Higher Outcome 2 Higher Unit 3 Further Differentiation Trig Functions Harder Type Questions Further...

Preview:

Citation preview

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2

Higher Unit 3Higher Unit 3

www.mathsrevision.comwww.mathsrevision.com

Further Differentiation Trig Functions

Harder Type Questions

Further Integration

Integration Exam Type Questions

Integrating Trig Functions

Differentiation The Chain Rule

Harder Type Questions

Differentiation Exam Type Questions

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2

Trig Function Differentiation

The Derivatives of sin x & cos x

(sin ) cos (cos ) sin d d

x x x xdx dx

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2Example

2( ) 2cos sin '( )

3 . Find f x x x f x

2'( ) (2cos ) sin

3

d d

f x x xdx dx

[ ( ) ( )]d df dgf x g x

dx dx dx

22 (cos ) sin

3

d dx x

dx dx. ( )

d dgc g x c

dx dx

2'( ) 2sin cos

3 f x x x

Trig Function Differentiation

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2Example

3

3

4 cos Differentiate with respect to

x xx

x

33

3

4 cos4 cos

x x

x xx

3 3(4 cos ) 4 (cos ) d d d

x x x xdx dx dx

4

4

12 ( sin )

12 sin

x x

x x

4

4

sin 12 x x

x

Trig Function Differentiation

Simplify expression -

where possible

Restore the original form of expression

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2

The Chain Rule for Differentiating

To differentiate composite functions (such as functions with brackets in them) use:

dy dy du

dx du dx

Example 2 8( 3) Differentiate y x

2( 3) Let u x 8 then y u

78 dy

udu

2 du

xdx

dy dy du

dx du dx78 2 u x 2 78( 3) .2 x x 2 716 ( 3)

dyx x

dx

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2

The Chain Rule for DifferentiatingTrig Functions

Trig functions can be differentiated using the same chain rule method.

dy dy du

dx du dx

Worked Example:

sin 4 Differentiate y x

4 Let u x sin Then y u

4 du

dxcos

dyu

du

dy dy du

dx du dxcos 4 u 4cos4

dyx

dx

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2

The Chain Rule for Differentiating

Example

42

5'( ) ( )

3

Find when f x f x

x

2( 3) Let u x4( ) 5 Then f x u

520 df

udu

2 du

xdx

520 2 u x 2 520( 3) 2 x x

2 5

40

( 3)

df x

dx x

df df du

dx du dx

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2Example

1

2 1

Find when

dyy

dx x

(2 1) Let u x1

2

Then y u

2du

dx

3

21

2

dyu

du

dy dy du

dx du dx

3

21

22

u

3

2

u

3

2

1

(2 1)

dy

dxx

The Chain Rule for Differentiating

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2Example 3 2 5( ) (3 2 1) '(0) If , find the value of f x x x f

3 2(3 2 1) Let u x x 5( ) Then f x u

2(9 4 ) du

x xdx

45 df

udu

df df du

dx du dx4 25 (9 4 ) u x x 3 2 4 25(3 2 1) (9 4 ) x x x x

'(0) 0 f

The Chain Rule for Differentiating

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2

The Chain Rule for DifferentiatingTrig Functions

Example

4cos Find when dy

y xdx

cos Let u x 4 Then y u

sin du

xdx

34 dy

udu

dy dy du

dx du dx34 ( sin ) u x

34sin cos dy

x xdx

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2Example

sin Find when dy

y xdx

sin Let u x1

2 Then y u

cos du

xdx

1

21

2

dyu

du

dy dy du

dx du dx

1

21

cos2

u x

cos

2 sin

dy x

dx x

The Chain Rule for DifferentiatingTrig Functions

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2Example1

32 1

Find the equation of the tangent to the curve where y xx

1

2 1

y

xRe-arrange: 1

2 1 y x

The slope of the tangent is given by the derivative of the equation.

Use the chain rule:

21 2 1 2

dy

xdx 2

2

2 1

x

Where x = 3:

1 2

5 25

and

dyy

dx

1 23,

5 25

We need the equation of the line through with slope

The Chain Rule for Differentiating Functions

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2

1 2( 3)

5 25

y x

2 1 1 5( 3) (2 6)

25 5 25 25

y x x

1(2 1)

25

y x Is the required equation

Remember

y - b = m(x – a)

The Chain Rule for Differentiating Functions

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2Example

In a small factory the cost, C, in pounds of assembling x components in a month is given by:

21000

( ) 40 , 0

C x x xx

Calculate the minimum cost of production in any month, and the corresponding number of

components that are required to be assembled.

0 Minimum occurs where , so differentiate dC

dx

225

( ) 40

C x xx

Re-arrange 2

251600

x

x

The Chain Rule for Differentiating Functions

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2

225

1600

dC d

xdx dx x

225

1600

dx

dx x

Using chain rule 2

25 251600 2 1

x

x x 2

25 253200 1

x

x x

2

25 250 0 1 0

where or dC

xdx x x

2 225 25 i.e. where or x x

2 25No real values satisfy x 0 We must have x

5 We must have items assembled per month x

The Chain Rule for Differentiating Functions

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2

2

25 253200 1 0 5

when dC

x xdx x x

5 5 Consider the sign of when and dC

x xdx

For x < 5 we have (+ve)(+ve)(-ve) = (-ve)

Therefore x = 5 is a minimum

Is x = 5 a minimum in the (complicated) graph?

Is this a minimum

?

For x > 5 we have (+ve)(+ve)(+ve) = (+ve)

The Chain Rule for Differentiating Functions

For x = 5 we have (+ve)(+ve)(0) = 0x = 5

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2

The cost of production:2

25( ) 1600 5

, C x x x

x

225

1600 55

21600 10

160,000 £ Expensive components?

Aeroplane parts maybe ?

The Chain Rule for Differentiating Functions

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2

Integrating Composite Functions

By “reversing” the Chain Rule we see that:

1( )( )

( 1)

n

n ax bax b dx c

a n

Worked Example

4(3 7) x dx5(3 7)

15

xc

4 1(3 7)

3(4 1)

x

c

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2

Integrating Composite Functions

1( )( )

( 1)

n

n ax bax b dx c

a n

Example : 4(4 2) Evaluate dt

t

4(4 2) t dt4 1(4 2)

4( 4 1)

tc

3(4 2)

12

tc

Re-arrangeCompare with standard form

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2Example

2( 3) Evaluate u du

Compare with standard form

2( 3) u du2 1( 3)

1( 2 1)

uc

1( 3)

1

uc

2 1( 3)

( 3)

u du cu

Integrating Composite Functions

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2Example 2 3

1(2 1) Evaluate x dx

3(2 1) x dx3 1(2 1)

( )2(3 1)

xc( ) F x

4(2 1)( )

8

xc

2 3

1(2 1) x dx (2) (1) F F 4 41

(5 3 )8

2 2 2 21(5 3 )(5 3 )

8

1(16)(34)

8

2 3

1(2 1) 68 x dx

Integrating Composite Functions

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2Example

32

4

1(3 4)

Evaluate x dx

32(3 4) x dx ( ) F x

32

1

32

(3 4)( )

3( 1)

x

c522(3 4)

( )15

xc

32

4

1(3 4)

x dx (4) ( 1) F F

5 52 2

2(16 (1) )

15 52

(4 1)15

2(1024 1)

15

2046

15

32

4

1

2046(3 4)

5x dx

Integrating Composite Functions

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2

Integrating Trig Functions

(sin ) cos

(cos ) sin

dx x

dxd

x xdx

cos sin

sin cos

x dx x c

x dx x c

Integration is opposite of

differentiation

Worked Example

123sin cosx x dx 3cos x 1

2 sin x c

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2

From “reversing” the chain rule we can see that:

1cos( ) sin( )

1sin( ) cos( )

ax b dx ax b ca

ax b dx ax b ca

Worked Example

sin(2 2) x dx 1cos(2 2)

2 x c

Integrating Trig Functions

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2

Integrating Trig Functions

Example

sin5 cos( 2 ) Evaluate t t dt

Apply the standard form

(twice).sin(5 ) s( 2 ) t dt co t dt 1 1

cos5 sin 25 2

t t c

Break up into two easier integrals

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2Example 2

4

3cos 22

Evaluate x dx

3cos 22

x dx( ) F x 3sin 2 x dx

Re-arrange 3

cos2 ( )2

x c

Apply the standard form

2

4

3cos 22

x dx

2 4

F F3

cos 2 cos 22 2 4

31 0

2

2

4

33cos 2

2 2

x dx

Integrating Trig Functions

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2

Integrating Trig Functions (Area)

Example

cosy xsiny x

1

x

y

1

0

AThe diagram shows the

graphs of y = -sin x and y = cos x

a) Find the coordinates of A

b) Hence find the shaded area cos sin The curves intersect where x x

tan 1 x

0 We want x

1tan ( 1) x C

AS

T0o180

o

270o

90o

3

2

2

3 7

4 4

and

3

4

x

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2

Integrating Trig Functions (Area)

( ) The shaded area is given by top curve bottom curve dx

3

4

0

(cos ( sin ))

Area x x dx

3

4

0

(cos sin )

x x dx

( ) F x (cos sin ) x x dx sin cos ( ) x x c

3

4

0

(cos sin )

Area x x dx3

(0)4

F F

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2

Integrating Trig Functions (Area)

3(0)

4

F F

3 3sin cos sin 0 cos0

4 4

sin cos 0 14 4

1 11

2 2

1 2 Area

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2Example 3cos3 cos(2 ) cos3 4cos 3cos a) By writing as show that x x x x x x

3cos b) Hence find x

cos(2 ) cos2 cos sin 2 sin x x x x x x

2 2(cos sin )cos (2sin cos )sin x x x x x x

2 2 2(cos sin )cos 2sin cos x x x x x

3 2cos 3sin cos x x x

3 2cos 3 1 cos cos x x x

3cos3 4cos 3cos x x x

Integrating Trig Functions

Remember cos(x +

y) =

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2

3cos3 4cos 3cos As shown above x x x

3 1cos (cos3 3cos )

4 x x x

3 1cos (cos3 3cos )

4 x dx x x dx

1(cos3 3cos )

4 x x dx

1 1 1(cos3 3cos ) sin3 3sin

4 4 3 x x dx x x c

3 1cos sin3 9sin

12 x dx x x c

Integrating Trig Functions

ww

w.m

ath

srevis

ion

.com

Higher Outcome 2Example

5( ) '( ) 5 3 (1) 32 Find given and f x f x x f

5( ) 5 3 f x x dx

Use the “reverse” chain rule

5 15 3

5 5 1

xc 6

5 3

30

xc

So we have: 6

5 1 3(1) 32

30

f c

62

30 c

64

30 c

Giving:

32

15 c

32 1432 32

15 15 c 6

5 3 896( )

30 30

xf x

Integrating Functions

Differentiation

Higher Mathematics

www.maths4scotland.co.uk

Next

Calculus Revision

Back NextQuit

Differentiate 24 3 7x x

8 3x

Calculus Revision

Back NextQuit

Differentiate

3 26 3 9x x x

x

3 26 3 9x x x

x x x x

2 16 3 9x x x

Split up

Straight line form

22 6 9x x Differentiate

Calculus Revision

Back NextQuit

Differentiate

3 1

2 22 5x x

1 3

2 23 12 2

2 5x x

1 3

2 25

23x x

Calculus Revision

Back NextQuit

Differentiate2

3 1xx

1 1

2 23 2 1x x

Straight line form

Differentiate

1 3

2 21

2

32

2x x

1 3

2 23

2x x

Calculus Revision

Back NextQuit

Differentiate (3 5)( 2)x x

23 6 5 10x x x Multiply out

Differentiate 6 1x

23 10x x

Calculus Revision

Back NextQuit

Differentiate 2 8003 r

r

2 13 800r r Straight line form

Differentiate26 ( 1)800r r

Calculus Revision

Back NextQuit

Differentiate2( 2 )x x x

multiply out3 22x x

differentiate23 4x x

Calculus Revision

Back NextQuit

Differentiate3

1 1

x x

1 3x x Straight line form

Differentiate2 4( 3)x x

2 43x x

Calculus Revision

Back NextQuit

Differentiate 2x x x

1

22x x xStraight line form

multiply out

Differentiate

5 3

2 2x x3 1

2 25 3

2 2x x

Calculus Revision

Back NextQuit

Differentiate 2 4x x

multiply out

Simplify

4 8 2x x x

Differentiate

6 8x x

Straight line form1

26 8x x 1

23 1x

Calculus Revision

Back NextQuit

Differentiate5( 2)x

Chain rule45( 2) 1x

45( 2)x Simplify

Calculus Revision

Back NextQuit

Differentiate3(5 1)x

Chain Rule23(5 1) 5x

215(5 1)x Simplify

Calculus Revision

Back NextQuit

Differentiate2 4(5 3 2)x x

Chain Rule 2 34(5 3 2) 10 3x x x

Calculus Revision

Back NextQuit

Differentiate

5

2(7 1)x

Chain Rule

Simplify

3

25

2(7 1) 7x

3

235

2(7 1)x

Calculus Revision

Back NextQuit

Differentiate

1

2(2 5)x

Chain Rule

Simplify

3

21

2(2 5) 2x

3

2(2 5)x

Calculus Revision

Back NextQuit

Differentiate 3 1x

Chain Rule

Simplify

Straight line form 1

23 1x

1

21

23 1 3x

1

23

23 1x

Calculus Revision

Back NextQuit

Differentiate 42

5

3x

Chain Rule

Simplify

Straight line form2 45( 3)x

2 520( 3) 2x x

2 540 ( 3)x x

Calculus Revision

Back NextQuit

Differentiate1

2 1x

Chain Rule

Simplify

Straight line form1

2(2 1)x

3

21

2(2 1) 2x

3

2(2 1)x

Calculus Revision

Back NextQuit

Differentiate2

2cos sin3

x x

22sin cos

3x x

Calculus Revision

Back NextQuit

Differentiate 3cos x

3sin x

Calculus Revision

Back NextQuit

Differentiate cos 4 2sin 2x x

4sin 4 4cos 2x x

Calculus Revision

Back NextQuit

Differentiate 4cos x

34cos sinx x

Calculus Revision

Back NextQuit

Differentiate sin x

Chain Rule

Simplify

Straight line form

1

2(sin )x1

21

2(sin ) cosx x

1

21

2cos (sin )x x

1

2

cos

sin

x

x

Calculus Revision

Back NextQuit

Differentiate sin(3 2 )x

Chain Rule

Simplify

cos(3 2 ) ( 2)x

2cos(3 2 )x

Calculus Revision

Back NextQuit

Differentiatecos5

2

x

Chain Rule

Simplify

1

2cos5xStraight line form

1

2sin 5 5x

5

2sin 5x

Calculus Revision

Back NextQuit

Differentiate ( ) cos(2 ) 3sin(4 )f x x x

( ) 2sin(2 ) 12cos(4 )f x x x

Calculus Revision

Back NextQuit

Differentiate 2 43200( )A x x

x

Chain Rule

Simplify

Straight line form2 1( ) 43200A x x x

2( ) 2 43200A x x x

2

43200( ) 2A x x

x

Calculus Revision

Back NextQuit

Differentiate 2

2( )f x x

x

Differentiate

Straight line form1

22( ) 2f x x x

1321

2( ) 4f x x x

Calculus Revision

Back NextQuit

Differentiate 3 22 7 4 4y x x x

26 14 4y x x

Calculus Revision

Back NextQuit

Differentiate 62siny x

Chain Rule

Simplify

62 cos 1

dyx

dx

62 cos

dyx

dx

Calculus Revision

Back NextQuit

Differentiate3

(8 )4

A a a

multiply out

Differentiate

236

4A a a

36

2A a

Calculus Revision

Back NextQuit

Differentiate

13 2( ) (8 )f x x

Chain Rule

Simplify

13 221

2( ) (8 ) ( 2 )f x x x

12 3 2( ) (8 )f x x x

Calculus Revision

Back NextQuit

Differentiate16

, 0y x xx

Differentiate

Straight line form1

216y x x

3

21 8dy

xdx

Calculus Revision

Back NextQuit

Differentiate 23 3 16( )

2A x x

x

Straight line form

Multiply out 23 3 3 3 16( )

2 2A x x

x

Differentiate

2 13 3( ) 24 3

2A x x x

2( ) 3 3 24 3A x x x

Calculus Revision

Back NextQuit

Differentiate 1

2( ) 5 4f x x

Chain Rule

Simplify

1

21

2( ) 5 4 5f x x

1

25

2( ) 5 4f x x

Calculus Revision

Back NextQuit

Differentiate 216( ) 240

3A x x x

32( ) 240

3A x x

Calculus Revision

Back NextQuit

Differentiate 2( ) 3 (2 1)f x x x

Multiply out

Differentiate

3 2( ) 6 3f x x x

2( ) 18 6f x x x

Calculus Revision

Back NextQuit

Differentiate2 2( ) cos sinf x x x

( ) 2 cos sin 2sin cosf x x x x x Chain Rule

Simplify ( ) 4 cos sinf x x x

Quit

C P Dwww.maths4scotland.co.uk

© CPD 2004

Integration

Higher Mathematics

www.maths4scotland.co.uk

Next

Calculus Revision

Back NextQuit

Integrate 2 4 3x x dx 3 24

33 2

x xx c

3 212 3

3x x x c

Integrate term by term

simplify

Calculus Revision

Back NextQuit

Find 3cos x dx3sin x c

Calculus Revision

Back NextQuit

Integrate (3 1)( 5)x x dx 23 14 5x x dx

3 23 145

3 2

x xx c

3 27 5x x x c

Multiply out brackets

Integrate term by term

simplify

Calculus Revision

Back NextQuit

Find 2sin d 2cos c

Calculus Revision

Back NextQuit

Integrate2(5 3 )x dx

3(5 3 )

3 3

xc

31

9(5 3 )x c

Standard Integral

(from Chain Rule)

Calculus Revision

Back NextQuit

Find p, given

1

42p

x dx 1

2

1

42p

x dx 3

2

1

2

342

p

x

3 3

2 22 2

3 3(1) 42p

2 233 3

42p 32 2 126p

3 64p 3 2 1264 2p 1

12 32 16p

Calculus Revision

Back NextQuit

Evaluate

2

21

dx

x2

2

1

x dx 21

1x 1 12 1

11

2

1

2

Straight line form

Calculus Revision

Back NextQuit

Find

1

6

0

(2 3)x dx17

0

(2 3)

7 2

x

7 7(2 3) (0 3)

14 14

7 75 3

14 14

5580.36 156.21 (4sf)5424

Use standard Integral

(from chain rule)

Calculus Revision

Back NextQuit

Find1

3sin cos2

x x dx1

3cos sin2

x x c Integrate term by term

Calculus Revision

Back NextQuit

Integrate3

2x dxx

1

32 2x x dx 3 222

3

2

2

xx c

3222

3x x c

Straight line form

Calculus Revision

Back NextQuit

Integrate3 1x dx

x

13 2x x dx

14 2

1

24

x xc

14 21

42x x c

Straight line form

Calculus Revision

Back NextQuit

Integrate

3 5x xdx

x

1 1

2 2

3 5x xdx

x x

5 1

2 25x x dx 7 3

2 22

7

10

3cx x

Straight line form

Calculus Revision

Back NextQuit

Integrate

324

2

x xdx

x

3

2

1 1

2 2

4

2 2

x xdx

x x

1

2 1

22x x dx

3

2 24 1

3 4x x c

Split into separate fractions

Calculus Revision

Back NextQuit

Find 2

3

1

2 1x dx

24

1

2 1

4 2

x

4 44 1 2 1

4 2 4 2

4 45 3

8 8

68

Use standard Integral

(from chain rule)

Calculus Revision

Back NextQuit

Find sin 2 cos 34

x x dx

1 1

2 3cos 2 sin 3

4x x c

Calculus Revision

Back NextQuit

Find2

sin7

t dt2

7cos t c

Calculus Revision

Back NextQuit

Integrate

1

2

1

0 3 1

dx

x

1

2

1

0

3 1x dx

Straight line form

1

2

1

0

13

2

3 1x

1

0

23 1

3x

2 23 1 0 1

3 3

2 24 1

3 3

4 2

3 3

2

3

Calculus Revision

Back NextQuit

Given the acceleration a is: 1

22(4 ) , 0 4a t t

If it starts at rest, find an expression for the velocity v where dv

adt

1

22(4 )dv

tdt

3

2

31

2

2(4 )tv c

3

24

(4 )3

v t c

344

3v t c Starts at rest, so

v = 0, when t = 0 34

0 43

c

340 4

3c

320

3c

32

3c

3

24 32

3 3(4 )v t

Calculus Revision

Back NextQuit

A curve for which 3sin(2 )dy

xdx

5

12, 3passes through the point

Find y in terms of x. 3

2cos(2 )y x c

3 5

2 123 cos(2 ) c Use the point 5

12, 3

3 5

2 63 cos( ) c 3 3

2 23 c

3 33

4c

4 3 3 3

4 4c

3

4c

3 3

2 4cos(2 )y x

Calculus Revision

Back NextQuit

Integrate 2 2

2

2 2, 0

x xdx x

x

4

2

4xdx

x

4

2 2

4xdx

x x 2 24x x dx

3 14

3 1

x xc

31

3

4x c

x

Split into

separate fractions

Multiply out brackets

Calculus Revision

Back NextQuit

If

( ) sin(3 )f x x passes through the point 9, 1

( )y f x express y in terms of x.

1

3( ) cos(3 )f x x c Use the point 9

, 1

1

31 cos 3

9c

1

31 cos

3c

1 1

3 21 c

7

6c 1 7

3 6cos(3 )y x

Calculus Revision

Back NextQuit

Integrate2

1

(7 3 )dx

x2(7 3 )x dx

1(7 3 )

1 3

xc

11

3(7 3 )x c

Straight line form

Calculus Revision

Back NextQuit

The graph of

32

1 1

4

dyx

dx x

( )y g x passes through the point (1, 2).

express y in terms of x. If

3 2 1

4

dyx x

dx

4 1 1

4 1 4

x xy x c

simplify

4 1 1

4 4

xy x c

x Use the point

41 1 1

2 14 1 4

c

3c Evaluate c41 1

4 4

13y x x

x

Calculus Revision

Back NextQuit

Integrate2 5x

dxx x

3

2

2 5xdx

x

3 3

2 2

2 5xdx

x x

1 3

2 25x x dx

3 1

2 2

3 1

2 2

5x xc

3 1

2 22

310x x c

Straight line form

Calculus Revision

Back NextQuit

A curve for which 26 2dy

x xdx

passes through the point (–1, 2).

Express y in terms of x.

3 26 2

3 2

x xy c 3 22y x x c

Use the point3 22 2( 1) ( 1) c 5c

3 22 5y x x

Calculus Revision

Back NextQuit

Evaluate22

2

1

1x dxx

1

222

1x x dx

Cannot use standard integral

So multiply out

4 22

12x x x dx

25 2 1

1

1

5x x x 5 2 5 21 1 1 1

5 2 5 12 2 1 1

32 1 1

5 2 54 64 40 20 2

10 10 10 10 82

10 1

58

Calculus Revision

Back NextQuit

Evaluate4

1

x dx1

2

4

1

x dx 43

2

1

2

3x

4

1

32

3x

3 32 24 1

3 3

16 2

3 3

14

3

2

34

Straight line form

Calculus Revision

Back NextQuit

Evaluate0

2

3

(2 3)x dx

Use standard Integral

(from chain rule)

03

3

(2 3)

3 2

x

3 3(2(0) 3) (2( 3) 3)

6 6

27 27

6 6

27 27

6 6

54

6 9

Calculus Revision

Back NextQuit

The curve ( )y f x ,112

passes through the point

( ) cos 2f x x Find f(x)

1

2( ) sin 2f x x c

1

2 121 sin 2 c

use the given point ,112

1

2 61 sin c

1 1

2 21 c 3

4c 1 3

2 4( ) sin 2f x x

1

6 2sin

Calculus Revision

Back NextQuit

2(6 cos )x x x dx Integrate

3 26sin

3 2

x xx c Integrate term by term

Calculus Revision

Back NextQuit

Integrate 33 4x x dx4 23 4

4 2

x xc

4 23

42x x c

Integrate term by term

Calculus Revision

Back NextQuit

Evaluate1

01 3x dx

1

21

01 3x dx

13

2

0

3

2

1 3

3

x

13

2

0

21 3

9x

13

0

21 3

9x

3 32 21 3(1) 1 3(0)

9 9

3 32 24 1

9 9

16 2

9 9

14

9 5

91

Quit

C P Dwww.maths4scotland.co.uk

© CPD 2004

Recommended