Rational points on elliptic curves

  • View
    101

  • Download
    2

  • Category

    Science

Preview:

Citation preview

Rational points on elliptic curvesIV Congreso de Jovenes Investigadores

Marc Masdeu

Universitat Autonoma de Barcelona

September 5th, 2017

Marc Masdeu Rational points on elliptic curves September 5th , 2017 1 / 33

Points on a conic

ProblemGiven a homogeneous quadratic equation in 3 variables

C : aX2 + bY 2 + cZ2 + dXY + eXZ + fY Z = 0, a, b, c, d, e, f ∈ Z,

find all solutions (X,Y, Z) with X,Y, Z ∈ Z (⇐⇒ (X : Y : Z) ∈ P2(Q)).

RemarkBy dividing out by Z2, equivalent to finding all the solutions (x, y) to

ax2 + by2 + c+ dxy + ex+ fy = 0, x, y ∈ Q.

May be trivial: for xy = 1, all solutions are (t, 1/t), with t ∈ Qr 0.Sometimes there are no solutions:

I x2 + y2 = −1 has no solutions in R, let alone in Q.I x2 + y2 = 3 has no solutions in Q either. (Why?)

Marc Masdeu Rational points on elliptic curves September 5th , 2017 2 / 33

Points on a conic: x2 + y2 = 1

GoalFind all rational solutions to the equation x2 + y2 = 1.

slope = t

y = t(x+ 1)

x

y

(−1, 0)

P =(

1−t2

1+t2 ,2t

1+t2

) x2 + y2 = 1

x2 + t2(x+ 1)2 = 1

x2 +2t2

1 + t2x+

t2 − 1

1 + t2= 0

(x− x0)(x− x1) = 0 =⇒ x0x1 =t2 − 1

1 + t2

x0 = −1 =⇒ x1 =1− t21 + t2

Marc Masdeu Rational points on elliptic curves September 5th , 2017 3 / 33

Parametrizing cubics

Technique in previous slide works for general conics.Upshot: If a conic has one rational point, then it has infinitely manyand they can be easily parametrized.Consider a cubic equation:

aX3+bX2Y+cXY 2+dY 3+eX2Z+fXY Z+gY 2Z+mXZ2+nY Z2+rZ3 = 0

Sometimes it has no solutions:

X3 + 14Y 3 = 12Z3 (work modulo 7)

I Start with a solution (X,Y, Z) such that gcd(X,Y, Z) = 1.I LHS can take values 0,±1 modulo 7.I RHS can take values 0,±2 modulo 7.I So any solution will satisfy 7 | X and 7 | Z.I But then 7 | Y , which is a contradiction.

Marc Masdeu Rational points on elliptic curves September 5th , 2017 4 / 33

Elliptic curves

DefinitionA cubic E : y2 = x3 + ax+ b is an elliptic curve if∆ = −16(4a3 + 27b2) 6= 0.

We write E(Q) for the set of the rational points of E.I If K ⊇ Q is another field, write E(K) for the set of solutions where we

allow the coordinates to be in K.E(Q) always has a point, namely O = (0 : 1 : 0) (“point at infinity”).

I The curve y2 = x3 − 108 has O as its only point: E(Q) = O.I The curve y2 = x3 − 27 has two rational points: E(Q) = O, (3, 0).I The curve y2 = x3 + 4 has three: E(Q) = O, (0, 2), (0,−2).I The curve y2 = x3 − x+ 1 has infinitely many points:E(Q) = O, (1,−1), (−1,−1), (0, 1), (3, 5), (5,−11), ( 1

4 ,−78 ), (−11

9 , 1727 ), . . ..

Is there any pattern??

Marc Masdeu Rational points on elliptic curves September 5th , 2017 5 / 33

The set E(Q) has a group structure

Given two points P , Q on E(Q), we can produce a third one.

P

Q

P +Q

R

Obviously commutative. . .I . . . but proving associativity can turn into a nightmare!

The point O is the neutral element.To add a point to itself (P = Q), use tangent line instead of cord.

Marc Masdeu Rational points on elliptic curves September 5th , 2017 6 / 33

Mordell–Weil Theorem

Louis Mordell Andre Weil

Theorem (Mordell 1922, Weil 1928)Let K be an algebraic number field (i.e. [K : Q] <∞).Then E(K) is a finitely generated abelian group. So it is of the form

E(K) = (torsion)⊕ Zr

There are algorithms to calculate the torsion.But the rank r is very hard to compute!

Marc Masdeu Rational points on elliptic curves September 5th , 2017 7 / 33

Counting points in finite fields

Consider the curve E : y2 = x3 − x+ 1.Can think of it as an equation modulo 3. In that case it has 7 points:

O, (0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2)

Or we can think modulo 5, where it has 8 points:

O, (0, 1), (0, 4), (1, 1), (1, 4), (3, 0), (4, 1), (4, 4)

Note that we should expect #E(Fp) to be roughly about p+ 1.Let ap(E) = p+ 1−#E(Fp).p 2 3 5 7 11 13 17 19 23 29 31 37#E(Fp) 3 7 8 12 10 19 14 22 23 37 35 36ap(E) 0 -3 -2 -4 2 -5 4 -2 1 -7 -3 2

Marc Masdeu Rational points on elliptic curves September 5th , 2017 8 / 33

Hasse’s bound

2e4 4e4 6e4 8e4 1e5p

-600

-400

-200

200

400

600

p + 1 #E( p)y = 2 x

Theorem (Hasse, 1933):∣∣∣p+ 1−#E(Fp)

∣∣∣ ≤ 2√p.

How the points distribute inside the above parabola is the statementof the Sato–Tate conjecture:

-1 -0.5 0 0.5 1ap/2 p

500

1000

1500

2000

2500

3000

n

Marc Masdeu Rational points on elliptic curves September 5th , 2017 9 / 33

Birch and Swinnerton-Dyer

Bryan Birch Sir Peter Swinnerton-Dyer

In the late 1950’s, Birch and Swinnerton-Dyer studied the asymptoticbehavior of the quantity

CE(x) =∏p≤x

#E(Fp)p

as x→∞

Marc Masdeu Rational points on elliptic curves September 5th, 2017 10 / 33

Experimental rank data

Plots of CE(x) =∏p≤x

#E(Fp)p against log(x) (doubly-logarithmic axes).

-0.4 -0.2 0 0.2 0.4 0.6loglogx

0.5

1

1.5

2

2.5

3

3.5

logCE(x)slope 0.104slope 1.147slope 2.254slope 3.015

(5077.a1) y2 + y = x3 − 7x+ 6

(389.a1) y2 + y = x3 + x2 − 2x

(37.a1) y2 + y = x3 − x(11.a1) y2 + y = x3 − x2 − 7820x− 263580

Conjecture BSD (Birch–Swinnerton-Dyer)

CE(x) ∝ log(x)r as x→∞.Marc Masdeu Rational points on elliptic curves September 5th, 2017 11 / 33

The L-function of E

One can rephrase the BSD conjecture using L-functions.Recall the “error” in Hasse’s bound

ap(E) = p+ 1−#E(Fp)

Define a function of a complex variable s:

L(E, s)“ = ”∏

p prime

(1− app−s + p1−2s

)−1, <(s) > 3/2.

I Note that L(E, 1)“ = ”∏ p

#E(Fp)“ = ”CE(∞)−1. . .

Conjecture BSD, second version1 The L-function L(E, s) can be analytically continued to all C.2 L(E, s) has a functional equation relating L(E, s) to L(E, 2− s)3

ords=1 L(E, s) = r.

Marc Masdeu Rational points on elliptic curves September 5th, 2017 12 / 33

Plots of L(E, s) restricted to <(s) = 1 (www.lmfdb.org)

y2 + y = x3 − x2 − 7820x− 263580

y2 + y = x3 + x2 − 2x

y2 + y = x3 − x

y2 + y = x3 − 7x+ 6Marc Masdeu Rational points on elliptic curves September 5th, 2017 13 / 33

Remarks on BSD

The correct definition of L(E, s) involves knowing how E behaves“bad primes” (where the reduction of E modulo p is “singular”).

I This is encoded in the conductor N = cond(E).Birch and Swinnerton-Dyer predicted also a formula for the leadingterm of the Taylor expansion of L(E, s) at s = 1.The first two statements of the refined conjecture are aconsequence of extremely deep theorems, known as “modularity”.Conjecture extends to elliptic curves over other number fields.

I In this generality, one doesn’t even know whether L(E, s) can beextended to all C.

The BSD conjecture is one of the CMI Problems of the Millenium.

Theorem (Gross–Zagier 1986 + Kolyvagin 1989)If ords=1 L(E, s) ≤ 1, then ords=1 L(E, s) = r.

If ords=1 L(E, s) = 1, need to produce a point P of infinite order!

Marc Masdeu Rational points on elliptic curves September 5th, 2017 14 / 33

The main tool for BSD: Heegner points (1952)

Kurt Heegner

Heegner points are defined over (extensions of) quadratic fields K.Only available when K = Q(

√D) is imaginary: D < 0.

We will further require the additional condition:I Heegner hypothesis: p | N =⇒ p split in K.

This ensures that ords=1 L(E/K, s) is odd (so ≥ 1).

Marc Masdeu Rational points on elliptic curves September 5th, 2017 15 / 33

Modular forms

For an integer N ≥ 1, set Γ0(N) = (a bc d

)∈ SL2(Z) : N | c.

Γ0(N) acts on the upper-half plane H = z ∈ C : Im(z) > 0:I Via

(a bc d

)· z = az+b

cz+d .A cusp form of level N is a holomorphic map f : H→ C such that:

1 f(γz) = (cz + d)2f(z) for all γ =(a bc d

)∈ Γ0(N).

2 Cuspidal: limz→i∞ f(z) = 0.( 1 1

0 1 ) ∈ Γ0(N) ; have Fourier expansions f(z) =∑∞

n=1 an(f)e2πinz.Given an elliptic curve E, define an for all n ≥ 1 as follows:

ap = ap(E) for all primes p.anm = anam if n and m are coprime.apr = apapr−1 − papr−2 for r ≥ 2 (ommit second term if p | cond(E)).

Modularity Theorem (Wiles, . . . , Breuil–Conrad–Diamond–Taylor 2001)

The function fE(z) =∑n≥1

ane2πinz

is the Fourier expansion of a modular form of level N = cond(E).Marc Masdeu Rational points on elliptic curves September 5th, 2017 16 / 33

Heegner Points (K/Q imaginary quadratic)Modularity =⇒ ∃ modular form fE attached to E.

ωE = 2πifE(z)dz = 2πi∑n≥1

ane2πinzdz.

This is a differential form on H, invariant under Γ0(N).

Given τ ∈ K ∩H, set Jτ =

∫ τ

i∞ωE ∈ C.

Well-defined up to ΛE =∫

γ ωE | γ closed path in Γ0(N)\H

.

Theorem (Eichler–Shimura 1959)There exists a computable complex-analytic group isomorphism

ηWeierstrass : C/ΛE → E(C), ΛE = lattice of rank 2.

Theorem (Shimura, Gross–Zagier, Kolyvagin)1 Pτ = ηWeierstrass(Jτ ) ∈ E(C) has algebraic coordinates.2 PK = Tr(Pτ ) is nontorsion ⇐⇒ ords=1 L(E/K, s) = 1.3 If ords=1 L(E/Q, s) ≤ 1 then BSD holds for E(Q).

Marc Masdeu Rational points on elliptic curves September 5th, 2017 17 / 33

An example: E : y2 + y = x3 − x2 − 10x− 20 (“11a1”)

fE(z) = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 − 2q9 − 2q10 + · · ·fE is a modular form of level N = 11.Embed K = Q(

√−2)→M2(11) by sending

√−2 7→

(3 −111 −3

). It

identifies OK = Z[√−2] with the maximal order of M2(11).

Such an order fixes the point τ = −3+√−2

11 .Jτ =

∑n≥1

ann e

2πinτ ∼ 0.126920930427956− 0.536079610338652 · i.Pτ = ηWeierstrass(Jτ ) ∼ (−3.00000 + 1.41421 · i, 3.00000 + 4.242640 · i).Pτ is very close to the algebraic point of infinite order

(−3 +√−2, 3 + 3

√−2) ∈ E(K).

Marc Masdeu Rational points on elliptic curves September 5th, 2017 18 / 33

An example of Mark WatkinsLet E be the elliptic curve of conductor NE = 66157667:

E : Y 2 + Y = X3 − 5115523309X − 140826120488927.

Watkins worked with 460 digits of precision and 600M terms of theL-series. Took less than a day (in 2006). The x-coordinate of the pointhas numerator:367770537186677506614005642341827170087932269492285584726218770061653546349271015805365134370326743061141306464500052886704651998399766478840791915307861741507273933802628157325092479708268760217101755385871816780548765478502284415627682847192752681899094962659937870630036760359293577021806237483971074931228416346507852381696883227650072039964481597215995993299744934117106289850389364006552497835877740257534533113775202882210048356163645919345794812074571029660897173224370337701056165735008590640297090298709121506266697266461993201825397369999550868142294312756322177410730532828064759604975369242350993568030726937049911607264109782746847951283794119298941214490794330902986582991229569401523519938742746376107190770204010513818349012786637889254711059455555173810904911927619899031855149292325338589831979737026402711049742594116000380601480839982975557506035851728035645241044229165029649347049289119188596869401159325131363345962579503132339847275422440094553824705189225653677459512863117911721838552934309124508134493366437408093924362039749911907416973504142322111757058584200725022632116164720164998641729522677460525999499077942125820428879526063735692685991018516862938796047597323986537154171248316943796373217191993996993714654629536884396057924790938647656663281596178145722116098216500930333824321806726937018190136190556573208807048355335567078793126656928657859036779350593274598717379730880724034301867739443749841809456715884193720328901461552659882628405842209756757167816662139945081864642108533595989975716259259240152834050940654479617147685922500856944449822045386092122409096978544817218847897640513477806598329177604246380812377739049184475550777341620985976570393037880282764967019552408400730754822676441481715385344001979832232652414888335865567377214360456003296961668177481944809066257442596772347829664126972931904101685281128944780074646796760942430959617022257479874089403564965038885379817866920048929814520268493677507059073765902671638087366488496702836326268574593123245107420348878101763123893347657020275591248824247800594270862052082185973393290009189867677259458080676065098703453539525576975639543700507625640729872340789406314394468400584455920683361976200121834430751233901473228497490561998078486251074993528871318797403348087370426900997556442577081254910572185107856605139877331015042842121106080690743578173268489400499056898312621953947967012358414547752897081097091795744203697684046066255663201242292760126759871266004516377432961917272040217147083563399987612420595275792033855676991823368254862159558450043808051481533297270035287382247038279293223946385070118082306958987268603396924054403103857444058848605587415400517670032631121206127732481340391088277796488544415738156553014768406246154666005139690428085145098272500791416214774673484501826722500527091164944262537169595848931680754096774712860490572746224094031187043204526107239201079603468297522895106598567437015083348797875364162797693968819804139548885751282687152237078260358705230284426203064493684250614282879918107733796207067250003823959412935677624093236047038637365577326399589008804507786011973155927731073034706536557461443806622707622411087809371872157210456836892493613836792026761820382217165481998924123604782787923229739171920575447007099501678380795077013113325989801385729993920818301654424251339564606876820121928372246213399859213282792511168043953443839793901139974194479300297566097664539199384651908436188732428818373302383046388859427937893841888014266685177616605644783704135794931830750265686335934066565240944049448213005591997128985560760260399214278635912634351586762354869354021530746189992899582554597632108309638569296964800046983072736238483149014714600896056552029642747991419063454749142059564274298254654925893866404955146903330024475746163543714996249652420171171054231726336493541586971431778944051481059633738399411418574323811770949729726843612672925000631355659834164200554441315451003433452466204707123811663623662837296862948061758759928631763661985185615801886205770721032006304144867787347058316392295671580091655872087209485913286930128858640442589125454268580397484571921012318872311624898317615607628176460097441336323549031828235965636277950827328087547939511112374216436584203379248450122647406094035171130740663723547675939885959363881135893035102018389444212746146250328348242610673524022378994978392020098814721974502062692815736689229759065822093942795318705345275598989426335235935505605311411301560321192269430861733743544402908586497305353600909431214933202522528717109214492959330016065810287623144179288466664888540622702346704213752456372574449563979215782406566937885352945871994541770838871930542220307771671498466518108722622109421676741544945695403509866953167277628280232464839215003474048896968037544660029755740065581270139083249903212572230417942249795467100700393944310325009677179182109970943346807335014446839612282508824324073679584122851208360459166315484891952299449340025896509298935939357721723543933108743241997387447018395925320167637640328407957069845439501381234605867495003402016724626400855369636521155009147176245904149069225438646928549072337653348704931901764847439772432025275648964681387210234070849306330191790380412396115446240832583481366372132300849060835262136832315311052903367503857437920508931305283143379423930601369154572530677278862066638884250221791647123563828956462530983567929499493346622977494903591722345188975062941907415400740881

Marc Masdeu Rational points on elliptic curves September 5th, 2017 19 / 33

Darmon points (K/Q real quadratic)

Henri Darmon

If K = Q(√D) is real and p ‖ N is inert in K,

then ords=1 L(E/K, s) is odd as well. . .. . . but Heegner points are not available.

I Note that in this case, K ∩H = ∅!In 2001, Darmon gave another analyticconstruction:

I p-adic analytic (instead of complex analytic).I The algebraicity of these points is still open

nowadays.

Marc Masdeu Rational points on elliptic curves September 5th, 2017 20 / 33

Recall: how to construct C

On Q, consider the usual absolute value

|x| =x x ≥ 0,

−x x < 0.

Complete Q with respect to the metric given by | · | (we call this R).I Have decimal expansions, e.g 2.147581534 . . ..I They are really power series

∑n≥n0

an10−n.

Adjoin a root i of an irreducible quadratic to get C.I We also have decimal expansions, e.g.

2.147581534 . . .+ i · 3.6171346234 . . ..

Marc Masdeu Rational points on elliptic curves September 5th, 2017 21 / 33

How to construct its p-adic analogue

On Q, consider the p-adic absolute value |x|p = p−vp(x) on Q, where

vp

(ptm

n

)= t if p - m and p - n, vp(0) = +∞.

I |3|3 = 1/3, |18|3 = 1/9, |2/3|3 = 3, . . .Complete Q with respect to the metric given by | · |p (we call this Qp).

I Have p-adic expansions:∑n≥n0

anpn, an ∈ 0, . . . , p− 1.

Take an irreducible quadratic and adjoin a root α to get Qp2 .I These too have p-adic expansions:∑

n≥n0

(an + αbn)pn, an, bn ∈ 0, . . . , p− 1.

The p-adic analogue to H is Hp = Qp2 rQp.I More like an analogue of H together with the lower half-plane. . .

Marc Masdeu Rational points on elliptic curves September 5th, 2017 22 / 33

Heegner points vs Darmon points

Recall K = Q(√D) real quadratic, p is inert in K.

I Note that X2 −D doesn’t have roots in Qp.I Take Qp2 = Qp(

√D), and note that K → Qp2 .

Recall that the conductor of E is of the form pM with p -M .

Theorem (Tate)There is a p-adic number qE ∈ Q×p , and a p-adic analytic isomorphism

ηTate : Q×p2/qZE → E(Qp2).

LetΓ =

γ =

(a bc d

)∈ SL2(Z[1/p]) |M | c

.

E gives rise to a “rigid analytic” differential (1, 1)-form ωE on H×Hp.I Invariant under Γ, so it “descends” to XΓ = Γ\H×Hp.

Marc Masdeu Rational points on elliptic curves September 5th, 2017 23 / 33

A null-homologous cycle in XΓ = Γ\H×Hp

Start with an embedding ψ : K →M2(Q).ψ induces an action of K× on Hp.Set γ = γψ = ψ(ε2), where O×K = ±1 × 〈ε〉.Let τ = τψ ∈ Hp be the unique fixed point of γ.Note: γ fixes τ , and so does any power of γ.Fact: Γab is finite.

I So if e = #Γab, then γe is a product of commutators.I Assume (for simplicity) that γe = aba−1b−1, for some a, b ∈ Γ.

Consider the 1-cycle in XΓ = Γ\H×Hp:

Θ = (γe∞→∞)× τ,

where∞ ∈ H is any choice of base point.I Note that (γe∞, τ) = γe · (∞, τ), so it is closed.

Turns out that Θ is null-homologous: it is the boundary of a2-chain.

Marc Masdeu Rational points on elliptic curves September 5th, 2017 24 / 33

A 2-chain with boundary Θ

×

×

×

a∞

b∞

a−1τ

τ

τ∞

a∞ ab∞

aba−1∞

aba−1b−1∞

a∞

×τ

×τ

×τ

×τ

×τ

×τ

×b−1τ

×τ

×a−1τ

×a∞

×∞

×∞

×b∞

a∞

ab∞

ab∞

aba−1∞

aba−1∞

aba−1b−1∞

aba−1b−1∞

a∞

a∞

b∞

b∞

b−1τ

τ

a−1τ

τ

a−1τ

τ

b−1τ

τ

b−1τ

τ

+

+ + + +

+

+

+

+

+

×∞

b−1τ

τ

×a∞

τ

b−1τ

+ ×∞

τ

a−1τ

+ ×b∞

a−1τ

τ

+ = ∞×

b−1τ

τ

a−1τ

a−1b−1τ

τ

a−1τ

b−1a−1τ

b−1τ

+ + + =∞×

b−1a−1τ

a−1b−1τ

Marc Masdeu Rational points on elliptic curves September 5th, 2017 25 / 33

ConjectureRecallΘ = ∂

(× τ − (∞→ a∞)× (b−1τ → τ) + (∞→ b∞)× (a−1τ → τ)

).

ωE = (1, 1) form on H×Hp attached to E.

Technical detail: Can define a “multiplicative integral” for ωE .I Essentially, replace Riemann sums with products.I Its p-adic logarithm recovers the usual integral.

Jψ = ×∫ a∞

∞×∫ b−1τ

τωE −×

∫ b∞

∞×∫ a−1τ

τωE ∈ Q×

p2.

The 2-chain is not unique: it can be changed by any 2-cycle.Jψ is well defined modulo elements in

Λ =

×∫×∫ξωE : ξ ∈ H2 (Γ\H×Hp,Z)

⊂ Q×

p2

Marc Masdeu Rational points on elliptic curves September 5th, 2017 26 / 33

The conjecture

Jψ = ×∫ a∞

∞×∫ b−1τ

τωE −×

∫ b∞

∞×∫ a−1τ

τωE ∈ Q×

p2/Λ.

Λ =

×∫×∫ξωE : ξ ∈ H2 (Γ\H×Hp,Z)

⊂ Q×

p2

Theorem (Bertolini–Darmon)

Λ = qZE .

Note that it makes sense to consider ηTate(Jψ) ∈ E(Qp2).

Conjecture (Darmon)1 Pψ = ηTate(Jψ) ∈ E(Qp2) has algebraic coordinates.2 PK = Tr(Pψ) is nontorsion ⇐⇒ L′(E/K, 1) 6= 0.

Marc Masdeu Rational points on elliptic curves September 5th, 2017 27 / 33

Example: E : y2 + xy + y = x3 + x2 − 10x− 10 (“15a1”)

fE(z) = q − q2 − q3 − q4 + q5 + q6 + 3q8 + q9 − q10 + · · ·fE is a modular form of level N = 15.Embed K = Q(

√13)→M2(Q) by sending

√13 7→

(−3 22 3

). It

identifies OK = Z[1+√

132 ] with the maximal order of M2(Q).

We get γ = ψ(ε2) = ψ(

11−3√

132

)=(

10 −3−3 1

).

The fixed point τ for γ is a root of x2 + 3x− 1 in Qp2 .

We can calculate Jψ very efficiently, obtaining (set β = 1+√

132 ∈ Qp2)

(3β+4)+(4β+1)52+(2β+2)5

3+(2β+4)5

4+(3β+2)5

5+(β+2)5

6+(2β+2)5

7+(β+4)5

8+(2β+4)5

9+· · · .

Pψ = ηTate(Jψ) ∈ E(Qp2) is((3β + 2) + 4β · 5 + 4β · 52 + 4β · 53 + 4β · 54 + · · · , (4β + 4) + 3 · 5 + 4 · 52 + 4 · 53 + 4 · 54 + · · ·

).

This is 5-adically close to the algebraic point of infinite order(1−√

13,−4 + 2√

13)∈ E(K).

Marc Masdeu Rational points on elliptic curves September 5th, 2017 28 / 33

Generalization

F a number field, K/F a quadratic extension.

n+ s = #v | ∞F : v splits in K = rkZO×K/O×F .

K/F is CM ⇐⇒ n+ s = 0.I If n+ s = 1 we call K/F quasi-CM.

S(E,K) =v | N∞F : v not split in K

.

Sign of functional equation for L(E/K, ·) should be (−1)#S(E,K).I From now on, we assume that this is odd.I #S(E,K) = 1 =⇒ split automorphic forms,I #S(E,K) > 1 =⇒ quaternionic automorphic forms.

Fix a place ν ∈ S(E,K).1 If ν = p is finite =⇒ non-archimedean construction.2 If ν is infinite =⇒ archimedean construction.

Marc Masdeu Rational points on elliptic curves September 5th, 2017 29 / 33

Particular cases being generalized

Non-archimedean

I H. Darmon (1999): F = Q, split.

I M. Trifkovic (2006): F = Q(√−d) ( =⇒ K/F quasi-CM), split.

I M. Greenberg (2008): F totally real, quaternionic.

Archimedean

I H. Darmon (2000): F totally real, split.

I J. Gartner (2010): F totally real, quaternionic.

Marc Masdeu Rational points on elliptic curves September 5th, 2017 30 / 33

Overview of the construction

Assume that F has narrow class number 1.I Removed in joint work with X. Guitart and S. Molina.

Find a quaternion algebra B and a v-arithmetic group Γ ⊂ B.Attach to E a cohomology class

ΦE ∈ Hn+s(Γ,Ω1

Hν).

Attach to each embedding ψ : K → B a homology class

Θψ ∈ Hn+s

(Γ,Div0 Hν

).

I Well defined up to the image of Hn+s+1(Γ,Z)δ→ Hn+s(Γ,Div0 Hν).

Cap-product and integration on the coefficients yield an element:

Jψ = ×∫

Θψ

ΦE ∈ K×ν .

Jψ is well-defined up to the lattice L =×∫δ(θ) ΦE : θ ∈ Hn+s+1(Γ,Z)

.

Marc Masdeu Rational points on elliptic curves September 5th, 2017 31 / 33

Conjectures

Conjecture 1 (Oda, Yoshida, Greenberg, Guitart-M-Sengun)There is an isogeny η : K×ν /L→ E(Kν).

Dasgupta–Greenberg, Rotger–Longo–Vigni: some non-arch. cases.Completely open in the archimedean case.

The Darmon point attached to E and ψ : K → B is:

Pψ = η(Jψ) ∈ E(Kν).

Conjecture 2 (Darmon, Greenberg, Trifkovic, Gartner, G-M-S)1 The local point Pψ is global, defined over E(Hψ).2 For all σ ∈ Gal(Hψ/K), σ(Pψ) = Prec(σ)·ψ (Shimura reciprocity).3 TrHψ/K(Pψ) is nontorsion if and only if L′(E/K, 1) 6= 0.

Marc Masdeu Rational points on elliptic curves September 5th, 2017 32 / 33

Moltes gracies, merces plan, muchas gracias,eskerrik asko, moitas grazas!

Non-archimedean

Archimedean

Ramification

Darmon Points

H∗ H∗

Modularity

E/FK/F quadratic

P?∈ E(Kab)

Marc Masdeu Rational points on elliptic curves September 5th, 2017 33 / 33

Recommended