WP 2.1 Guidance for design for deconstruction - VTT.fi · WP 2.1 Guidance for design for...

Preview:

Citation preview

WP 2.1 Guidance for design fordeconstruction(Suunnittelu uudelleenkäyttöä ja kierrätystä varten)

ReUSE: Reusing of building componentsAsko TaljaVTT Technical Research Centre of Finland

228.10.13

BACKGROUND

328.10.13

Definitions

Deconstruction: the dismantling of a building in such a manner thatits component parts can be re-used.Reclamation and reclaimed: material is set aside from the wastestream for future reuse with minimal processing.Reuse: the use of reclaimed materials for their original purpose.Recycling and recycled: the manufacture of a new product usingreclaimed materials, scrap or waste as feedstock.Upcycling: taking a low grade material and turning it into a highgrade material, often using human energy.Downcycling: taking a high grade material and turning into a lowgrade material, often using fuel energy .

428.10.13

Over 50% of buildings in the year 2030 will have been built since 2000(Seattle Guide)

528.10.13

DfD - Design for Deconstruction

Design for Deconstruction

Designers’ responsibly to manageend-of-life building materials tominimize the consumption of rawmaterialsRecovery of materials to reusethem in another constructionproject or recycle them into a newproductArchitects and engineers cancontribute to this movement bydesigning buildings that facilitateadaptation and renovation

Design for Reuse

Instead of cradle-to-grave thinkingto a more ideal cradle-to-cradlethinkingDesigners not only optimize theuse material but they alsomaximize the opportunity forreusing the structural componentsReused elements are less energyintensive and they have lowerembodied energy than elementsmade of new or recycled material

How buildings should be designed and constructed in order thatthey can be easily deconstructed to facilitate reuse and recycling

628.10.13

Building Resource Efficiency - Key Principles

Resource efficiency is an ecological issue – the rates of use of any materialmust be sustainable and aim to maintain diversity in design and supply.Aim to minimise waste by designing elements for maximum diversity ofoptions when reused.Know Your Place – nothing can replace intimate “local knowledge” inrelation to designing for a particular place. Avoid monoculturaldeconstruction solutions for different sites – each site is unique in terms ofclimate and resources.Aim to minimise waste by increasing the number of times a constructionelement can be re-used.Minimise transportation by allowing building to be fully adaptable with theminimum use of new resources. Avoid excessive transportation of materials.Prefabrication maybe cost effective, but don’t forget the external pollutioncosts associated with transportation – aim for local prefabrication whereverpossible close to the site.

728.10.13

Embodied carbonIt is important to consider theembodied carbon in addition to theemissions associated with theoperational energy.In warehouses, which generallyhave a low operational energy, theembodied carbon may make up asmuch as 60% of the whole lifecarbon of the building.The embodied carbon makes lessof a contribution in office buildings,but nonetheless can make up asmuch as 45% of the total life cyclecarbon.A standardised method formeasuring embodied carbonshould be agreed (Sakura)

828.10.13

Buildings have different life-spans

928.10.13

Warehouses, schools and supermarkets offer the most potentialfor reducing environmental impact when designed for

deconstruction.

1028.10.13

DESIGN FOR DECONSTRUCTION

1128.10.13

Relevance of design principles for different project players

1228.10.13

Guidance for design for deconstructionOhje RIL 216-2013 (2013). Rakenteiden ja rakennusten elinkaaren hallinta. SuomenRakennusinsinöörien Liitto RIL ry.Guy, B., & Ciarimboli, N. (Unknown date). Seattle Guide: Design for disassembly in the builtenvironment.Morgan, C. & Stevenson, F. (2005). Design for Deconstruction SEDA Design Guides forScotland : No. 1Densley Tingley, Danielle (2013). Design for Deconstruction: an appraisal. PhD thesis,University of Sheffield.Addis, B., & Schouten, J. (2004). Design for deconstruction - principles of design to facilitatereuse and recycling. London: CIRIA.Chini, A. R., & Balachandram, S. (2002). Anticipating and responding to deconstructionthrough building design. Design for deconstruction and material reuse. CIB Publication 272,Paper 14.Crowther, P. (2001). Developing an inclusive model for design for deconstruction.Deconstruction and material reuse: technology, economic and policy, CIB publication 266,paper 1.Webster, M., & Costello, D. (2005). Designing structural systems for deconstruction: how toextend a new building's useful life and prevent it going to waste when the end finally comes.

1328.10.13

Ten Key Principles for DfD

1. Document materials andmethods for deconstruction

2. Select materials using theprecautionary principle*

3. Design connections that areaccessible

4. Minimize or eliminatechemical connections

5. Use bolted, screwed andnailed connections

6. Separate mechanical,electrical and plumbing (MEP)systems

7. Design to the worker and labourof separation

8. Simplicity of structure and form9. Interchangeability10. Safe deconstruction

* The essence of the principle is that when probabilities cannot be calculated with reasonable precision (i.e. it is asituation of uncertainty), then decisions that could potentially lead to great harm should be postponed or avoided.

1428.10.13

Deconstruction Detailing Principles

MaterialsAssembliesBuilding systems

architectmagazine.comelementtisuunnittelu.fi

constructionphotography.com

newsteelconstruction.com/wp/quicon-wins-contract-at-ikea/

precaststructure.com/precastcolumnsandwalls.html

1528.10.13

Components

1628.10.13

Materials

Avoid materials that later became environmental hazards forworkers and for disposalChoose components that are durable enough to be repaired orreusedChoose materials which will not be destroyed in deconstruction sothat they can be reused or recycledMaximize the number of times the components and materials canbe reusedIf more material types are necessary, the separation of thematerials in deconstruction should be carefully consideredIf prefabricated modules and components are used, they should bedimensioned for reuse

1728.10.13

Assemblies

Use of connectors that are accessible and do not cause damage inthe process of separating materialsConsider the weakening and de-stabilization of a building duringthe deconstruction processRemember that he building assembly process may rendermaterials un-reusable or un-recyclable via drilling, cutting, and useof binders, adhesives, and coatings - especially hazardousmaterialsDocument the information which includes construction drawings &details, identification of materials and components and structuralproperties

1828.10.13

Building Systems

Install HVAC, electrical and plumbing so that the do not prevent theseparation of building componentsSpecify components with sizes that are suitable for handling andtransportationRemember that dismantling or upgrading one system can affectanother systemThe enclosure, structure, infill, substructure, mechanical andelectrical systems can be separately installed with no dependencyto each other

1928.10.13

Benefits of DfD

Reducing resource-use and waste starting early in the buildingdesign process and as integral to the entire building lifeMeeting market demand for flexible and convertible buildings(changes in internal spatial usage)Allowing for ease of maintenance and repair of components andassemblies and enabling product leasing and take-backReducing potential future liability and waste disposal costsObtaining Green Building Rating System Innovation creditsEnabling future adaptation and building removal that reduces thesite environmental impacts of destructive demolition, such as dust,noise and mechanical equipment emissionsPreserving the embodied energy that is invested in buildingMaking the deconstruction industry more cost-effective

2028.10.13

Key construction materials: Re-use potential

Steel: Although there is extensive recycling of steel, re-use is stillrelatively uncommon, with most steel frames dismantled usingthermal lances or shears, rendering them unusable in their originalform.Masonry: There is a strong tradition of re-using stone, tiles andbricks in construction, prompted by the heritage industry, butsurprisingly there are still no official standards relating to re-use.Concrete: Although concrete constitutes a large proportion ofconstruction waste, there has been little re-use to date with themajority being downcycled for low-grade applications such as sub-bases or infill for landscaping.Timber: High-value joinery items have enjoyed a long tradition ofre-use in the construction industry, primarily in the domesticmarket, whereas structural re-use of timber is still rare.

2128.10.13

ENVIRONENTAL ASSESMENTMETHODS

2228.10.13

DfD in Environmental Assessment Methods

LEEDWithin LEED for New Construction there are specific pointsawarded for reusing parts of existing buildings on site and forgeneral material reuse, all these points can be found within theMaterials and Resources category.

Green StarGreen Star seems to address and reward the minimisation of theembodied energy of materials more than both BREEAM andLEED. There are six points available for building reuse.

BREEAMNo specific points to be gained in BREEAM for designing fordeconstruction. There are however parts of the point system wherecredit may be gained if deconstruction is considered to beappropriate.

2328.10.13

Green Demolition Certificate, proposal

A certificate for use by government agencies or building owners toreward green demolitionThe stated goals of this certificate are to recover materials forreuse or recycling, thus removing demolition material from thewaste stream that goes to landfill.It is a credit based system and in a similar way to LEEDassessments there are a series of prerequisites that must befulfilled. In addition to this, at least twenty-five credits must beearned, out of the fifty-two available.The certificate could potentially be a very effective way toencourage deconstruction and material reuse in existing buildings,as well as helping demolition contractors develop a moresustainable way of thinking.

2428.10.13

Potential demolition recovery indices (DRI) / targets

2528.10.13

Legislation as a way to promote deconstruction

There is nonetheless a difficulty in convincing clients to pay slightlyextra for their project to be designed for deconstruction, when thebenefit is not incurred until some point in the futureIncreased legislation would encourage a reduction in constructionand demolition waste and an increase in recycling.Most legislation just doesn’t mention deconstruction, howeversome actually comes close to discouraging it – in New SouthWales, Australia, if one wants to use second hand materials withina new build, every item must be listed as part of the buildingapplication. One could imagine this might discourage architects,engineers or clients actually specifying reused materials, even ifthey were considering doing so.In the future all new buildings should be designed fordeconstruction.

2628.10.13

DfD - Deconstruction Plan

A comprehensive Deconstruction Plan will insure that designed-tobe-reusable building elements will be recovered as intended.

1. Statement of strategy for DfD relating to the building2. List building elements3. Provide instructions on how to deconstruct elements4. Distribution of DfD Plan

2728.10.13

Summary - What needs to change

1) Recertification procedure for reused elementsRemoves suggestions that the materials might not be suitable forstructural reuseHow to minimize the cost of recertification procedure

2) Requirements and incentives for design for deconstructionThe legislation could require a detailed end of life considerationAn alternative to legislative requirements is to incentivise design fordeconstruction and material reuse. Incorporating additional creditswithin environmental assessment methods

2828.10.13

EXAMPLES

2928.10.13

Example - Demountable steel building

Volumetric modules under theFree-Dom system areconnected by means ofspecial, multiple-use joints andbolted connectors, thus thebuilding can be disassembled,its modules moved to anotherplace, and erected again.During the design life period ofthe building that amounts to atleast 60 years, such changescan take place many times.However, the economicallyjustified cycle of such changesis 10-20 years.

3028.10.13

Example - Demountable concrete building

New technology in seismic andcomponent-based concreteconstructionThe PRESSS system usesprefabricated componentsmeaning site operation isassembly focussedBeing demountable also allowsfor future deconstruction andre-erection elsewhere ifrequired.

3128.10.13

Example - Demountable timber building

Huntly Crescent is a purpose-built “towards zero carbon”mixed use development,comprising of commercial shopunits at the ground floor withresidential accommodationaboveThe whole CLT structure iseasily demountable and fullyrecyclableThe systems is simple andeasy to understand and install

3228.10.13

RIL 216-2013 RAKENTEIDEN JARAKENNUSTEN ELINKAARENHALLINTA

3328.10.13

RIL 216-2013 Rakenteiden ja rakennusten elinkaaren hallinta

Rakennusten ja rakenteiden käyttöikäsuunnitteluElinkaaren taloussuunnitteluElinkaaren luonnontaloussuunnittelu, luonnontalouslaskelmat,energiataloussuunnittelu, energia- ja olosuhdesimuloinnitLaatuluokitus- ja sertifiointijärjestelmätSuunnittelu muuntojoustavuutta ja käyttötarkoituksen muutoksiavartenSuunnittelu uudelleenkäyttöä ja kierrätystä vartenTerveellisyys- ja turvallisuussuunnitteluSäilyvyyssuunnittelu ja käyttöikämitoitusVanhanaikaistumisen hallintaMonitavoitteinen päätöksentekoYmpäristöselosteet

3428.10.13

Kiinteistön elinkaaren energiakulutus (RIL 216)

EnergiankulutusValmistus- ja rakentaminenVaipan lämpöhäviötHuolto- ja korjausMuutoksetUusimisetPurkaminen, kierrätys jahävitysSäästö: Rakenteidenlämmönvaraamiskyvynhyödyntäminen lämmityksessäja jäähdytyksessä

Passiivitalon elinkaaren CO2-päästötasuinkerrostaloissa (kg/m2/v)

3528.10.13

Yleisperiaatteet rakennuksen purkua jauudelleenkäyttöä varten (RIL 216)

Kantava runko, pintarakenteet sekä installaatiot ovat selkeästieroteltavia erillisiä rakenteitaJokainen osa on purettavissa erillisinä, esim. rungon liitokset helpostipurettavia, vaippa ja täydentävät helposti irrotettavissaOsat ovat yleisten mm. kooltaan standardien mukaisia ja ovatmahdollisimman homogeenisiaRakennusosat ovat pitkäikäisiä ja hyvin säilyviäSuunnitteluratkaisujen tulee olla joustavasti muunneltavia, pitkäikäisiäja helposti huollettaviaTietyntyyppiset rakennukset, esim. hallit, suunnitellaan siirrettäviksiRakennepiirustukset sekä materiaali- ja kuormitustiedot tulle olladokumentoituLaaditaan kirjallinen selostus purku- ja uudelleenkäyttötoimenpiteistä,joka liitetään rakennuksen huoltokirjaan

3628.10.13

Rakennusjätteen uudelleen- ja uusiokäyttö (RIL216)Alustava selvitys uusio-, uudelleen- ja energiakäyttöön kelpaavastamateriaalistaHyötykäyttövaihtoehtojen ja -kohteiden etsiminenOngelmajäteselvitykset ml. asbestikartoitusSuurissa kohteissa aloitettava 6 kk ennen aiottua purkuaikaa

Tarvittavien viranomaislupien hakeminen ja ilmoitusten tekeminen

Neuvottelut ja sopimukset hyötykäyttökumppanien kanssaMäärä, laatu, aikataulu, hinta ja sopimusosapuolten velvollisuudet

Tarvittaessa loppukatselmus sopimuskumppanien kanssa

Lajitteleva purkutyö materiaalien hyödyntämistavan vaatimusten mukaisestiToimitukset uudelleen, uusio-, tai energiahyötykäyttöön, välivarastoon,kaatopaikalle tai ongelmajätelaitokselleKirjanpito eri toimitusten sisällöstäHyötykäyttöön toimitettavan materiaalin laadunvalvonta

1

2

3

4

5

Vaihe

3728.10.13

Laadunvalvonta uudelleen- ja uusiokäytössä (RIL 216)

Uusiotuotteen valmistajalla tulee olla ohjeet vastaanotettavanmateriaalin laadulleMikäli toimitettava materiaali ei ole vastaanotto-ohjeiden mukaista,toimittaja vastaa mahdollisista kustannuksistaUusiotuotteen valmistaja vastaa tuottamansa tuotteen laadustaUusiotuotteella tulee olla tuoteseloste tms, jossa kerrotaan tuotteenominaisuudet ja mahdolliset käyttökohteetUudelleen- tai uusiokäyttöön materiaalia luovuttavan onpyydettäessä todistettava luotettavalla tavalla tuotteen puhtaus jakelvollisuusUusiotuotteita käyttävä rakentaja vastaa rakennustyön laadustaaivan kuin perinteistäkin materiaaleja käytettäessäRomuliikkeen tulee olla selvillä niiden materiaalien ja tuotteidenlaadusta, joita hän toimittaa uudelleen- ja uusiokäyttöön

3828.10.13

VTT creates business from technology