57
1. General Definitions: Acid: any substance which when dissolved into the water produces hydrogen ions [H + ]. Base: any substance which when dissolved into the water produces hydroxide ions [OH - ]. 2. Water dissociation: H 2 O (l) → H + (aq) + OH - (aq) equilibrium constant, K W = [H + ][OH - ] / [H 2 O] Value for K w = [H + ][OH - ] = 1.0 x 10 -14

Acids and bases p pt

  • View
    754

  • Download
    2

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Acids and bases p pt

1. General Definitions: Acid: any substance which when dissolved

into the water produces hydrogen ions [H+]. Base: any substance which when dissolved

into the water produces hydroxide ions [OH-]. 2. Water dissociation: H2O(l)  →  H+

(aq) + OH-

(aq) equilibrium constant, KW = [H+][OH-] /

[H2O] Value for Kw = [H+][OH-] = 1.0 x 10-14

Page 2: Acids and bases p pt

Note: The reverse reaction, H+(aq) + OH-

(aq)  →   H2O(l) is not equal to 1 x 10-14

[H+] for pure water = 1 x 10-7

[OH-] for pure water = 1 x 10-7

3. Definitions of acidic, basic, and neutral solutions based on [H+]

acidic: if [H+] is greater than 1 x 10-7 M basic: if [H+] is less than1 x 10-7 M neutral: if [H+] if equal to 1 x 10-7 M

Page 3: Acids and bases p pt

Example 1: What is the [H+] of a sample of lake water with [OH-] of 4.0 x 10-9 M? Is the lake acidic, basic, or neutral?

Solution: [H+] = 1 x 10-14 / 4 x 10-9 = 2.5 x 10-6 M

Therefore the lake is slightly acidic

Page 4: Acids and bases p pt

pH is a measurement of the H+ concentration in a liquid. 

relationship between [H+] and pH pH = -log10[H+]

Page 5: Acids and bases p pt

Acids 1. Strong Acids: A substance is strong acid when dissolved

into the water or other solvent completely dissociate into proton( H+) and an anion.

example: HN03 dissociates completely in water to form H+ and N03

1-. The reaction is HNO3(aq)  →   H+

(aq) + N031-

(aq)

Page 6: Acids and bases p pt

example: HN03 dissociates completely in water to form H+ and N03

1-. The reaction is HNO3(aq)  →   H+

(aq) + N031-

(aq) A 0.01 M solution of nitric acid contains 0.01

M of H+ and 0.01 M N03- ions and almost no

HN03 molecules. The pH of the solution would be 2.0.

Page 7: Acids and bases p pt

1.HCl

2.H2SO4

3.HNO3

4.HClO4

5.HBr 6.HI

Page 8: Acids and bases p pt

Note: when a strong acid dissociates only one H+ ion is removed. H2S04 dissociates giving H+ and HS04

- ions( first ionization). H2SO4  →   H+ + HSO4

1- A 0.01 M solution of sulfuric acid would

contain 0.01 M H+ and 0.01 M HSO41-

(bisulfate or hydrogen sulfate ion). Because HS04

- is still having proton, it is also an acid and can dissociate into H+ and SO4

2-( Second ionization)

Page 9: Acids and bases p pt

2. Weak acids: a weak acid only partially dissociates in

water or other solvents to give H+ and the anion

for example, HF dissociates in water to give H+ and F-. It is a weak acid. with a dissociation equation that is :

Page 10: Acids and bases p pt

There are only 6 strong acids, the remainder of the acids therefore are considered weak acids.

Page 11: Acids and bases p pt

Strong Bases Dissociate 100% into the cation and OH-

(hydroxide ion). example:  NaOH(aq)  →   Na+

(aq) + OH-(aq)

a. 0.010 M NaOH solution will contain 0.010 M OH- ions (as well as 0.010 M Na+ ions) and have a pH of 12.

The strong bases are the hydroxides of Groups I and II.

Page 12: Acids and bases p pt

Note: the hydroxides of Group II metals produce 2 mol of OH- ions for every mole of base that dissociates. These hydroxides are not very soluble, but what amount that does dissolve completely dissociates into ions.

exampIe: Ba(OH)2(aq)  →   Ba2+(aq) + 2OH-

(aq)

a. 0.000100 M Ba(OH)2 solution will be 0.000200 M in OH- ions (as well as 0.00100 M in Ba2+ ions) and will have a pH of 10.3.

Page 13: Acids and bases p pt

Weak Bases What compounds are considered to be

weak bases? Most weak bases are anions of weak acids. Weak bases do not furnish OH- ions by

dissociation. They react with water to furnish the OH- ions.

Note that like weak acids, this reaction is shown to be at equilibrium, unlike the dissociation of a strong base which is shown to go to completion.

Page 14: Acids and bases p pt

When a weak base reacts with water the OH- comes from the water and the remaining H+ attaches itsef to the weak base, giving a weak acid as one of the products. You may think of it as a two-step reaction similar to the hydrolysis of water by cations to give acid solutions.

Page 15: Acids and bases p pt

examples: NH3(aq) + H2O(aq)  →   NH4

+(aq) + OH-(aq)

methylamine: CH3NH2(aq) + H20(l)  →   CH3NH3+

(aq) + OH-

(aq) acetate ion: C2H3O2

-(aq) + H2O(aq)  →  HC2H302(aq) +

OH-(aq)

General reaction: weak base(aq) + H2O(aq)  →   weak acid(aq) + OH-

(aq)

Page 16: Acids and bases p pt

Since the reaction does not go to completion relatively few OH- ions are formed.

Page 17: Acids and bases p pt

Acid-Base Properties of Salt Solutions A salt : an ionic compound made of a

cation and an anion, other than hydroxide or the product besides water of a neutralization reaction.

determining acidity or basicity of a salt solution:

Page 18: Acids and bases p pt

1.split the salt into cation and anion 2. add OH- to the cation a. if you obtain a strong base. the cation is neutral

b. if you get a weak base, the cation is acidic3. Add H+ to the anion a.if you obtain a strong acid, the anion is neutral

b. if you obtain a weak acid. the anion is basic Salt solutions are neutral if both ions are neutral ( BPH WEEKEND)

Page 19: Acids and bases p pt

Salt solutions are acidic if one ion is neutral and the other is acidic

Salt solutions are basic if one of the ions is basic and the other is neutral.

The acidity or basicity of a salt made of one acidic ion and one basic ion cannot be determined without further information.

Page 20: Acids and bases p pt

Examples: determine if the following solutions are acidic, basic, or neutral

KC2H3O2

NaHPO4

Cu(NO3)2

LiHS KClO4

NH4Cl

Page 21: Acids and bases p pt

Acid-Base Reactions Strong acid + strong base:  HCl + NaOH  →   NaCl

+ H2O net ionic reaction:  H+ + OH-  →   H2O Strong acid + weak base: •example:  write the net ionic equation for the

reaction between hydrochloric acid, HCl, and aqueous ammonia, NH3. What is the pH of the resulting solution?

Page 22: Acids and bases p pt

when solution gets neutralized?   During this process, indicators will be used. Indicators are chemical compounds that turn

different colors when they're in solutions with different pH's. 

Litmus, for example, is red in acid solutions and blue in basic solutions. 

Phenolphthalein is clear in acid solutions and pink in basic solutions.

.The basic equation for titration or neutralization is:

M1V1 = M2V2  

Page 23: Acids and bases p pt

•M1 stands for the molarity of the acid•V1 stands for the volume of the acid you

use•M2 stands for the molarity of the base•V2 stands for the volume of the base you use

Example:  If it takes 55 mL of 0.1 M NaOH solution to neutralize 450 mL of a HCl solution of unknown concentration, what's the molarity of the acid?

M1, in our equation, stands for the molarity of the acid. 

Page 24: Acids and bases p pt

Since that's what we're trying to find, we'll call that X.

V1 stands for the volume of the acid we use.  Since HCl is an acid, the volume of acid is 450 mL

M2 stands for the molarity of the base.  Since NaOH is a base, the molarity was stated in the problem to be 0.1 M

V2 stands for the volume of the base.  The problem says that we used 55 mL of base, so that's M2.

Page 25: Acids and bases p pt

Now, all we need to do is plug it into the equation:

(X)(450 mL) = (0.1 M)(55 mL) X = 0.12 M

Page 26: Acids and bases p pt

Buffers solutions solutions that don't change pH very much

when you add acid or base solutions to it.  For example, if you were to add a little bit of

HCl to a glass of water, the pH might change from 7 to 3.

If you had the same amount of buffer solution, the pH might change from 7 to 6.8. 

 

Page 27: Acids and bases p pt

Buffers are formed :• a weak acid + its conjugate .Example1: acetic acid+ sodium acetate.→ acidic bufferExample 2: a weak base+ its conjugate acid.→ basic buffer  

Page 28: Acids and bases p pt

Weak acid-strong base titrationsExample: Titration curve for the titration of vinegar

with NaOH. pH at end point- approximately 8.5 ; species present- H2O and NaC2H3O2 and appropriate indicator-phenolphthalein

Page 29: Acids and bases p pt
Page 30: Acids and bases p pt

Note: no matter what type of titration you do, at the equivalence (end) point the number of moles of H+ is equivalent to the number of moles of OH-.

This applies whether you have weak or strong acids and/or bases.

Problems: l. Citric acid (C6H807) contains a mole of ionizable H+/mole of citric acid. A sample containing citric acid has a mass of 1.286 g.

Page 31: Acids and bases p pt

The sample is dissolved in 100.0 mL of water. The solution is titrated with 0.0150 M of NaOH. If 14.93 mL of the base are required to neutralize the acid. then what is the mass percent of citric acid in the sample?

Page 32: Acids and bases p pt

Models of acids

• Arrhenius Model The basis for the model is the action in

water The Arrhenius definition: acids are compounds that give off H+ ions

in water bases are compounds that give off OH- ions

in water. 

Page 33: Acids and bases p pt

As a result, all acids have hydrogen atoms on them that are ready to go jumping off in water. 

Most common acids have the letter H in the beginning of the formula, with the exception of acetic acid. 

Arrhenius and Bronsted-Lowry definitions are for most purposes identical.  When you see the formula of a base, it's got "OH" in it. 

The one exception to this is ammonia, NH3.  (NH3 combines with water to form NH4OH, which is really the thing that's basic in ammonia. 

Page 34: Acids and bases p pt

Strong base + weak acid: •example:  write the net ionic equation for the

reaction between citric acid (H3C6H507) and sodium hydroxide. What is the pH of the resulting solution?

Titrations Titration : method used in order to determine

the concentration of an acidic solution( or basic solution) by adding amount of base( or acid) that you know the concentration.

Page 35: Acids and bases p pt

You have an acidic solution and you want to figure out the molarity.  You can't do that directly, because you can't count acid molecules.  You can, however, make a basic solution with a concentration that you already know. If you keep adding base to the acid, eventually all of the acid molecules will be neutralized and the solution will turn from an acid to a base. 

Page 36: Acids and bases p pt

If you know how many base molecules you added to the solution before the solution gets neutralized (and you will, because you'll add the solution drop-by-drop), you can figure out how much acid was in the solution in the first place.

Page 37: Acids and bases p pt

Indicators: chemical compounds that turn different colors when they're in solutions with different pH's. 

Litmus, for example, is red in acid solutions and blue in basic solutions. 

Phenolphthalein is clear in acid solutions and pink in basic solutions.

Page 38: Acids and bases p pt

The basic equation for titration or neutralization is:

M1V1 = M2V2

M1 stands for the molarity of the acid V1 stands for the volume of the acid you use M2 stands for the molarity of the base V2 stands for the volume of the base you

use

Page 39: Acids and bases p pt

Example:  If it takes 55 mL of 0.1 M NaOH solution to neutralize 450 mL of a HCl solution of unknown concentration, what's the molarity of the acid?

M1, in our equation, stands for the molarity of the acid.  Since that's what we're trying to find, we'll call that X.

V1 stands for the volume of the acid we use.  Since HCl is an acid, the volume of acid is 450 mL

Page 40: Acids and bases p pt

M2 stands for the molarity of the base.  Since NaOH is a base, the molarity was stated in the problem to be 0.1 M

V2 stands for the volume of the base.  The problem says that we used 55 mL of base, so that's M2.

Now, all we need to do is plug it into the equation:

(X)(450 mL) = (0.1 M)(55 mL) X = 0.12 M

Page 41: Acids and bases p pt

Buffers solutions Buffers are solutions that don't change pH very

much when you add acid or base solutions to it. 

For example, if you were to add a little bit of HCl to a glass of water, the pH might change from 7 to 3. 

If you had the same amount of buffer solution, the pH might change from 7 to 6.8. 

Page 42: Acids and bases p pt

Buffers are formed when you have a weak acid and its conjugate base present in the same place. 

If you wanted to make an acidic buffer, you'd place some acetic acid into a container with some sodium acetate. 

If you want a basic buffer, just put a weak base into a container with it's conjugate acid. Our blood is a buffered solution. 

Page 43: Acids and bases p pt

If it wasn't, our pH would be go way down every time we had a soda and way up whenever we took some Tums. 

Page 44: Acids and bases p pt

Weak acid-strong base titrations

Page 45: Acids and bases p pt

l. Arrhenius Model The basis for the model is the action in

water The Arrhenius definition of acids says that

they're compounds that give off H+ ions in water and that bases are compounds that give off OH- ions in water. 

These definitions are the same.  Basically, if you've got something that can give off H+ in water, it's an acid.  As a result, all acids have hydrogen atoms on them that are ready to go jumping off in water.

Page 46: Acids and bases p pt

As a result, all acids have hydrogen atoms on them that are ready to go jumping off in water.

Most common acids have the letter H in the beginning of the formula, with the exception of acetic acid.  Bases, on the other hand, are compounds that give off OH- in water. 

Page 47: Acids and bases p pt

(The two definitions of a base are for our purposes identical, as OH- combine with H+ to form water -- the Arrhenius and Bronsted-Lowry definitions are for most purposes identical). 

When you see the formula of a base, it's got "OH" in it.  The one exception to this is ammonia, NH3. 

Page 48: Acids and bases p pt

(NH3 combines with water to form NH4OH, which is really the thing that's basic in ammonia.  So our definition is sort of true).

Here are a couple of charts which show the most common acids and bases.  Some are strong and some are weak, as indicated.

Page 49: Acids and bases p pt

Formula Name Strong?

HCl hydrochloric acid yes

HBr hydrobromic acid yes

HI hydroiodic acid yes

HF hydrofluoric acid no

HNO3 nitric acid yes

H2SO4 sulfuric acid yes

H3PO4 phosphoric acid no

CH3COOH acetic acid no

Page 50: Acids and bases p pt

2. Bronsted-Lowry Model The basis for the model is proton

transfer According to Bronsted-Lowry; acids are

compounds that give off H+ ions when you stick them in water.  This definition also says that bases are compounds that can accept H+ ions when you stick them in water. 

Page 51: Acids and bases p pt

Simply, acids have H+ in them and bases have OH- in them. 

The conjugate base of an acid is whatever is formed when the acid loses its H+ or the base becomes the conjugate acid after it accepts the proton because it can now donate it back.

Page 52: Acids and bases p pt

The acid becomes the conjugate base after it donates the proton because it can now accept it back.

As a general rule of thumb, the conjugate bases of strong acids are weak.  For example, Cl- is the conjugate base of hydrochloric acid

Page 53: Acids and bases p pt

3. Lewis Model The basis for model is the electron pair

transfer The hydrogen requirement of Arrhenius and

Brønsted–Lowry was removed by the Lewis definition of acid–base reactions, devised by Gilbert N. Lewis in 1923, in the same year as Brønsted–Lowry, but it was not elaborated by him until 1938. Instead of defining acid–base reactions in terms of protons or other bonded

Page 54: Acids and bases p pt

substances, the Lewis definition defines a base (referred to as a Lewis base) to be a compound that can donate an electron pair, and an acid (a Lewis acid) to be a compound that can receive this electron pair.

In this system, an acid does not exchange atoms with a base, but combines with it.

Page 55: Acids and bases p pt

Lewis definition can be applied to reactions that do not fall under other definitions of acid–base reactions. For example, a silver cation behaves as an acid with respect to ammonia, which behaves as a base, in the following reaction:

Ag+ + 2 :NH3 → [H3N:Ag:NH3]+

The result of this reaction is the formation of an ammonia–silver adduct.

Page 56: Acids and bases p pt

Formula Name Strong?

NaOH sodium hydroxide yes

LiOH lithium hydroxide yes

KOH potassium hydroxide yes

Mg(OH)2 magnesium hydroxide no

Ca(OH)2 calcium hydroxide no

NH3 (NH4OH)ammonia

(ammonium hydroxide)no

Page 57: Acids and bases p pt