1. vectors

Preview:

Citation preview

Vectors

VocabularyMagnitude

Direction

Location

Scalar

Vector

Perpendicular

Unit

Graphical

Geometric

Component

Size, amount

Place

Measurement with only magnitude

Measurement with magnitude and direction

Graphical form

Unit vectors (a) have a magnitude of 1

Vectors are equal if they have:

– Same magnitude– Same direction– Not necessarily the same position

Magnitude Head

TailAB

^

A

B

aVector: =a =aa

Multiplying (by a scalar)

Product is a:

Vector

a

v

Adding Vectors

Triangle Law

av

u

u+v

Subtracting Vectors

u – v

= u + (-v)

v – ua

v

u

u-v

Ex. 26.21. Given that vector of magnitude 2, state

a) A vector of magnitude 4 in the direction of vb) A vector of magnitude 0.5 in the direction of vc) A vector of magnitude 6 in the opposite direction of

vd) A unit vector in the direction of ve) A unit vector in the opposite direction of v

S.E. 26.32. Which of the following are true and which are false?

a) a + b is the same as a + b

b) b – a is the same as a – b

c) a + b + c is the same as c + a + b

Explain the term ‘resultant as applied to two vectors

Ex 26.3• Using the diagram below, find:

a) AB+BC b) AC+CD+ DE c) AC – EC

d) DE + EA + AC e) AB-CB f) BC-AC

g) EC+CB+BA

B

D

EA

C

1 2 3 4 5 6 7 8

9

8

7

6

5

4

3

2

1

P

AOi

j

Component formOP =

i =

j =

OA =

OP =

OP =

OA + APUnit vector (x)Unit vector (y)6i8j

6i + 8j

S.E. 26.41. State a unit vector:

(a)In the x direction (b) in the y direction

1. State a unit vector: (a) In the negative x direction (b) in the negative y direction

2. What is the angle between

3. a) i and j b) i and i c) i and –i

4. State an expression for the magnitude of xi + yj

5. State a vector of magnitude 6 in the x direction

6. State a vector of magnitude 2 in the negative y direction

Addinga = a

1i + a

2 j

b = b1

i + b2

j

a + b = (a1

+ b

1)i + (a

2+ b

2)j

eg:

a = 7i + 3j

b = i + 2j

a + b = (7+1)i + (3+2)j

= 8i + 5j

1 2 3 4 5 6 7 8

9

8

7

6

5

4

3

2

1i

j

Multiplying (by a scalar)v = v

1i + v

2 j

av =a(v1

i + v2

j)

av =av1

i + av2

j

eg:

v = 2i + 3j

a = 3

av = 3(2i + 3j)

= 6i + 9j

1 2 3 4 5 6 7 8

9

8

7

6

5

4

3

2

1i

j

Ex 26.41. Calculate the magnitude of:

a) i + 3j b) 3i + 4j c) –i d)1/2(i + j)

2. Calculate the vector from

a) (0,0) to (3,7) b) 3,7) to (5,2) c) (5,2) to (-1,-2)

1. Given a = 3i – 2j, b= - i – 3j, c = 2 i + 5j, find

a) 4a b) 3b + 2c c) 2a – 3b – 4cd) IaI e) I4aI f) I3b + 2cI

Dot (scalar) product• A scalar product of two vectors

• The product shows the magnitude of the influence that one vector has on another.

Eg

• Running a race

• Pushing a piano

• Mario kart zooms

Component forma = a

1i + a

2 j

b = b1

i + b2

j

a.b = a1

b1

+ a2

b2

For two equal vectors:

a.a = a1

a1

+ a2

= a1

2 + a2

2

= IaI2 ij

IaI2

a12

a22

Cosine Rule:

c2 = a2 +b2 – 2ab.cosC

c =

c.c = (a-b).(a-b)

= a.a + b.b – 2a.b

IcI2 = IaI2 + IbI2 – 2a.b

a.b = IaIIbIcosC

Geometric form

a – b

Comparing the component and geometric forms

Show:

• i.i=1

• i.j=0

a.b

• i.i = I1II1IcosC = 1

• i.j = I1II1IcosC = 0

= (a1

i + a2

j).(b1

i+ b2

j)

=a1

b1

i.i + a2

b2

j.j + a2

b1

i.j + a1

b2

i.j

= a1

b1

+ a2

b2

…as shown before

Exercise 26.51. Find the dot product of the following pairs of vectors:

(a) 2i-j, 3i+2j (b) –i+3j, 4i-j c) i-j, -2i-j

2. Find the angles between the following pairs of vectors:

(a) 3i+4j, i+2j (b) i+j, 2i-3j c) i-j, i-j (d) j,-j

3. Show that the vectors a=2i-j and b=-i-2j are perpendicular

4. Points A, B and C have coordinates (-6,2), (3,8) and (-3,-2) respectively.

(a) Find AB and BC

(b) By using the dot product, calculate the angle between AB and BC

Cross (vector) product• A vector product produced by two vectors

• It also measures the interaction between the 2 vectors

• The vector should be the same irrespective of the vector set’s orientation

• Therefore, we need a vector which remains constant irrespective of orientation

• Which direction should the vector point in order to satisfy this requirement?

Right hand rulea x b

a. 1st term, 1st finger

b. 2nd term, 2nd finger

x product. Thumb

j

i

If k = i x j,which direction is k?

k

-k

ExerciseFind:

• i x j =

• i x k =

• k x i =

Notice:

u x v = -v x u

u x u = -u x u

u = -u =

i x i = j x j = k x k = 0

-j x i

-k x j

-i x k

kij

===

0

Component formu = u

1i + u

2j + u

3k

v = v1

i + v2

j + v3

k

u x v =

= (u1

i + u2

j + u3

k)(v1

i + v2

j + v3

k)

= u1

iv1

i + u1

i v2

j + u1

iv3

k + u2

jv1

i + u2

jv2

j + u2

j v3

k + u3

kv1

i + u3

kv2

j +

u3

k v3

k

= u1

i v2

j + u1

iv3

k + u2

jv1

i + u2

j v3

k + u3

kv1

i + u3

kv2

j

u x v = (u2

v3

– u3

v2

)i + (u3

v1

– u

1v3

)j + (u1

v2

– u2

v1

)k

ixj = -jxi = kjxk = -kxj = ikxi = -ixk =j

Magnitude of cross productu x v = (u

2v3

– u3

v2

) + (u3

v1

– u

1v3

) + (u1

v2

– u2

v1

)

From Pythagoras’ Theorem:

IuxvI2 = (u2

v3

– u3

v2

)2 + (u3

v1

– u

1v3

)2 + (u1

v2

– u2

v1

)2

= u2

2v3

2 – 2u

2u

3v2

v3

+ u3

2v2

2

+ u3

2v1

2 – 2u

1u

3v1

v3

+ u1

2v3

2

+ u1

2v2

2 – 2u

1u

2v1

v2

+ u2

2v1

2

= u1

2(v2

2+v3

2) + u2

2(v1

2+v3

2) + u3

2(v1

2+v2

2)

- 2(u2

u3

v2

v3

+ u1

u3

v1

v3

+ u1

u2

v1

v2

) 1

IuIIvIcosC = u.v = u1

v1

+ u2

v2

+ u3

v3

IuI2IvI2cos2C = (u.v)2 = (u1

v1

+ u2

v2

+ u3

v3

)2

= u1

2v1

2 u1

u2

v1

v2

u1

u3

v1

v3

u2

u3

v2

v3

u2

2v2

2 + u1

u2

v1

v2

+ u1

u3

v1

v3

+ u2

u3

v2

v3

u3

2v3

2

= u1

2v1

2 + u2

2v2

2 + u3

2v3

2

+ 2(u1

u2

v1

v2

+ u1

u3

v1

v3

+ u2

u3

v2

v3

) 2

+

= IuxvI + IuI2IvI2cos2C

= u1

2(v2

2+v3

2) + u2

2(v1

2+v3

2) + u3

2(v1

2+v2

2)

- 2(u2

u3

v2

v3

+ u1

u3

v1

v3

+ u1

u2

v1

v2

)

u1

2v1

2 + u2

2v2

2 + u3

2v3

2

+ 2(u1

u2

v1

v2

+ u1

u3

v1

v3

+ u2

u3

v2

v3

)

= u1

2(v2

2+v3

2) + u2

2(v1

2+v3

2) + u3

2(v1

2+v2

2)

+ u1

2v1

2 + u2

2v2

2 + u3

2v3

2

= u1

2(v1

2+v2

2+v3

2) + u2

2(v1

2+v2

2+v3

2) + u3

2(v1

2+v2

2+v3

2)

= (u1

2 + u2

2 + u3

2 )(v1

2+v2

2+v3

2)

1 2

By pythagoras’ Theorem:

(u1

2 + u2

2 + u3

2 )(v1

2+v2

2+v3

2)

= IuI2IvI2

In summary:

+ = Iu x vI2 + IuI2IvI2cos2C = IuI2IvI2

Iu x vI2 = IuI2IvI2 - IuI2IvI2cos2C

= IuI2IvI2 (1- cos2C)

= IuI2IvI2 (sin2C)

Iuxvi2 = IuI2IvI2 sin2C

1 2

Magnitude as a parallelogram

Recommended