grid Test System

Page 7: Cigre test system   description justifications and simulation results v3

The complete system is composed of:

• 2 onshore AC systems System A (A0 and A1)System B (B0, B1, B2 and B3)

• 4 offshore AC systemsSystem C (C1 and C2)System D (D1)System E (E1) offshore loadSystem F (F1)

• 2 DC nodes, with no connection to AC B4B5

• 3 VSC-DC systemsDCS1 (A1 and C1)DCS2 (B2, B3, B5, F1 and E1)DCS3 (A1, C2, D1, E1, B1, B4 and B2)

Page 8: Cigre test system   description justifications and simulation results v3
Page 9: Cigre test system   description justifications and simulation results v3

• AC onshore system 380kV• AC offshore system 145kV

• DC symmetrical monopole ± 200kV• DC bipole ± 400kV

• Converter MMC (half-bridge)

• Chosen from the beginning (existing EU AC voltage and possible DC voltages)

Are these choices reasonable?

Page 10: Cigre test system   description justifications and simulation results v3

Economics (Brochure 388)

LinesCline = a + b V + S (c N + d) U$/km

a; b; c; d parameters obtained from a set of configurationsV →pole to ground voltage (kV)S = N S1 → total conductor aluminium cross section (MCM);S1 being one conductor aluminium (only)cross section, S(MCM)= (1/0.5067)* S(mm2 Aluminium)

N→ number of conductor per pole.Losses

P → rated bipole power MWr→ bundle resistance ohms/km r = ro L / Sro → conductor resistivity 58 ohms MCM/ kmL →the line length in km cost of Joule losses (CLj) in one year will be:

Line cost in one yearClyr= F*Cline*km= A+B SLine plus lossesA+B S+ C/S minimun cost

kmMWV

PrLj /

2

12

S

CLjlfCeCpCLj 8760

B

CSec

Page 11: Cigre test system   description justifications and simulation results v3

a b c d

DC overhead (US$ and MCM) 86,360 130.28 1.5863 25.92

AC overhead (US$ and MCM) 78,252 251.64 1.3904 34.32

DC cable (€ and mm2) 1,304, 500 754.4 260 NA

Line cost parameters

Converter cost

)(*)(* CB PVACcv

With participation of manufacturers (TB 388)

Page 12: Cigre test system   description justifications and simulation results v3

Overhead DC

Cable DC

3192

2847

2903

2827

1583

1353

1251

1078

2328

0

200

400

600

800

1000

1200

1000 1500 2000 2500 3000 3500 4000

Cu

sto

(106 R

$/a

no

)

Potência (MW)

teste500 kV 765 kV 1000 kV

2000 km

500 km

1000 km

1500 km

2500 km

1000 kV

765 kV

500 kV

Overhead AC

Page 13: Cigre test system   description justifications and simulation results v3

Configuration MW

Overhead DC ±400kV 2X2515MCM 1000

Overhead DC ±200kV 2X2156MCM 600

Overhead AC 380kV 2X1510,5 MCM 650

Cable DC ±400kV1800 mm2 2000

Cable DC ±200kV1800 mm2 1200

Results

from the base case load-flow :

AC lines loading 100; 200;and 300MW (length are 200km)

±400 kV DC overhead loading varies 800; and 1000MW (200; 300; 400 and 500km)

±200kV loading 700MW (length is 100 km).

±400 kV submarine cables loading 600 to 900MW (200; 300km);

±200 kV submarine cables varies from 400; 700MW (100; 200km)

Page 14: Cigre test system   description justifications and simulation results v3

Overhead

Cable DC

Current carrying capabilityVerified under N-1 contingency

Conductor Current Carrying Capability

0

500

1,000

1,500

2,000

2,500

0 500 1,000 1,500 2,000 2,500 3,000

Conductor Cross Section (MCM)

Cu

rren

t (A

)

90º

70º

60º

50º

Submarine kA moderate climate includes

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400

mm2

kA kA moderate climate

Page 15: Cigre test system   description justifications and simulation results v3

Scable

Core (Copper)

Dcore, ρcore

Insulation 1

r1, tan1

Insulation 2

r2, tan2

Sheath

(Lead)

Rin, Rext, sh

Armor (Steel)

R'in, R'ext, 'arm

Insulation 3

r3, tan3

1800 mm²

400 kV DC

1800 mm²

200 kV DC

Cross section of

conductor (mm²)1800 1800

Dcore (mm) 50.25 50.25

ρcore (Ωm) 2.2 x10-08 2.2 x10-08

r1 2.3 2.3

tan1 / G (Ω-1/km) 0.0004 / 4.8 x10-08 0.0004 / 5.5 x10-08

Rin (mm) 49.125 45.125

Rext (mm) 52.125 47.125

sh(Ωm) 27.4x10-8 27.4x10-8

r2 2.3 2.3

tan2 / G (Ω-1/km) 0.001 / 1.1 x10-06 0.001 / 1.3 x10-06

R'in (mm) 56.125 50.225

R'ext (mm) 61.725 55.725

'arm(Ωm) 18.15x10-8 18.15x10-8

r3 2.3 2.3

tan3 0.001 0.001

Scable (mm) 133.45 121.45

Depth from ground

surface(m)1.5 1.5

DC cables

Page 16: Cigre test system   description justifications and simulation results v3

30 m

sag : 20 m

Soil resistivity : 500 Ω.m

9 m

10 m

37 m

sag : 14 m

45 cm Conductor DC resistance (Ω/km) Outside diameter (cm)

2515 MCM 0.0224 4.775

3/8" EHS (shield wire) 3.65 0.954

24 m

sag : 16 m

Soil resistivity : 500 Ω.m

5 m

5.5 m

28.8 m

sag : 11.5 m

40 cmConductor DC resistance @ 20°C (Ω/km) Outside diameter (cm)

2156 MCM 0.0266 4.475

3/8" EHS (shield wire) 3.65 0.954

DC overhead lines

+/- 400kV

+/- 200kV

Page 17: Cigre test system   description justifications and simulation results v3

30 m

sag : 20 m

Soil resistivity : 500 Ω.m

14 m

10 m

37 m

sag : 14 m45 cm

Conductor DC resistance one cond (Ω/km) Outside diameter (cm)

1515,5 MCM Parrot 0.038 3.825

3/8" EHS (shield wire) 3.65 0.954

AC overhead lines

Page 18: Cigre test system   description justifications and simulation results v3

Converters

+200kV

-200 kV

SM 1

SM 2

SM n

SM 1

SM 2

SM n

SM 1

SM 2

SM n

SM 1

SM 2

SM n

SM 1

SM 2

SM n

SM 1

SM 2

SM n

3

2

6

4

5

6

2

3

4

5

Start-up insertion resistors

Star point reactor (Symetrical monopole configuration only)

Arm reactor

Valve

Converter transformer

1

1 Submodule

S1

S2C

ACVSC-MMC

+200 kV DC

-200 kV DC

220 kV AC380 kV AC or

145 kV AC

AC

VSC-MMC

VSC-MMC

Ground return cable or line

DC cable or line

380 kV AC or 145 kV AC

220 kV ACDC cable

or line

+400 kV DC

-400 kV DC

201 levels MMC converters

Bipole configuration

Monopole configuration

Page 19: Cigre test system   description justifications and simulation results v3

Test system controls

Control hierarchy:

• Dispatch controls: (system requirements) (P, Vdc, Vac, Q, etc., orders)

• Upper level controls: (P, Vdc, etc. orders) (Vabc order)

• Lower level controls: (Vabc order) (Firing pulses)

VSC MMC measurements

Upper level controls

Power factor

controlor V/f

control

or

Outer ControlP/Q/Vdc

InnerCurrentControl

Circulating current suppression

Modulation

Capacitors Voltage Balancing

Vref abc

Vref low, Vref up

NSM_low_abc,NSM_up_abc

Gate signals

Note: The test systems do not include Dispatch control

Page 20: Cigre test system   description justifications and simulation results v3

Upper level control: Grid connected

Clark transformation

Signal Calculations Outer ControlInner Control

dq transformations

Vαβ prim

Iαβ sec

VDC

Pmeas

Qmeas

Vmeas_prim

Id_ref

Iq_ref

Vd

Vq

Id

Iq

Vabc_ref

PLL

Oscillator

V/f control

q

q

Islanded control

Non islanded control

Non islanded control

Islanded control

PU conversionVabc_prim

Iabc_prim

Vabc_sec

Iabc_sec

Vdc

Low pass filter#1

Limitations anddq>abc

transformation

Vd ref

Vq ref

VDC

q

Iαβ prim

VAC_ref

Pref Qref Vdc_ref Vac_ref

Idc

Protections

Vabc_prim

IdcBlock_converter

Open_AC_CB

Iq

Low pass filter #3

• Per-unitization of measured values and orders• Filtering of measured quantities• abc dq transformation• Outer controls: (P, Vdc, Q, Vac, etc.) (Id ref, Iq ref)• Current limitation: (Id ref, Iq ref) (Id ref & Iq ref limited)• Inner control - current control : (Id ref, Iq ref) (Vd ref, Vq ref)• dq abc transformation: (Vd ref, Vq ref) (Va,b,c ref)

Clarktransformation

Low

passfilter #1

PUconversion

Low pass filter #3

Outer Control

Signal

Calculations

abc dqtransformation

Inner Control

Limitations and

dqabctransformation

PLL

Page 21: Cigre test system   description justifications and simulation results v3

Upper level control: Outer control

Idq REF

limiter

Id REF

Iq REF

Id REF in

Iq REF in

PIVdc REF

Vdc REF

P Id

Q Iq

0

Vdc cont.

No P cont. P cont.

P/V cont.

Q cont.

+

-

Vac

Vdc

PREF

PREF

Vdc

0

PI

P REF

+

-

+

Droop∆P

VdcREF

Vdc

No PV droop

Cont.

PV droop

Cont.

P cont. Vac/f cont.

P

PI+

-

Q

Q REF

PI+

-

Vac

Vac REF Vac cont.

Page 22: Cigre test system   description justifications and simulation results v3

Upper level control: Inner control

Id_ref

Iq_ref

Vd

+

-Id

w0(Ltfos+Larm/2)

w0(Ltfos+Larm/2)Iq

-

+

+

+-

--

+

Vcd

Vcq

Vq

PI

u

I_kp

I_kiI_ki

I_kp

PI

u

I_kp

I_kiI_ki

I_kp

Low pass filter #4

Low pass filter #4

Page 23: Cigre test system   description justifications and simulation results v3

Upper level control: Islanded operation

Clark transformation

Signal Calculations Outer ControlInner Control

dq transformations

Vαβ prim

Iαβ sec

VDC

Pmeas

Qmeas

Vmeas_prim

Id_ref

Iq_ref

Vd

Vq

Id

Iq

Vabc_ref

PLL

Oscillator

V/f control

q

q

Islanded control

Non islanded control

Non islanded control

Islanded control

PU conversionVabc_prim

Iabc_prim

Vabc_sec

Iabc_sec

Vdc

Low pass filter#1

Limitations anddq>abc

transformation

Vd ref

Vq ref

VDC

q

Iαβ prim

VAC_ref

Pref Qref Vdc_ref Vac_ref

Idc

Protections

Vabc_prim

IdcBlock_converter

Open_AC_CB

Iq

Low pass filter #3

Upper Level control (Islanded operation)Per-unitization of measured and orders & filteringFrequency control (oscillator): θV/f control: (V ref, θ) (Va,b,c ref)

Oscillator

V/f control

PUconversion

Low pass filter #1 Clark

transformation

abc dqtransformation

Signal Calculations

Page 24: Cigre test system   description justifications and simulation results v3

Upper level control: Protections

Two protection options were included

Event Detection criteria Action

3ph faults 3ph voltage collapse • Block converter

DC faults DC overcurrent • Block converter• Open AC brk

Idc ABS

>

Iarm_limit

ac_BRK_delay

Block_MMC_delay1 Block_converter

Open_AC_CB

Vabc_prim - a

ABS

>

Vac_limit

20 ms delay on falling edge

Block_converter

Vabc_prim - c

Vabc_prim - b MAX

3ph fault protection

DC fault protection

(0.1 pu)

(40ms)

(40µs)(6 kA)

Page 25: Cigre test system   description justifications and simulation results v3

Sample control data

Vdc_min -1.2 Q_ki 33.00

Vdc_max 1.2 Q_kp 0

Vdc_ki 272.00 I_ki 149.00

Vdc_kp 8.00 I_kp 0.48

Vdc_min_db 0.95 Vf_kp 0.2

Vdc_max_db 1.05 Vf_ki 30.00

Vdc_kp_db 10.00 Vf_kd 0.0025

P_min -1.2 Vmax 1.23

P_max 1.2 Vmin -0.1

P_ki 33.00 kdroop 0.2

P_kp 0 Uf_meas_min 0.01

Q_min -0.5 I_lim 1.1

Q_max 0.5 Id_lim 1.1

Idc_limit (kA) 6 Iq_lim 1.1

ac_BRK_dela

y 0.04 Vac_ki 30

Block_MMC_

delay1 40*10-6s Vac_kp 0

Vac_limit 0.1 Vac_min -0.5

Block_MMC_

delay2 0.02s Vac_max 0.5

Controller parameters

Droop parameters

AC-DC

Converter

Station

Control

Mode

VAC droop

[pu ;

MVAr/kV]

VDC droop

[pu ; MW/kV]

Cm-B2 Q(VAC) P(VDC) 10 ; 21.053 10 ; 40

Cm-B3 Q(VAC) P(VDC) 10 ; 31.579 10 ; 60

Cm-E1 AC Slack - -

Cm-F1 AC Slack - -

Page 26: Cigre test system   description justifications and simulation results v3

2 – Implementation in EMT tools

Page 27: Cigre test system   description justifications and simulation results v3

Cm-C1Cm-A1

Bm-A1 Bm-C1Ba-A1

B0-C1

Event 1 : 200ms 3-phase fault on side A1Event 2 : 200ms 3-phase fault on side C1Event 3 : Permanent pole-to-pole fault on side A1

Cm-E1

DC Overhead

DC Cable

Cm-F1Cm-B3

Bm-B5

Cm-B2

Bm-B3 Bm-F1

Bm-E1

Ba-B3

Ba-B2

B0-E1

Cm-F1

Event 1: 200ms 3-phase fault on side Ba-B3Event 2: Permanent trip of Cm-F1Event 3: Permanent pole-to-pole DC fault at Bm-F1

Event 1 : Permanent trip of Cb-A1 (2 poles). Event 2 : Pole-to-pole fault at Cb-B1 terminals

Test systemsTest system 1

Test system 3

Test system 3

Page 28: Cigre test system   description justifications and simulation results v3

Challenges to simulate the tests systems in EMT tools

Data16 converters (ex. DC-DC converters)

16 control systems including low level controls23 frequency dependent line/cable modelstotal number of electrical nodes with full detailed converter models : ~40,000 nodes

ValidationFirst step : in EMTP-RV to simulate the test system and get relevant set of data

Second step : in PSCAD and HYPERSIM to validate consistency and completeness of data proposed in the brochure

The 3 test systems have been developed in EMTP-RV, PSCAD and HYPERSIM and give close results

Page 29: Cigre test system   description justifications and simulation results v3

3 – Simulation results

Page 30: Cigre test system   description justifications and simulation results v3

Events Time (ms)

AC fault 0

Cm-A1 blocking due to low AC voltage 19.08

Cm-C1 deadband activation 21.38

AC fault elimination 200

Cm-A1 deblocking 233.02

Cm-C1 deadband de-activation 295.04

Test system 1

Pole-to-pole DC voltage at converter Cm-A1 and Cm-C1 DC current at converter terminals

Active & Reactive power transformer Cm-A1 3-phase instantaneous currents

Cm-C1Cm-A1

Bm-A1 Bm-C1Ba-A1

B0-C1

Page 31: Cigre test system   description justifications and simulation results v3

CIGRE DC grid full test system

DC cable

AC cable

DC line

AC line

MMC converterSymetrical monopole

MMC converterBipolar configuration

DCDC converter

A0

A1 C1

C2

D1

E1

F1B5

B3

B2

B1

B0

Page 32: Cigre test system   description justifications and simulation results v3

Models used in the test system

DC cable

AC cable

DC line

AC line

Frequency dependent line/cable models

MMC converter Detailed model with low level controls

DCDC converter Ideal transformer with no impedance

AC equivalent Voltage source + RL impedance

Load RL impedance

Page 33: Cigre test system   description justifications and simulation results v3

VSC converters models

Type 2 Type 3/4 Type 5 Type 6

D

S

G

+Model1 Model2 Model3 Model4

Capacitor voltage balancing & circulating current suppression

Circulating current suppression No low level controls

Page 34: Cigre test system   description justifications and simulation results v3

A0

A1 C1

C2

D1

E1

F1B5

B3

B2

B1

B0

Transient test case – loss of converter A1Cb-A1 is tripped at t=1.5s

Vdc P

PVdc

P

V/f

PP/Vdc

Vdc

P/Vdc

This converter initially controls the DC voltage.

After tripping, the DC voltage in DCS3 area is only controlled through P/Vdcdroop controls.

P/Vdc

Page 35: Cigre test system   description justifications and simulation results v3

Transient test case – loss of converter A1

Simulation results

Active power flow

Pole-to-pole DC voltage (+/-400 kV Grid)

Pole-to-pole DC voltage (+/-200 kV Grid)

Page 36: Cigre test system   description justifications and simulation results v3

Transient test case – loss of converter A1

Voltage at Bb-B1

Superimposition with models 1-2-3

Page 37: Cigre test system   description justifications and simulation results v3

Transient test case – loss of converter A1

Voltage at Bb-C2

Superimposition with models 1-2-3

Page 38: Cigre test system   description justifications and simulation results v3

Time domain simulations

Model Number of electrical nodes Computing times (s)

1 39 294 32 586 (~ 9h)

2 990 1450 (~ 24 min)

3 990 404 (~ 7 min)

Simulation for 3s and a time-step of 20us (standard laptop, simulation running only on 1 CPU)

Page 39: Cigre test system   description justifications and simulation results v3

A0

A1 C1

C2

D1

E1

F1B5

B3

B2

B1

B0

Transient test case – DC fault

Vdc P

PVdc

P

V/f

PP/Vdc

Vdc

P/Vdc

P/Vdc

Pole-to-pole fault

Fault detected in 2msEliminated with DC CB 3ms laterDC-DC converters do not limit fault current

Page 40: Cigre test system   description justifications and simulation results v3

Transient test case – DC FaultEvents Time (ms)

DC fault 0

Cb-B1 blocking due to DC

overcurrent0.44

Cb-A1 blocking due to DC

overcurrent2.12

Cb-D1 blocking due to DC

overcurrent3.04

Cm-F1 deadband activation 3.20

Cb-F1 blocking due to DC

overcurrent3.48

Cb-B2 blocking due to DC

overcurrent5.12

Cm-E1 blocking due to DC

overcurrent8.36

Protections activation

A0

A1 C1

C2

D1

E1

F1B5

B3

B2

B1

B0

Page 41: Cigre test system   description justifications and simulation results v3

Transient test case – DC fault

+/-200 kV system voltage

Simulation results

+/-400 kV system voltage

Active Power flow

Page 42: Cigre test system   description justifications and simulation results v3

Transient test case – DC fault

Voltage at Bb-A1

Superimposition with models 1-2-3

Page 43: Cigre test system   description justifications and simulation results v3

Validation of DC test grid data

Objective:• Check consistency of data provided in the report• Check reproducibility of results provided• Check for completeness of data

Data validity test:• Construction of the three test systems 2, 4 & terminal based entirely on data

provided in the report• Comparison of results with previously built system

Results:• Some data descriptions were enhanced• Simulation results were very similar between different builds of the test system

• EMTP-RV, PSCAD, HYPERSIM & RSCAD

Page 44: Cigre test system   description justifications and simulation results v3

Conclusions

The test results have been reproduced in several commercially available EMT simulation software (EMTP-RV, PSCAD, RSCAD and HYPERSIM)

Computation times are reasonable for time domain simulations

Type5 models gives accurate results on this test system. This conclusion may be different with specific Capacitor Voltage Control

All simulation packages give coherent results, even if small differences remain.

The test results presented in the brochure are meant as guidelines only.

Page 45: Cigre test system   description justifications and simulation results v3

Thank you very much for your attention