Localized transient waves of cortical spreading depression in migraine

Preview:

DESCRIPTION

Talk at Dynamics of Disease Workshop, will take place on the 21st-23rd of August 2012

Citation preview

Localized transient waves of cortical spreadingdepression in migraine

Markus A. Dahlem

Research group: Nonlinear Dynamics in Physiology and Medicine

nucleationcritical

23 min

21

19

17

17

15

1311

975

10°

1 cm

Visual hemifield Primary visual cortex

The Dynamics of Disease, Manchester August 23, 2012

Markus A. Dahlem, TU Berlin

Outline

1 Introduction

2 Localized spots traveling in human cortex

3 Modeling migraine with aura

Markus A. Dahlem, TU Berlin

Outline

1 Introduction

2 Localized spots traveling in human cortex

3 Modeling migraine with aura

Markus A. Dahlem, TU Berlin

Long history in non-drug migraine treatment

Markus A. Dahlem, TU Berlin

Long history in non-drug migraine treatment

Markus A. Dahlem, TU Berlin

Berlin, Institute of Physiology

Markus A. Dahlem, TU Berlin

Organic Physics – The Fab Four

Markus A. Dahlem, TU Berlin

Organic Physics – The Fab Four

Markus A. Dahlem, TU Berlin

Organic Physics – The Fab Four

Kymograph (Carl Ludwig)

Markus A. Dahlem, TU Berlin

History of electrical stimuation (Don’t try this at home!)

Non-drug treatment for headaches.

P. J. Koehler and C. J. Boes, A history of non-drug treatment in headache,particularly migraine. Brain 133:2489-500. 2010

Markus A. Dahlem, TU Berlin

History of electrical stimuation (Don’t try this at home!)

Non-drug treatment for headaches.

P. J. Koehler and C. J. Boes, A history of non-drug treatment in headache,particularly migraine. Brain 133:2489-500. 2010

Markus A. Dahlem, TU Berlin

History of electrical stimuation (Don’t try this at home!)

Non-drug treatment for headaches.

P. J. Koehler and C. J. Boes, A history of non-drug treatment in headache,particularly migraine. Brain 133:2489-500. 2010

Markus A. Dahlem, TU Berlin

History of electrical stimuation (Don’t try this at home!)

Non-drug treatment for headaches.

Markus A. Dahlem, TU Berlin

Neuromodulation

”The headache future is bright for neuromodulation techniques ... if wemanage to understand how they work” (Jean Schoenen)

figure courtesy of Jean Schoenen

Markus A. Dahlem, TU Berlin

Neuromodulation

”The headache future is bright for neuromodulation techniques ... if wemanage to understand how they work” (Jean Schoenen)

figure courtesy of Jean Schoenen

Markus A. Dahlem, TU Berlin

Neuromodulation

”The headache future is bright for neuromodulation techniques ... if wemanage to understand how they work” (Jean Schoenen)

figure courtesy of Jean Schoenen

Markus A. Dahlem, TU Berlin

Neuromodulation

”The headache future is bright for neuromodulation techniques ... if wemanage to understand how they work” (Jean Schoenen)

figure courtesy of Jean Schoenen

Markus A. Dahlem, TU Berlin

Neuromodulation

”The headache future is bright for neuromodulation techniques ... if wemanage to understand how they work” (Jean Schoenen)

figure courtesy of Jean Schoenen

Markus A. Dahlem, TU Berlin

Neuromodulation

”The headache future is bright for neuromodulation techniques ... if wemanage to understand how they work” (Jean Schoenen)

figure courtesy of Jean Schoenen

Markus A. Dahlem, TU Berlin

Homo Neuromodulandus

”The headache future is bright for neuromodulation techniques ... if wemanage to understand how they work” (Jean Schoenen)

figure courtesy of Jean SchoenenMarkus A. Dahlem, TU Berlin

Stimulating the brain

Markus A. Dahlem, TU Berlin

Stimulating the brain

Markus A. Dahlem, TU Berlin

Stimulating the brain

Markus A. Dahlem, TU Berlin

Stimulating the brain

Markus A. Dahlem, TU Berlin

Stimulating the brain

Markus A. Dahlem, TU Berlin

Stimulating the brain

Neuralieve (California, USA) tests small, portable TMS device forpotentially treating migraine with aura ...

Markus A. Dahlem, TU Berlin

IHS Classification ICHD-II – All Types

1.

1.1. 1.2. 1.4. 1.5. 1.6.1.3.

1.2.1. 1.3.1. 1.5.1. 1.6.1.

Sub

form

s

Migraine

Subtypes

2 symptom, 3 combinations: both or either of them

Markus A. Dahlem, TU Berlin

IHS Classification ICHD-II – Major Types

with aura

without aura

typical aurawithout headache

1.

1.1. 1.2.

1.2.1.

Sub

form

s

Migraine

Subtypes

1.1.

1.2.1.

1.2.3.

2 symptom, 3 combinations: both or either of them

Markus A. Dahlem, TU Berlin

Mainly two neural theories of migraine

”Migraine generator”-theory

S1

PFCTh

PPC

PAG

Amyg Insula

SMA

ACC

”Spreading depression”-theory

Markus A. Dahlem, TU Berlin

SD triggers trigeminal meningeal afferents, ie, headache

see e.g.: Bolay et al. Nature Medicine 8, 2002Review: Eikermann-Haerter & Moskowitz, Curr Opin Neurol. 21, 2008

Figure: Dodick & Gargus SciAm, August 2008

Markus A. Dahlem, TU Berlin

”Migraine generator” in the brainstem

SD

aura

trigger

Markus A. Dahlem, TU Berlin

”Migraine generator” in the brainstem

?

trigger A

SD

trigger B

?

trigger C

?

trigger D

postdromeprodrome aura headache

mysterious conductor

about 1 day about 1 day4−72h< 60 min

Markus A. Dahlem, TU Berlin

A conductor of a neural orchestra playing migraine

?

trigger A

?

trigger C

?

trigger D

postdromeprodrome headache

mysterious conductor

trigger B

SD

aura

about 1 day about 1 day4−72h< 60 min

Markus A. Dahlem, TU Berlin

A conductor of a neural orchestra playing migraine

?

trigger A

?

trigger D

postdromeprodrome

mysterious conductor

headache

trigger C

?SD

trigger B

aura

about 1 day about 1 day< 60 min 4−72h

Markus A. Dahlem, TU Berlin

A conductor of a neural orchestra playing migraine

?

trigger A

SD

trigger B

?

trigger C

?

trigger D

postdromeprodrome aura headache

mysterious conductor

about 1 day about 1 day4−72h< 60 min

Markus A. Dahlem, TU Berlin

SD is playing jazz – self-organizing dynamics

SD

postdromeaura headache

about 1 day about 1 day4−72h< 60 min

delaytime

trigger

prodrome

heightened susceptibility

cort

ical

hom

eost

asis

prodrome

Markus A. Dahlem, TU Berlin

Pathway of upstream and downstream events

SD

headacheprodrome aura

trigger

heig

hten

edsusceptibility

delayed trigger

Only one upstream trigger?Silent aura?Delayed headache link?

Markus A. Dahlem, TU Berlin

Outline

1 Introduction

2 Localized spots traveling in human cortex

3 Modeling migraine with aura

Markus A. Dahlem, TU Berlin

Migraine full-scale attack is more confined

(a) (b)

(c)

LS

CS

(d)

affected areatemporarily

Dahlem et al. ”2D wave patterns ... ”. Physcia D 239 (2010) Special issue: Emerging Phenomena.

Markus A. Dahlem, TU Berlin

SD wave in the cortex

-1

-2

-3

-4-7

-8

1 min

20 mV

log [cat] , M

(mM)

VeNa+

Na+

K+

Ve

K+

Ca++

Ca++

H+

0 10 20 30 s

150

6050

31.5

0.08

unitact.

Lauritzen (1994) Brain 117:199.

Markus A. Dahlem, TU Berlin

Engulfing SD wave: current paradigm of full-scale attack

Xenon 133 method, radionuclide used to image brain’s blood flow.

Olesen, J. , Larsen, B. and Lauritzen, M., Focal hyperemia followed by spreading oligemia and impaired activation

of rCBF in classic migraine, Ann. Neurol. 9, 344 (1981)

Markus A. Dahlem, TU Berlin

Engulfing SD wave: current paradigm of full-scale attack

M. Lauritzen (1987) Trends in Neurosciences 10:8.

Markus A. Dahlem, TU Berlin

Engulfing SD wave: current paradigm of full-scale attack

M. Lauritzen (1987) Trends in Neurosciences 10:8.

Markus A. Dahlem, TU Berlin

Migraine full-scale attack is more confined

(a) (b)

(c)

LS

CS

(d)

affected areatemporarily

Dahlem et al. ”2D wave patterns ... ”. Physcia D 239 (2010) Special issue: Emerging Phenomena.

Markus A. Dahlem, TU Berlin

What is a migraine aura?

Markus A. Dahlem, TU Berlin

Migraine visual field defects reported in 1941 by K. Lashley

visual field defect pattern on primary visual cortex

0

5

10

15

5min7min

9min

11min

15min

0 10 20 30 40 50mm

5min7min

9min11min

15min

Only about 2-10% but not 50% cortical surface area is affected!Dahlem & Hadjikhani (2009) PLoS ONE 4: e5007.

Markus A. Dahlem, TU Berlin

Tracking migraine aura symptoms

Vincent & Hadjikhani (2007) Cephalagia 27

Markus A. Dahlem, TU Berlin

Tracking migraine aura symptoms

Vincent & Hadjikhani (2007) Cephalagia 27

Markus A. Dahlem, TU Berlin

Confined spatial patterns of spreading depression

Hadjikhani et al. (2001) PNAS

Dahlem & Hadjikhani (2009) PLoS ONEDahlem & Muller (1997) Exp. Brain Res.

Markus A. Dahlem, TU Berlin

Confined spatial patterns of spreading depression

neighboring points

collapse

?

16 min

31 min

1 cm

nucleationrecordedslice not

Hadjikhani et al. (2001) PNAS

Dahlem & Hadjikhani (2009) PLoS ONEDahlem & Muller (1997) Exp. Brain Res.

Markus A. Dahlem, TU Berlin

Confined spatial patterns of spreading depression

23 min18 min.

28 min.

Hadjikhani et al. (2001) PNAS

Dahlem & Hadjikhani (2009) PLoS ONEDahlem & Muller (1997) Exp. Brain Res.

Markus A. Dahlem, TU Berlin

Confined spatial patterns of spreading depression

23 min18 min.

28 min.

Open wave fronts move along

a rather straight line

preventing a reentry of SD

Hadjikhani et al. (2001) PNAS

Dahlem & Hadjikhani (2009) PLoS ONEDahlem & Muller (1997) Exp. Brain Res.

Markus A. Dahlem, TU Berlin

Confined spatial patterns of spreading depression

23 min18 min.

28 min.

Open wave fronts move along

a rather straight line

preventing a reentry of SD

Hadjikhani et al. (2001) PNASDahlem & Hadjikhani (2009) PLoS ONE

Dahlem & Muller (1997) Exp. Brain Res.

Markus A. Dahlem, TU Berlin

Confined spatial patterns of spreading depression

18 min.

23 min

28 min.

33 min.

38 min.

1 mm

Spiral waves (reentry) observed in retinal SDwith a rotation period of 2.45 min

Hadjikhani et al. (2001) PNASDahlem & Hadjikhani (2009) PLoS ONEDahlem & Muller (1997) Exp. Brain Res.

Markus A. Dahlem, TU Berlin

Clinical evidence

Markus A. Dahlem, TU Berlin

Mapped visual symptoms on cortex via fMRI retinotopy

1 cm

10°

1 357

15

1719

2123

25

27 min

Visual hemifield Primary visual cortex

Dahlem & Hadjikhani (2009) PLoS ONE 4: e5007.

Markus A. Dahlem, TU Berlin

Mapped visual symptoms on cortex via fMRI retinotopy

23 min

21

19

17

17

15

1311

975

10°

1 cm

Visual hemifield Primary visual cortex

Dahlem & Hadjikhani (2009) PLoS ONE 4: e5007.

Markus A. Dahlem, TU Berlin

Outline

1 Introduction

2 Localized spots traveling in human cortex

3 Modeling migraine with aura

Markus A. Dahlem, TU Berlin

Mathematical models cells, circuits, and to tissue

I

II

III

IV

V

VI

Apic

al dendrite

Current distribution

Soma

Glia

Extra

cellu

lar

Osmotic force

Pump

INa,P

IK,DR

IK,A

INMDA

INa,T

K+

[K+]o

[Na+]i

Markus A. Dahlem, TU Berlin

Local Dynamics during SDA

pic

al dendrite

Current distribution

Soma

Glia

Extra

cellu

lar

Osmotic force

Pump

INa,P

IK,DR

IK,A

INMDA

INa,T

K+

[K+]o

[Na+]i

C∂V

∂t= −INa − IK − ICl + I pump + Iapp

INa = −m3∞h(ENa − V )

IK = −n4(EK − V )

∂n

∂t= αn(1 − n) − βn,

∂h

∂t· · ·

∂[ion]o

∂t=

IionA

FVolo+ Idiff

∂[ion]i

∂t=

IionA

FVoli

I pumpion (V ) = βionImax

(1 +

KmK

[K ]o

)−2 (1 +

KmNa

[Na]i

)−3

Alternatively (GHK currents)

Iion = V αF Pion[ion]i − [ion]oe

−αV

1 − e−αV

M. A. Dahlem, Models of cortical SD, Scholarpedia

Markus A. Dahlem, TU Berlin

Local Dynamics during SDA

pic

al dendrite

Current distribution

Soma

Glia

Extra

cellu

lar

Osmotic force

Pump

INa,P

IK,DR

IK,A

INMDA

INa,T

K+

[K+]o

[Na+]i

C∂V

∂t= −INa − IK − ICl + I pump + Iapp

INa = −m3∞h(ENa − V )

IK = −n4(EK − V )

∂n

∂t= αn(1 − n) − βn,

∂h

∂t· · ·

∂[ion]o

∂t=

IionA

FVolo+ Idiff

∂[ion]i

∂t=

IionA

FVoli

I pumpion (V ) = βionImax

(1 +

KmK

[K ]o

)−2 (1 +

KmNa

[Na]i

)−3

Alternatively (GHK currents)

Iion = V αF Pion[ion]i − [ion]oe

−αV

1 − e−αV

M. A. Dahlem, Models of cortical SD, Scholarpedia

Markus A. Dahlem, TU Berlin

Local Dynamics during SDA

pic

al dendrite

Current distribution

Soma

Glia

Extra

cellu

lar

Osmotic force

Pump

INa,P

IK,DR

IK,A

INMDA

INa,T

K+

[K+]o

[Na+]i

C∂V

∂t= −INa − IK − ICl + I pump + Iapp

INa = −m3∞h(ENa − V )

IK = −n4(EK − V )

∂n

∂t= αn(1 − n) − βn,

∂h

∂t· · ·

∂[ion]o

∂t=

IionA

FVolo+ Idiff

∂[ion]i

∂t=

IionA

FVoli

I pumpion (V ) = βionImax

(1 +

KmK

[K ]o

)−2 (1 +

KmNa

[Na]i

)−3

Alternatively (GHK currents)

Iion = V αF Pion[ion]i − [ion]oe

−αV

1 − e−αV

M. A. Dahlem, Models of cortical SD, Scholarpedia

Markus A. Dahlem, TU Berlin

Local Dynamics during SDA

pic

al dendrite

Current distribution

Soma

Glia

Extra

cellu

lar

Osmotic force

Pump

INa,P

IK,DR

IK,A

INMDA

INa,T

K+

[K+]o

[Na+]i

C∂V

∂t= −INa − IK − ICl + I pump + Iapp

INa = −m3∞h(ENa − V )

IK = −n4(EK − V )

∂n

∂t= αn(1 − n) − βn,

∂h

∂t· · ·

∂[ion]o

∂t=

IionA

FVolo+ Idiff

∂[ion]i

∂t=

IionA

FVoli

I pumpion (V ) = βionImax

(1 +

KmK

[K ]o

)−2 (1 +

KmNa

[Na]i

)−3

Alternatively (GHK currents)

Iion = V αF Pion[ion]i − [ion]oe

−αV

1 − e−αV

M. A. Dahlem, Models of cortical SD, Scholarpedia

Markus A. Dahlem, TU Berlin

Local Dynamics during SDA

pic

al dendrite

Current distribution

Soma

Glia

Extra

cellu

lar

Osmotic force

Pump

INa,P

IK,DR

IK,A

INMDA

INa,T

K+

[K+]o

[Na+]i

C∂V

∂t= −INa − IK − ICl + I pump + Iapp

INa = −m3∞h(ENa − V )

IK = −n4(EK − V )

∂n

∂t= αn(1 − n) − βn,

∂h

∂t· · ·

∂[ion]o

∂t=

IionA

FVolo+ Idiff

∂[ion]i

∂t=

IionA

FVoli

I pumpion (V ) = βionImax

(1 +

KmK

[K ]o

)−2 (1 +

KmNa

[Na]i

)−3

Alternatively (GHK currents)

Iion = V αF Pion[ion]i − [ion]oe

−αV

1 − e−αV

M. A. Dahlem, Models of cortical SD, Scholarpedia

Markus A. Dahlem, TU Berlin

Local Dynamics during SDA

pic

al dendrite

Current distribution

Soma

Glia

Extra

cellu

lar

Osmotic force

Pump

INa,P

IK,DR

IK,A

INMDA

INa,T

K+

[K+]o

[Na+]i

C∂V

∂t= −INa − IK − ICl + I pump + Iapp

INa = −m3∞h(ENa − V )

IK = −n4(EK − V )

∂n

∂t= αn(1 − n) − βn,

∂h

∂t· · ·

∂[ion]o

∂t=

IionA

FVolo+ Idiff

∂[ion]i

∂t=

IionA

FVoli

I pumpion (V ) = βionImax

(1 +

KmK

[K ]o

)−2 (1 +

KmNa

[Na]i

)−3

Alternatively (GHK currents)

Iion = V αF Pion[ion]i − [ion]oe

−αV

1 − e−αV

M. A. Dahlem, Models of cortical SD, Scholarpedia

Markus A. Dahlem, TU Berlin

Tissue properties & engery state change time scales . . .

... otherwise robust!

0 1 2 3 4 5 6time (s)

100

50

0

50

volt

age

(mV

)

V

EK

ENa

Iapp

0 5 10 15 20 25 30 35

time (s)

100

50

0

50

volt

age

(mV

)

V

EK

ENa

Iapp

Parameters relevant for migraine aura–ischemic stroke continuum.

Markus A. Dahlem, TU Berlin

Possible bifurcations involved in local dynamics of SD

0 1 2 3 4 5 6time (s)

100

50

0

50

volt

age (m

V)

V

EK

ENa

Iapp

−gate deactivation Hopf

−gatemembrane voltage

SNIC

Hopf

SNIC

Recovery

eletrogenic pump

FoldSeizure−like activity

in ischaemic stroke

hypoxic tissue

Spreading depression

(ceiling level)

n

nV

Ipump[K+]o

[K+]o = 10mM

Markus A. Dahlem, TU Berlin

Feedback control of spreading depression

From bench to bedside

!

!"#$%&'$()'#"*(

+,-+,."(!"#$%&/*#(

0&1'2(3"'$#(

4#&5$1"(!"#$%&'$()'#"*( 6/&'7/2%1"(!"#$%&'$()'#"*(

Cooperation with Stephen Schiff & Bruce Gluckman Courtesy of Neuralieve

Markus A. Dahlem, TU Berlin

Macroscopic RD with nonlocal transmission

ion

currents

ion gradient

ion

conductance

ion

pumpsout in

diffu

sion

activator−inhibitor dynamics

depolarization

firing rate

neurovascular coupling

neural network activity

Hodgkin-Huxley-Grafstein model

(1963) of SD

u =

(u − u3

3− v

)+ D∇2u

+ FHN inhibitor equations + ...

ε−1v = u + β − γv + KF [u]

global inhibitory control (mean field)

F [u] = Su(t)− S0

Su(t) =

∫H(u(r, t)− ue) dr,

Markus A. Dahlem, TU Berlin

RD models on realistic cortical geometries

positive (fender)

negative (saddle)

gyral crowns

entrance to sulci

gyral crowns

entrance to sulci

Markus A. Dahlem, TU Berlin

Traveling spots are unstable (w/o long-range inhibition)

Schenk, C. P. , Or-Guil, M. , Bode, M. and Purwins, H. -G. , Phys. Rev. Lett. 78, 3781 (1997)

Markus A. Dahlem, TU Berlin

The surface of the brain (cortex) is curved

Markus A. Dahlem, TU Berlin

Minimum threshold in a flat geometry

0

20

40

60

1.3 1.32 1.34 1.36 1.38 1.4

S

β

torus outside

flat

torus inside2

21

1

ring wave

1

2

∂P1D∂R∞

Markus A. Dahlem, TU Berlin

Nucleation of visual aura clusters in the visual field

23 min

21

19

17

17

15

1311

975

10°

1 cm

Visual hemifield Primary visual cortex

Cooperation with Andrew Charles, UCLA.

Markus A. Dahlem, TU Berlin

Nucleation of visual aura clusters in the visual field

1 cm

10°

1 357

15

1719

2123

25

27 min

Visual hemifield Primary visual cortex

Markus A. Dahlem, TU Berlin

Nucleation of visual aura clusters in the visual field

1 cm

10°

1 357

15

1719

2123

25

27 min

Visual hemifield Primary visual cortex

Markus A. Dahlem, TU Berlin

Nucleation failure on torus

Markus A. Dahlem, TU Berlin

Transient times in flat and curved geometry

0

10

20

30

40

50

1.3 1.32 1.34 1.36 1.38

S

β

with controlwithout control

torus outside

flat

torus inside

ring wave

∂R∞

0

10

20

30

0 10 20 30 40 50 60 70 80

S

t

outside

inside

outside

inside

torus, without controltorus, with control

flat, without control

Markus A. Dahlem, TU Berlin

Critical nucleation size varies with curvature

nucleationcritical

Markus A. Dahlem, TU Berlin

Migraine full-scale attack is more confined

(a) (b)

(c)

LS

CS

(d)

affected areatemporarily

Dahlem et al. ”2D wave patterns ... ”. Physcia D 239 (2010) Special issue: Emerging Phenomena.

Markus A. Dahlem, TU Berlin

Cortical homeostasis is excitable (bistabe)

Hypothesis: Cortical susceptibility to SD depends on the size ofthe momentarily affected tissue.

nucleationcritical

Markus A. Dahlem, TU Berlin

Long transient: ghost behavior, inhib. global feedback

Hypothesis: Cortical susceptibility to SD depends on the size ofthe momentarily affected tissue.

slow dynamicstransient and

Markus A. Dahlem, TU Berlin

Threshold surface separates attractor basins

supra

stim.

stim. su

b

traveling wave

homo. steady state

ui(x)

ui+1

(x)

ui+2

(x)

phase space

threshold

Excitable media.

Markus A. Dahlem, TU Berlin

Solution on threshold surface

supra

stim.

stim. su

b

traveling wave

homo. steady state

ui(x)

ui+1

(x)

ui+2

(x)

phase space

threshold

Excitable media.

Markus A. Dahlem, TU Berlin

Nonlinear delayed transitions: saddle-node ghosts

homo.

stead

y stat

e

fast

fast

slow

Markus A. Dahlem, TU Berlin

Nonlinear delayed transitions: saddle-node ghosts

homo.

stead

y stat

e

fast

fast

slow

Markus A. Dahlem, TU Berlin

Bottleneck due to saddle-node bifurcation

(a) (b)

(a)

(c)

(b)

(d)(c)

stable wave segment

homo.

stead

y stat

e

homo.

stead

y stat

e

homo.

stead

y stat

e

homo. steady state

supra

stim.

fast

fast

slow

trave

ling w

ave

stim. su

b

traveling wave

w

ave

size

S

threshold β

∂R

∂R

threshold

Markus A. Dahlem, TU Berlin

Simulation of transient SD wave segment

gray = cortical surface; red = SD wave

Markus A. Dahlem, TU Berlin

Typical trajectory: fast growth and collapse & bottleneck

0

5

10

15

20

25

0 5 10 15 20 25 30 35time

collapse

cort

ical

sur

face

are

a in

vade

d by

SD nucleation

CSD break−up

long transient propagation

model−based

stimulation strategiestherapeutic TMS

Markus A. Dahlem, TU Berlin

Confined spatial patterns of spreading depression

neighboring points

collapse

?

16 min

31 min

1 cm

nucleationrecordedslice not

Markus A. Dahlem, TU Berlin

Confined spatial patterns of spreading depression

neighboring points

0

4

8

12

16

20

32

28

24

time

16 min

31 min

1 cm

recordedslice not

Markus A. Dahlem, TU Berlin

Confined spatial patterns of spreading depression

neighboring points 16 min

31 min

1 cm

recordedslice not

Markus A. Dahlem, TU Berlin

Confined spatial patterns of spreading depression

neighboring points 16 min

31 min

1 cm

recordedslice not

Markus A. Dahlem, TU Berlin

Confined spatial patterns of spreading depression

neighboring points 16 min

31 min

1 cm

recordedslice not

Markus A. Dahlem, TU Berlin

Confined spatial patterns of spreading depression

5cm

00

0 0

32 16

6 24

time / m

in

Markus A. Dahlem, TU Berlin

Varying contact to the ghost

0

50

100

150

200

250

300

350

400

450

tota

laff

ecte

dar

ea(T

AA

)

(1)

(2)

(3)

(4)

0 10 20 30 40 50 60

maximal instantaneous area (MIA)

0

50

100

150

200

250

300

exci

tati

on

du

rati

on(E

D)

(1)

(2)

(3)

(4)

0 50 100 150 200 250 300 350 400 450

total affected area (TAA)

(1)

(2)

(3)

(4)

0

80

160

240

#O

ccu

rren

ces

0 80 160240

0 80 160240# Occurrences

β0 = 1.32

(1)

(2) (3)

(4)

0 30 60 90 120150180210240270time

1

10

20

30

40

50

60

70

80

Markus A. Dahlem, TU Berlin

Varying contact to the ghost

0

50

100

150

200

250

300

350

400

450

tota

laff

ecte

dar

ea(T

AA

)

(1)

(2)

(3)

(4)

0 10 20 30 40 50 60

maximal instantaneous area (MIA)

0

50

100

150

200

250

300

exci

tati

on

du

rati

on(E

D)

(1)

(2)

(3)

(4)

0 50 100 150 200 250 300 350 400 450

total affected area (TAA)

(1)

(2)

(3)

(4)

0

80

160

240

#O

ccu

rren

ces

0 100 200

0 100200300# Occurrences

β0 = 1.33

(1)

(2)

(3)

(4)

0 20 40 60 80 100120140160180time

1

10

20

30

40

50

60

70

80

90

Markus A. Dahlem, TU Berlin

Varying contact to the ghost

0

50

100

150

200

250

300

350

400

450

tota

laff

ecte

dar

ea(T

AA

)

(1)

(2)

(3)

(4)

0 10 20 30 40 50 60

maximal instantaneous area (MIA)

0

50

100

150

200

250

300

exci

tati

on

du

rati

on(E

D)

(1)

(2)

(3)

(4)

0 50 100 150 200 250 300 350 400 450

total affected area (TAA)

(1)

(2)

(3)

(4)

0

80

160

240

#O

ccu

rren

ces

0 250 500

0 150 300# Occurrences

β0 = 1.34

(1)

(2)

(3)

(4)

0 10 20 30 40 50 60 70 80 90time

1102030405060708090100110120130

Markus A. Dahlem, TU Berlin

IHS Classification ICHD-II – All Types

1.

1.1. 1.2. 1.4. 1.5. 1.6.1.3.

1.2.1. 1.3.1. 1.5.1. 1.6.1.

Sub

form

s

Migraine

Subtypes

2 symptom, 3 combinations: both or either of them

Markus A. Dahlem, TU Berlin

IHS Classification ICHD-II – Major Types

with aura

without aura

typical aurawithout headache

1.

1.1. 1.2.

1.2.1.

Sub

form

s

Migraine

Subtypes

1.1.

1.2.1.

1.2.3.

2 symptom, 3 combinations: both or either of them

Markus A. Dahlem, TU Berlin

Model-based hypothesis testing

1.1. 1.2.1

1.2.3Sub−threshold

Affe

cted

cor

tical

are

aSurvival time

SD in migraine attack

Markus A. Dahlem, TU Berlin

Typical trajectory: fast growth and collapse & bottleneck

0

5

10

15

20

25

0 5 10 15 20 25 30 35time

collapse

cort

ical

sur

face

are

a in

vade

d by

SD nucleation

CSD break−up

long transient propagation

model−based

stimulation strategiestherapeutic TMS

Markus A. Dahlem, TU Berlin

Typical trajectory: fast growth and collapse & bottleneck

0

5

10

15

20

25

0 5 10 15 20 25 30 35time

cort

ical

sur

face

are

a in

vade

d by

SD

sensory innervation

arachnoid

bone

blood

dura dural sinuses

cortex

pia

Markus A. Dahlem, TU Berlin

Typical trajectory: fast growth and collapse & bottleneck

0

5

10

15

20

25

0 5 10 15 20 25 30 35time

cort

ical

sur

face

are

a in

vade

d by

SD

sensory innervation

arachnoid

bone

blood

dura

SD is pronociceptive

dural sinuses

cortex

pia

peak value

Markus A. Dahlem, TU Berlin

Typical trajectory: fast growth and collapse & bottleneck

0

5

10

15

20

25

0 5 10 15 20 25 30 35time

cort

ical

sur

face

are

a in

vade

d by

SD

sensory innervation

arachnoid

bone

blood

dura

SD is pronociceptive

dural sinuses

cortex

pia

peak value

Markus A. Dahlem, TU Berlin

Typical trajectory: fast growth and collapse & bottleneck

0

5

10

15

20

25

0 5 10 15 20 25 30 35time

collapse

cort

ical

sur

face

are

a in

vade

d by

SD nucleation

CSD break−up

long transient propagation

model−based

stimulation strategiestherapeutic TMS

Markus A. Dahlem, TU Berlin

Typical trajectory: fast growth and collapse & bottleneck

0

5

10

15

20

25

0 5 10 15 20 25 30 35time

collapse

cort

ical

sur

face

are

a in

vade

d by

SD nucleation

CSD break−up

long transient propagation

noise!

model−based

stimulation strategiestherapeutic TMS

Markus A. Dahlem, TU Berlin

Double pulse stimulation (current TMS strategy)

0

5

10

15

20

25

0 5 10 15 20 25 30 35

noise sample 1 k=0.010noise sample 1 k=0.100noise sample 1 k=0.300noise sample 2 k=0.010noise sample 2 k=0.100noise sample 2 k=0.300

without noise

time

noise on

wav

e si

ze

Markus A. Dahlem, TU Berlin

Permanent noise stimulation

0

5

10

15

20

25

0 5 10 15 20 25 30 35

noise sample 1 k=0.030noise sample 1 k=0.040noise sample 1 k=0.050noise sample 2 k=0.030noise sample 2 k=0.040noise sample 2 k=0.050

without noise

time

noise on

wav

e si

ze

Markus A. Dahlem, TU Berlin

Single pulse vs. constant noise stimulation

0 5 10 15 20 25 30 35survival time of unstable solitons

0.0

0.1

0.2

0.3

0.4

0.5

pro

babili

ty

Markus A. Dahlem, TU Berlin

Single pulse vs. constant noise stimulation

0 5 10 15 20 25 30 35survival time

0.0

0.1

0.2

0.3

0.4

0.5

pro

babili

tyMigraine aura duration

without noiseon t=5, k = 0.050on t=5, k = 0.100noise 0.050pulse t=5, k = 0.100pulse t=5, k = 0.500

Markus A. Dahlem, TU Berlin

Noise sensitivity of transient wave segments

0

5

10

15

20

25

0 5 10 15 20 25 30 35

without noisenoise k=0.010noise k=0.015noise k=0.020noise k=0.025noise k=0.030noise k=0.035noise k=0.040

wav

e si

ze

time

How to escape quicklyfrom the ”ghost” plateau?

Markus A. Dahlem, TU Berlin

Simulation of an engulfing SD wave

In cooperation with Jens Dreier &

Denny Milakara, Charite

Folds

Bumbs

Markus A. Dahlem, TU Berlin

Localized waves hitting a bump

(a) (b)

Markus A. Dahlem, TU Berlin

Perturbed into boa of homogeneous steady state

(a) t=55 (b) t=80 (c) t=105

(d) t=130 (e) t=150 (f) t=165

(g) t=180 (h) t=200 (i) t=220

Markus A. Dahlem, TU Berlin

Waves are scattered

(a) t=65 (b) t=100 (c) t=125

(d) t=145 (e) t=175 (f) t=220

Markus A. Dahlem, TU Berlin

Scattering angle vs off set

Markus A. Dahlem, TU Berlin

Another question: Why is the cortex intrinsically curved?

Markus A. Dahlem, TU Berlin

Migraine scotoma reveal functional properties

Pattern matching

”Curved” retinotopic mapping

47

913

A B

C

Dahlem & Tusch, revision J. Math Neuroscie.

Markus A. Dahlem, TU Berlin

Migraine scotoma reveal functional properties

Pattern matching ”Curved” retinotopic mapping

47

913

A B

C

A

C

BHM

10Æ10Æ

Dahlem & Tusch, revision J. Math Neuroscie.

Markus A. Dahlem, TU Berlin

Migraine scotoma reveal functional properties

Pattern matching ”Curved” retinotopic mapping

47

913

A B

C

a d

b ce

m

m lv u10Ælingual gyrus uneus CS

Dahlem & Tusch, revision J. Math Neuroscie.

Markus A. Dahlem, TU Berlin

Migraine scotoma reveal functional properties

Pattern matching ”Curved” retinotopic mapping

47

913

A B

C

2 4 6 8 10 12 14

0.1

0.2

0.3

2 4 6 8 10 12 14

20406080

100120140

2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

1a 60Æ6Æ M=(a�1 )

HM�=(%)K=(mm2 ) �=(rad)a�2 00:20:40:60:8

b d

Dahlem & Tusch, revision J. Math Neuroscie.

Markus A. Dahlem, TU Berlin

Conclusion

Conclusions

We need more non-invasive magingdata of the aura!

The predicted plateau (”ghost ofsaddle-node”) theory can be testedclinically with non-invasive imaging

Sef-organizing patterns provide aunifying concept including silent aura,migraine w or w/o headache/aura

Insights pattern formation may refineneuromodulation strategies:

Being close to a saddle-nodebifurcation (”ghost” plateau)Design (feedback) control tointelligently target certain propertiesof SD in migraine

1 cm

10°

1 357

15

1719

2123

25

27 min

Visual hemifield Primary visual cortex

Markus A. Dahlem, TU Berlin

Conclusion

Conclusions

We need more non-invasive magingdata of the aura!

The predicted plateau (”ghost ofsaddle-node”) theory can be testedclinically with non-invasive imaging

Sef-organizing patterns provide aunifying concept including silent aura,migraine w or w/o headache/aura

Insights pattern formation may refineneuromodulation strategies:

Being close to a saddle-nodebifurcation (”ghost” plateau)Design (feedback) control tointelligently target certain propertiesof SD in migraine

SD

headacheprodrome aura

trigger

heig

hten

ed

susceptibility

delayed trigger

Markus A. Dahlem, TU Berlin

Conclusion

Conclusions

We need more non-invasive magingdata of the aura!

The predicted plateau (”ghost ofsaddle-node”) theory can be testedclinically with non-invasive imaging

Sef-organizing patterns provide aunifying concept including silent aura,migraine w or w/o headache/aura

Insights pattern formation may refineneuromodulation strategies:

Being close to a saddle-nodebifurcation (”ghost” plateau)Design (feedback) control tointelligently target certain propertiesof SD in migraine

0

50

100

150

200

250

300

350

400

450

tota

laff

ecte

dare

a(T

AA

)

(1)

(2)

(3)

(4)

0 10 20 30 40 50 60

maximal instantaneous area (MIA)

0

50

100

150

200

250

300

exci

tati

ond

ura

tion

(ED

)

(1)

(2)

(3)

(4)

0 50 100 150 200 250 300 350 400 450

total affected area (TAA)

(1)

(2)

(3)

(4)

0

80

160

240

#O

ccu

rren

ces

0 250 500

0 150 300# Occurrences

β0 = 1.34

(1)

(2)

(3)

(4)

0 10 20 30 40 50 60 70 80 90time

1102030405060708090100110120130

Markus A. Dahlem, TU Berlin

Conclusion ¡

Cooperation & Funding

Frederike KneerSebstian BoieNiklas HubelThomas Isele

Paul Van Valkenburgh

Nouchine Hadjikhani(EPFL & Martinos Center for Biomedical Imaging, MGH)

Andrew Charles(Headache Research and Treatment Program, UCLA School of

Medicine)

Steven Schiff(Penn State Center for Neural Engineering)

Jens Dreier(Department of Neurology, Charite; University Medicine, Berlin)

Klaus Podoll(University Hospital Aachen)

berlin

Migraine Aura Foundation

Markus A. Dahlem, TU Berlin

Conclusion ¡

2 symptoms, 3 combinations: both or either of them

SD ?

aura headache

trigger trigger

Markus A. Dahlem, TU Berlin

Conclusion ¡

A conductor of a neural orchestra playing migraine

SD ?

aura headache

mysterious conductor

trigger trigger

Markus A. Dahlem, TU Berlin

Conclusion ¡

A conductor of a neural orchestra playing migraine

?

trigger A

SD

trigger B

?

trigger C

?

trigger D

postdromeprodrome aura headache

mysterious conductor

about 1 day about 1 day4−72h< 60 min

Markus A. Dahlem, TU Berlin

Conclusion ¡

A conductor of a neural orchestra playing migraine

?

trigger A

?

trigger C

?

trigger D

postdromeprodrome headache

mysterious conductor

trigger B

SD

aura

about 1 day about 1 day4−72h< 60 min

Markus A. Dahlem, TU Berlin

Conclusion ¡

A conductor of a neural orchestra playing migraine

?

trigger A

?

trigger D

postdromeprodrome

mysterious conductor

headache

trigger C

?SD

trigger B

aura

about 1 day about 1 day< 60 min 4−72h

Markus A. Dahlem, TU Berlin

Conclusion ¡

SD is playing jazz – self-organizing dynamics

SD

postdromeaura headache

about 1 day about 1 day4−72h< 60 min

delaytime

trigger

prodrome

heightened susceptibility

cort

ical

hom

eost

asis

prodrome

Markus A. Dahlem, TU Berlin

Conclusion ¡

SD is playing jazz – self-organizing dynamics

SD

postdromeprodrome aura headache

trigger

delayed trigger

about 1 day about 1 day4−72h< 60 min

heig

hten

ed

susceptibility

Markus A. Dahlem, TU Berlin

Conclusion ¡

SD is playing jazz – self-organizing dynamics

SD

postdromeprodrome aura headache

trigger

delayed trigger

about 1 day about 1 day4−72h< 60 min

heig

hten

ed

susceptibility

Markus A. Dahlem, TU Berlin

Conclusion ¡

SD is playing jazz – self-organizing dynamics

postdromeprodrome aura headache

trigger

delayed triggerSD

about 1 day about 1 day4−72h< 60 min

heig

hten

ed

susceptibility

Markus A. Dahlem, TU Berlin

Conclusion ¡

SD is playing jazz – self-organizing dynamics

postdromeprodrome aura headache

trigger

SD

?

delayed trigger

about 1 day about 1 day4−72h< 60 min

heig

hten

ed

susceptibility

Markus A. Dahlem, TU Berlin

Conclusion ¡

Orchestrated vs self-organizing dynamics

postdromeprodrome headache

?

delayed trigger

about 1 day about 1 day4−72h

trigger

SD

< 60 min

aura

heig

hten

ed

susceptibility

Markus A. Dahlem, TU Berlin

Conclusion ¡

Orchestrated vs self-organizing dynamics

SD

postdromeaura headache

about 1 day about 1 day4−72h< 60 min

delaytime

trigger

prodrome

heightened susceptibility

cort

ical

hom

eost

asis

prodrome

Markus A. Dahlem, TU Berlin

Conclusion ¡

Localized stimulation: sampling of phase space

Retinotopic”A”-”Z”,”0”-”9” (36 patterns), 4 sizes, 10 stimulation strengths =33 420 stimulation patterns (elevation of activator concentration u)

12.56.25

Markus A. Dahlem, TU Berlin

Conclusion ¡

Localized stimulation: sampling of phase space

Orientation selective

−π/2

0

π/2

Markus A. Dahlem, TU Berlin

Conclusion ¡

Localized stimulation: sampling of phase space

Orientation selective

−π/2

0

π/2

Markus A. Dahlem, TU Berlin

Conclusion ¡

Localized stimulation: sampling of phase space

Orientation selective

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Markus A. Dahlem, TU Berlin

Conclusion ¡

Localized stimulation: sampling of phase space

Orientation selective

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Markus A. Dahlem, TU Berlin

Conclusion ¡

Localized stimulation: sampling of phase space

Orientation selective

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Markus A. Dahlem, TU Berlin

Conclusion ¡

Visual migraine aura model

b

a

c

e

d

Dahlem et al. (2000) Eur. J. Neurosci. 12:767.

Dahlem and Chronicle (2004) Prog. Neurobiol. 74:351.

Markus A. Dahlem, TU Berlin

Conclusion Open wave segments - fMRI evidence & retinal SD

Tracking migraine aura symptoms

Vincent & Hadjikhani (2007) Cephalagia 27

Markus A. Dahlem, TU Berlin

Conclusion Open wave segments - fMRI evidence & retinal SD

Tracking migraine aura symptoms

Vincent & Hadjikhani (2007) Cephalagia 27

Markus A. Dahlem, TU Berlin

Conclusion Open wave segments - fMRI evidence & retinal SD

2D patterns with laser speckle-contrast imaging

SG

EG

KCLMG

(a)

(b) 5 min 37s (c) 9 min 07s

Dahlem et al. 239, 889 (2009) Physica D

Markus A. Dahlem, TU Berlin

Conclusion Open wave segments - fMRI evidence & retinal SD

Re-entrant SD waves with anatomical block

Reshodko, L. V. and Bures, J Biol. Cybern. 18,181 (1975)

Markus A. Dahlem, TU Berlin

Conclusion Open wave segments - fMRI evidence & retinal SD

Drugs adjust excitability:retracting & collapsing waves

a b c

d e f

g h i

j k l

Dahlem et al. 2D wave patterns ... . (2010) Physcia D

Markus A. Dahlem, TU Berlin

Conclusion Open wave segments - fMRI evidence & retinal SD

Drugs adjust excitability:retracting & collapsing waves

What happens if SD wave fragments with open ende occur inhuman pathophysiology during migraine?

Do they form spirals?

Do fragments quickly retract?

Or: can wave fragments propagte some distance?

Markus A. Dahlem, TU Berlin

Conclusion Open wave segments - fMRI evidence & retinal SD

Parameter space of excitability

Classifications of excitabile elements and excitability in activemedia.

Schneider, Scholl & Dahlem, Chaos 19 015110, (2009)

Markus A. Dahlem, TU Berlin

Conclusion Open wave segments - fMRI evidence & retinal SD

Parameter space of excitability

Classifications of excitabile elements and excitability in activemedia.

Schneider, Scholl & Dahlem, Chaos 19 015110, (2009)

Markus A. Dahlem, TU Berlin

Conclusion Open wave segments - fMRI evidence & retinal SD

Characteristic time scale due to bottleneck

Three spatiotempral SD patterns:2 short lasting patterns: large and low amplitude (∼90%)long lasting wave with characteristic shape (∼10%)

0 10 20 30 40 50 600

10

20

30

40

50

600.00.20.40.60.81.01.21.4

0.00.20.40.60.81.01.21.4

Markus A. Dahlem, TU Berlin

Conclusion Open wave segments - fMRI evidence & retinal SD

Noise sensitivity of transient wave segments

0

5

10

15

20

25

0 5 10 15 20 25 30 35

without noisenoise k=0.010noise k=0.015noise k=0.020noise k=0.025noise k=0.030noise k=0.035noise k=0.040

wav

e si

ze

time

How to escape quicklyfrom the ”ghost” plateau?

Markus A. Dahlem, TU Berlin

Conclusion Open wave segments - fMRI evidence & retinal SD

Localized stimulation: sampling of phase space

Retinotopic”A”-”Z”,”0”-”9” (36 patterns), 4 sizes, 10 stimulation strengths =33 420 stimulation patterns (elevation of activator concentration u)

12.56.25

Markus A. Dahlem, TU Berlin

Conclusion Open wave segments - fMRI evidence & retinal SD

Localized stimulation: sampling of phase space

Orientation selective

−π/2

0

π/2

Markus A. Dahlem, TU Berlin

Conclusion Open wave segments - fMRI evidence & retinal SD

Localized stimulation: sampling of phase space

Orientation selective

−π/2

0

π/2

Markus A. Dahlem, TU Berlin

Conclusion Open wave segments - fMRI evidence & retinal SD

Localized stimulation: sampling of phase space

Orientation selective

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Markus A. Dahlem, TU Berlin

Conclusion Open wave segments - fMRI evidence & retinal SD

Localized stimulation: sampling of phase space

Orientation selective

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Markus A. Dahlem, TU Berlin

Conclusion Open wave segments - fMRI evidence & retinal SD

Localized stimulation: sampling of phase space

Orientation selective

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Markus A. Dahlem, TU Berlin

Conclusion Open wave segments - fMRI evidence & retinal SD

fMRI patterns is more diffuse than SD patterns

reference (min 0)

start (min 20)

end (min 30)

What if the the blood flow provides along-range or global negative feedback?

modified from Hadjikhani et al. (2001) PNAS 98

Markus A. Dahlem, TU Berlin

Conclusion Open wave segments - fMRI evidence & retinal SD

fMRI patterns is more diffuse than SD patterns

reference (min 0)

start (min 20)

end (min 30)

What if the the blood flow provides along-range or global negative feedback?modified from Hadjikhani et al. (2001) PNAS 98

Markus A. Dahlem, TU Berlin

Conclusion Open wave segments - fMRI evidence & retinal SD

Localized stimulation: sampling of phase space

”A”-”Z”,”0”-”9” (36 patterns), 4 sizes, 10 stimulation strengths =1440 stimulation patterns (elevation of activator concentration u)

12.56.25

Markus A. Dahlem, TU Berlin

Recommended