27

Click here to load reader

6. DC-AC Converters

Embed Size (px)

Citation preview

Page 1: 6. DC-AC Converters

1 Challenge the future 1 Challenge the future

Electronic Power Conversion Switch mode DC-AC converters

Page 2: 6. DC-AC Converters

2 Switch mode DC-AC converters

8. Switch mode DC-AC converters • Applications:

•  AC motor drives •  Uninterruptible Power Supplies (UPS)

• Categories of voltage-source inverters (VSI,VSC): •  PWM inverters •  Square-wave inverters •  Single-phase inverters with voltage cancellation •  Not considered: CSI (Current-Source Inverters, CSI)

Uni-directional power Bidirectional power (regenerative)

Source: Wikimedia Commons CC-BY-SA

Page 3: 6. DC-AC Converters

3 Switch mode DC-AC converters

Switch-mode inverters – basics • Requirement for instantaneous power flow:

•  Four-quadrant operation

Page 4: 6. DC-AC Converters

4 Switch mode DC-AC converters

Phase leg (phase arm or NL: fase tak)

• All dc-ac topologies in Chapt. 8 based on phase arm •  Point 0 is taken as reference for voltage, mostly not physically

available

Page 5: 6. DC-AC Converters

5 Switch mode DC-AC converters

• Consider one leg of an H-bridge and vary vcontrol slowly

Page 6: 6. DC-AC Converters

6 Switch mode DC-AC converters

Synthesis of a Sinusoidal Output by PWM

control triv v> 0A d1v = V2

control triv < v 0A d1v = V2

TA+ is on

TA- is on

è

è

Page 7: 6. DC-AC Converters

7 Switch mode DC-AC converters

Spectrum

ˆˆ

controla

tri

Vm = V

1

sf

fm = f

Amplitude modulation ratio:

Frequency modulation ratio:

fs - switching frequency, carrier frequency f1 - modulating frequency, fundamental frequency

Page 8: 6. DC-AC Converters

8 Switch mode DC-AC converters

Details of a Switching Time Period

Control voltage can be assumed constant during a switching time-period

ˆcontrol d

A control tritri

v VV = with v < V2V

1ˆ sincontrol controlv = V tω

0,1 1 1

ˆsin sinˆ

control d dA a

tri

V V VV = t = m t 2 2V

ω ω

’Moving average’ of vA0 :

where:

From (1) and (2):

(1)

(2)

Page 9: 6. DC-AC Converters

9 Switch mode DC-AC converters

Modulation frequency

•  Small mf (mf< 21) •  Apply synchronous PWM to avoid subharmonics •  Use methods to eliminate specific low order harmonics

•  Large mf (mf> 21) •  Good reproduction of reference wave •  Side band harmonics are small •  Switching harmonics can be eliminated with small filter

Page 10: 6. DC-AC Converters

10 Switch mode DC-AC converters

Overmodulation

ˆ ˆ1,a control trim V V> >

Voltage spectrum:

Page 11: 6. DC-AC Converters

11 Switch mode DC-AC converters

• Output voltage Fundamental as a Function of ma ;

•  Shows the linear and the over-modulation region;

•  square-wave operation in the limit

( )0 1ˆd dA

V V4 < V < 2 2π

Overmodulation:

Page 12: 6. DC-AC Converters

12 Switch mode DC-AC converters

Square wave operation

( ) ( )0 10

ˆˆ A

A h

VV

h=( )0 1,max

ˆ d dA

V V4V = = 1.273 2 2π

Page 13: 6. DC-AC Converters

13 Switch mode DC-AC converters

Single-phase inverters (half bridge) • Current sharing between capacitors; •  i0 cannot have a dc-component è no transformer saturation

problem; •  Switch utilisation:

•  VT = Vd •  IT = Io

Page 14: 6. DC-AC Converters

14 Switch mode DC-AC converters

Full-bridge converter

0 0 0 0( ) ( ) ( ) 2 ( )A B Av t = v t v t v t− =

0,1ˆ

a dV = m V

,ˆd d0 14V < < V V π

(ma<1)

(ma>1)

PWM with Bipolar voltage switching

Preferred to half-bridge at high power levels

Page 15: 6. DC-AC Converters

15 Switch mode DC-AC converters

DC-side current (* = “averaged” currents) fs è ∞ , so L and C è 0

*0 0

0 1 0 1

0 0 0 0 1

( ) ( ) ( )

sin sin( )cos cos( )

d dV i t = v t i t

= 2 V t 2 I t - V I - V I 2 t -

ω ω φφ ω φ

⋅=

* 0 0 0 01( ) cos cos( )d

d d

V I V Ii t - 2 t -V V

φ ω φ=

From power balance:

Input current: •  DC component •  LF component of double fundamental frequency •  Strong HF components (steep slopes)

Page 16: 6. DC-AC Converters

16 Switch mode DC-AC converters

Full-bridge converter – PWM with unipolar voltage switching

• Double control voltage • Same output voltage and

magnitude as bipolar switching • Lower ripple current

(about 50%) • Less harmonics

Page 17: 6. DC-AC Converters

17 Switch mode DC-AC converters

Square wave operation – output voltage control

0 0ˆ( ) cos( )

sin( )

2h

2

d

2V = v h d

4= V hh

π

π θ θπ

βπ

−∫

Page 18: 6. DC-AC Converters

18 Switch mode DC-AC converters

Voltage and current ripple

0 01( ) ( ) ( )ripplev t v t v t= +

0 01( ) ( ) ( )ripplei t i t i t= +

01 01 1 01j Lω= +V E I

0( ) ( )

t

ripple ripple1i t = v d kL

ζ ζ +∫

Apply superposition:

Fundamental (phasors):

Ripple current:

(b): largest ripple during zero crossing of voltage

Square-wave PWM bipolar

Page 19: 6. DC-AC Converters

19 Switch mode DC-AC converters

Switch utilisation ratio (SUR)

TT

total apparent converter power SSUR = q V I⋅

0

Tswitches

PSUR P

=∑

01,max ,maxd4V = V

2π 0I

,maxT dV = V 0,maxTI = 2 I

,max 0,max01,max 0,max0

,max 0,max ,max 0,max

d

T d d

4 V IV IP 12SUR = = q P 2q V 2 I 4 V 2 I

ππ

⋅⋅= =

⋅ ⋅

Example: Full bridge square-wave with sinusoidal current and output current I0

Output: ;

Switch T: ;

q = total number of switches

Page 20: 6. DC-AC Converters

20 Switch mode DC-AC converters

Effect of blanking time

• Blanking time (dead time) tΔ to avoid shoot-through

( )

( )

d As

AN

d As

t + V i > 0T

V = t - V i 0T

Δ

Δ

Δ<

Page 21: 6. DC-AC Converters

21 Switch mode DC-AC converters

Effect of blanking time (2)

AB AN BNV = V VΔ Δ − Δ

( )

( )

0ds

AB

0ds

2 t + V > 0iTV =

2 t - V < 0iT

Δ

Δ

Δ

Page 22: 6. DC-AC Converters

22 Switch mode DC-AC converters

Voltage versus Current Source •  1) VSI with unipolar or bipolar modulation

•  Behaves as voltage source •  2a) Current mode modulation:

•  VSI with hysteresis modulation •  Behaves as current source •  Variable switching frequency •  Constant current ripple amplitude

Page 23: 6. DC-AC Converters

23 Switch mode DC-AC converters

Voltage versus Current Source (2)

•  2b) VSI with Fixed frequency current control (triangular modulation with feedback)

Page 24: 6. DC-AC Converters

24 Switch mode DC-AC converters

Rectifier mode operation •  Phasor representation for fundamental:

• The phase and amplitude of vAn(t) can be set through the input signal vcontrol of the modulator

An A L = +V E V L ss = j LωV I An AA

s

= j Lω−V EIwhere

sL s

div = L dt

sL s

div = L dt

Page 25: 6. DC-AC Converters

25 Switch mode DC-AC converters

Figure 2

Figure  2  shows  a  single-­‐phase  inverter  connected  to  a  single  phase  induc6on  motor  with  counter  emf  e0.      The  output  voltage  v0  of  the  inverter  is  obtained  by  bipolar  voltage  switching  modula6on  scheme.  To  obtain  a  low  distor6on  linear  modula6on  is  applied  (no  overmodula6on;  ma<1).  

Given  is  further:    Vd  =  350V        (DC  link  voltage)  ω1      (fundamental  frequency  of  vo  and  e0)  ω1,nom      =2π50  rad/s    (nominal  value  of  ω1)  V01,nom    =230  V    (nominal  rms  value  of  fundamental  of  v0)  e0        (counter  emf)  L  =  30  mH      (inductance  of  machine)  fs=7.5  kHz      (switching  frequency)  At  nominal  speed  and  nominal  voltage  the  input  power  of  the  loaded  drive  is  2kW  at  cos  φ1=0.8.  

(a)  Draw  the  relevant  circuit  6me  diagrams  to  show  the  opera6on  of  the  inverter.  Indicate  which  switch  is  on  at  what  6me  period.  Sketch  equivalent  circuit  models  to  calculate  the  fundamental  component  of  the  current  io  and  the  ripple  component  of  the  current  io.  Calculate  the  maximum  value  of  the  peak-­‐to-­‐peak  current  ripple  in  io  that  is  caused  by  the  switching.  (b)  Calculate  the  rms  value  of  the  fundamental  of  io  when  the  machine  runs  at  rated  speed  and  rated  power.  Sketch  a  phasor  diagram  with  the  phasors  of  e0,  v0  and  i0.  (c)  Calculate  the  modula6on  ra6o  ma  such  that  the  machine  runs  at  nominal  speed  and  nominal  voltage.  (d)  What  will  change  in  the  answers  to  problems  b)  and  c)  if  unipolar  switching  is  used  instead  of  bipolar  switching?    (e)  Calculate  the  low-­‐frequency  (<1  kHz)  peak-­‐to-­‐peak  voltage  ripple  ∆Vd  assuming  that  the  current  i1  is  constant  and  C=1mF.    

i1

Page 26: 6. DC-AC Converters

26 Switch mode DC-AC converters

Given  is  a  single-­‐phase  full  bridge  inverter  opera6ng  in  a  square-­‐wave  mode.  The  dc-­‐voltage  is  244V  and  the  frequency  of  the  output  voltage  that  supplies  a  motor  load  is  47Hz.    The  inductance  is  L  =  100  mH.  Calculate  the  peak  value  of  the  ripple  in  the  output  current.  

Page 27: 6. DC-AC Converters

27 Switch mode DC-AC converters

Image credits

• All uncredited diagrams are from the book “Power Electronics: Converters, Applications, and Design” by N. Mohan, T.M. Undeland and W.P. Robbins.

• All other uncredited images are from research done at the EWI faculty.