Www.berndbaumann.de | Milan, October 2009 | page 1 Towards a Finite Element Calculation of...

Preview:

Citation preview

www.berndbaumann.de | Milan, October 2009 | page 1

Towards a Finite Element Calculationof Acoustical Amplitudes in HID Lamps

Bernd Baumann1, Marcus Wolff1, John Hirsch2, Piet Antonis2,Sounil Bhosle3 and Ricardo Valdivia Barrientos4

1) Hamburg University of Applied Sciences, Germany2) Philips Lighting, Eindhoven, The Netherlands3) Université de Toulouse and CNRS LAPLACE, Toulouse, France4) National Institute of Nuclear Research, Salazar, Ocoyoacac, Mexico

www.berndbaumann.de | Milan, October 2009 | page 2

Energy Consumption

Industrial production Transportation Heating and cooling Lighting …

www.berndbaumann.de | Milan, October 2009 | page 3

High Intensity Discharge (HID) Lamp

Arc tube / burner– Wall: Quartz or ceramics– Filling: Mercury– Additives: Metal halides etc

Electrodes– Tungsten

Discharge arc– Temperature: ca. 5000 – 6000 K– Light source

www.berndbaumann.de | Milan, October 2009 | page 4

AC Operation

Advantages:– Avoids demixing– Avoids electrode errosion

Disadvantages:– Flickering– Reduction of lamp‘s lifetime– Lamp destruction

Counteraction:– Electronical measures– Lamp design

www.berndbaumann.de | Milan, October 2009 | page 5

Objective and Scope of Paper

Numerical calculation of acoustic amplitudesin HID lamps

Simplifications:– No inclusion of plasma dynamics– Simplified geometry– 2 dimensional axisymmetric FE model– Simplified model for power input

www.berndbaumann.de | Milan, October 2009 | page 6

Temperature Profile

(Sutherland’s law)

www.berndbaumann.de | Milan, October 2009 | page 7

Inhomogenous Helmholtz Equation

Power density

Ideal gas law

www.berndbaumann.de | Milan, October 2009 | page 8

Solution

Eigenmodes

www.berndbaumann.de | Milan, October 2009 | page 9

Amplitudes

Loss factor

Excitation amplitude:

www.berndbaumann.de | Milan, October 2009 | page 10

Surface Loss: Shear Stress

ceramics

fluid

Prandtl‘s boundary layer

www.berndbaumann.de | Milan, October 2009 | page 11

Surface Loss: Thermal Conduction

region of transistion

adiabatic region

isothermal regionceramics: Isothermal region ???

www.berndbaumann.de | Milan, October 2009 | page 12

Surface Loss: Thermal Conduction

Metallic wall:

Ceramic wall:

www.berndbaumann.de | Milan, October 2009 | page 13

Volume Loss: Thermal Conduction

www.berndbaumann.de | Milan, October 2009 | page 14

Volume Loss: Shear Stress

www.berndbaumann.de | Milan, October 2009 | page 15

Volume Loss: Shear Stress

www.berndbaumann.de | Milan, October 2009 | page 16

Volume Loss

www.berndbaumann.de | Milan, October 2009 | page 17

Volume Loss

Critical damping:

www.berndbaumann.de | Milan, October 2009 | page 18

Gaussian Power Density

Measuring points

Cylinder axis

www.berndbaumann.de | Milan, October 2009 | page 19

Response Function and Excitation Amplitude

All large amplitudescorrespond to radial modes!

www.berndbaumann.de | Milan, October 2009 | page 20

Radial Modes

Power density

www.berndbaumann.de | Milan, October 2009 | page 21

Nonradial Modes

Power density

www.berndbaumann.de | Milan, October 2009 | page 22

Summary and Conclusions

Simplified model for calculation of acoustical resonances in HID lamps

Consistent results obtained Next steps

– Inclusion of plasma dynamics– Extension to 3d model– Optimization of burner geometry

www.berndbaumann.de | Milan, October 2009 | page 23

Molto grazie!