Visualizing the Microscopic Structure of Bilinear Data: Two components chemical systems

Preview:

DESCRIPTION

Visualizing the Microscopic Structure of Bilinear Data: Two components chemical systems. Y. D. R. X. Factorization:. - PowerPoint PPT Presentation

Citation preview

Visualizing the Microscopic Structure of Bilinear Data: Two components

chemical systems

A matrix can be decomposed into the product of two significantly smaller matrices.

Factorization:

In many chemical studies, the measured or calculated properties of the system can be considered to be the linear sum of the term representing the fundamental effects in that system times appropriate weighing factors.

D = X Y + R

D X Y= + R

0 5 10 15 20 25 30 35 40 45 500

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5Concentration Profiles

Retention Time

Conc

entra

tion

400 410 420 430 440 450 460 470 480 490 5000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Spectral Profiles

Wavelength (nm)

Abso

rban

ce

400 410 420 430 440 450 460 470 480 490 5000

0.1

0.2

0.3

0.4

0.5

Wavelength

Abso

rban

ce

A simple one component system

435 440 445 450 455 4600

0.1

0.2

0.3

0.4

0.5

wavelength

Abso

rban

ce

00.05

0.10.15

0.20.25

0.30.35

0.40.45

00.05

0.10.15

0.20.25

0.30.35

0.40.45

0.50

0.1

0.2

0.3

0.4

0.5

Absorbance at wavelength #1Absorbance at wavelength #2

Abso

rban

ce a

t wav

elen

gth

#3

Observing the rows of data in wavelength space

00.05

0.10.15

0.20.25

0

0.1

0.2

0.3

0.4

0.50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Absorbance at time #1Absorbance at time #2

Abso

rban

ce at

time #

3

19 20 21 22 23 24 25 26 27 28 290

0.1

0.2

0.3

0.4

0.5

Time

Abso

rban

ce

Observing the columns of data in time space

D = USV = u1 s11 v1 + … + ur srr vr

Singular Value Decomposition

=D U S V

d1,:d2,:

dp,:

… =u11

u21

up1…

s11 v1 d1,:= u11 s11 v1d2,:= u21 s11 v1… …

dp,:= up1 s11 v1

For r=1Row vectors:

D = u1 s11 v1

D = USV = u1 s11 v1 + … + ur srr vr

Singular Value Decomposition

[ d:,1 d:,2 … d:,q ] = u1 s11 [v11 v12 … v1q]

d:,1= u1 s11 v11

… …d:,2= u1 s11 v12

d:,q= u1 s11 v1q

Column vectors:

=D U S V

For r=1 D = u1 s11 v1

Rows of measured data matrix in row space:

v1

u11s11v1

up1s11v1

u11s11u21s11…

up1s11

p points (rows of data matrix) in rows space have the following coordinates:

Columns of measured data matrix in column space:

v11s11v12s11…

v1qs11

q points (columns of data matrix) in columnss space have the following coordinates:

u1 v11 s11u1

v1q s11u1

-3 -2.5 -2 -1.5 -1 -0.5 0-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ui1s11

ui2s

22

Row Space

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1Column space

v1js11

v2js2

2

Visualizing the rows and columns of data matrix

400 410 420 430 440 450 460 470 480 490 5000

0.5

1

1.5

Wavelength

v1js1

1 or A

bsor

banc

e

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Time

ui1s

11 o

r con

cent

ratio

n

Solutions

Pure spectrum

v1js11

Pure conc. profile

ui1s11

400 420 440 460 480 500 520 540 560 580 6000

0.2

0.4

0.6

0.8

1

1.2

1.4Spectral Profiles

Wavelength (nm)

Abso

rban

ce

0 10 20 30 40 50 60 70 80 90 1000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5Concentration Profiles

Retention Time

Conc

entra

tion

400 420 440 460 480 500 520 540 560 580 6000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Wavelength

Abso

rban

ce

Measured data

Two component systems

00.1

0.20.3

0.4 0.50.6

0.7

00.1

0.20.3

0.40.5

0.60.7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Absorbance at wavelength #1Absorbance at wavelength #2

Abso

rban

ce at

wav

eleng

th #3

470 480 490 500 510 520 5300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Wavelength

Abso

rban

ce

Visualizing data in three selected wavelengths

38 40 42 44 46 48 50 52 54 56 580

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time

Abso

rban

ce

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

00.1

0.20.3

0.40.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Absorbance at time #1Absorbance at time #2

Abso

rban

ce at

time #

3

Visualizing data in three selected Times

Measured Data Matrix

D = USV = u1 s11 v1 + … + ur srr vr

Singular Value Decomposition

Row vectors:d1,:d2,:

dp,:

… =u11

u21

up1

s11 v1 u12

u22

up2

…s22 v2

+

d1,:= u11 s11 v1 + u12 s22 v2d2,:=… …

dp,:=

u21 s11 v1 + u22 s22 v2

up1 s11 v1 + up2 s22 v2

For r=2 D = u1 s11 v1 + u2 s22 v2

D = USV = u1 s11 v1 + … + ur srr vr

Singular Value Decomposition

[ d:,1 d:,2 … d:,q ] = u1 s11 [v11 v12 … v1q]

+ u2 s22 [v21 v22 … v2q]

d:,1= s11 v11 u1 + s22 v21 u2

… …d:,2=

d:,q=

s11 v12 u1 + s22 v22 u2

s11 v1q u1 + s22 v2q u2

For r=2 D = u1 s11 v1 + u2 s22 v2Column vectors:

Rows of measured data matrix in row space:

u11s11

d1,:

v1

v2

u12s22

d2,:

dp,:

u21s11

u22s22

up2s22

up1s11

u11s11 u12s22

…u21s11 u22s22

up1s11 up2s22

…Coordinates of rows

Columns of measured data matrix in column space:

u1

u2

d:, 2

d:, 1

d:, q

…v2qs22

v1qs11v12s11

v22s22

v21s22

v11s11

v11s11 v12s11 . . . v1qs11 Coordinates of columns

v21s11 v22s11 . . . v2qs11

400 450 500 5500

0.2

0.4

0.6

0.8

1

1.2

1.4Spectral Profiles

Wavelength (nm)

Abs

orba

nce

400 450 500 5500

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8Response matrix data

Wavelength (nm)

Abs

orba

nce

0 10 20 30 40 50 60 70 800

0.2

0.4

0.6

0.8

1

1.2

1.4Conc. Profiles

Time

Con

c.

0 1 2 3 4 5 6-1

-0.5

0

0.5

1Visualizing the rows of the data

x1

x2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-0.5

0

0.5Visualizing the columns of the data

y1

y2

Two component chromatographic system

0 2 4 6 8 10 12 14 16 18 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Concentration Profiles

Time

Con

cent

ratio

n

400 420 440 460 480 500 520 540 560 580 6000.5

1

1.5

2Spectral Profiles

Wavelength (nm)

Inte

nsity

400 420 440 460 480 500 520 540 560 580 6000.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2Simulated Spectra

Wavelength (nm)

Abs

orba

nce

6.6 6.8 7 7.2 7.4 7.6 7.8 8 8.2 8.4-2

-1

0

1

2

3Visualizing the rows of the data

x1

x2

5 6 7 8 9 10 11-2

-1

0

1

2Visualizing the columns of the data

y1

y2

Two component Kinetic system

Two component multivariate calibration

0 5 10 15 20 25 300

1

2

3

4

5

6

7

Sample number

Conc

entra

tion

400 420 440 460 480 500 520 540 560 580 6000.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16Spectral Profiles

Wavelength (nm)

Abs

orba

nce

400 420 440 460 480 500 520 540 560 580 6000

0.2

0.4

0.6

0.8

1

1.2

1.4Response matrix data

Wavelength (nm)

Abs

orba

nce

0 1 2 3 4 5 6 7-1

-0.5

0

0.5

1Visualizing the rows of the data

x1

x2

2 2.5 3 3.5 4 4.5-0.5

0

0.5

1Visualizing the columns of the data

y1

y2

Position of a known profile in corresponding space:

dx

Tv1

Tv2

v1

v2

Tv1 is the length of projection of dx on v1 vectorTv1 = dx . v1

Tv2 is the length of projection of dx on v1 vectorTv2 = dx . v2 Tv1

Tv2Coordinates of dx point:

Position of real profiles in V and U spaces

0 1 2 3 4 5 6 7-2

-1

0

1

2Visualizing the rows of the data

x1

x2

0 5 10 15 20 25-10

-5

0

5

10Visualizing the columns of the data

y1

y2

Position of real profiles in V and U spaces

0 1 2 3 4 5 6-1.5

-1

-0.5

0

0.5

1

1.5Visualizing the rows of the data

x1

x2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-1

-0.5

0

0.5

1Visualizing the columns of the data

y1

y2

Position of real profiles in V and U spaces

0 1 2 3 4 5 6 7 8-2

-1

0

1

2

3Visualizing the rows of the data

x1

x2

0 1 2 3 4 5 6 7 8 9 10 11-2

-1

0

1

2

3Visualizing the columns of the data

y1

y2

Duality in Measured Data Matrix

p

n

xiT

xj

xij

Pp

Sn

vn

v1

vi

PnSp

up

u1

uj

xi xj

xijxij

Geometrical interpretation of an n x p matrix X

R= C ST = U D VT = X VT

RT= S CT = VD UT = Y UT

X = U D = RV = U YT VY= V D = RT U = V XT U

X YT

U V

Duality based relation between column and row spaces

=

Non-negativity constraint and the system of inequalities:

U z ≥ 0V z ≥ 0

X = U D U= X D-1

Y = V D V= Y D-1

U z = X D-1 z ≥ 0 Hyperplanes

V z = Y D-1 z ≥ 0 Hyperplanes

U-space Y Points

V-space X Points

Duality based relation between column and row spaces

xi = [xi,1 xi,2]

Ui,1 zi,1 + Ui,2 zi,2 … Ui,N zi,N ≥ 0 The coordinates of each point in one space defines the coefficient of related hyper plane in dual space

Point x in V-space Hyper plane (D-1x) z in U-spaceFor two-component systems:

The ith point in V-space: xi

xiD-1= [Ui,1 Ui,2 … Ui,N] The ith hyperplane in U-space:

A point in V-space:

Ui,1 z1 + Ui,2 z2 ≥ 0 A half-plane in V-space:

Half-plane calculation in two-component systems:

General half-planeGeneral border line can be defined for all points that the ith element of the profile is equal to zero

z1

z2

0ith half-plane

ith border line

General border line

Ui,1 z1 + Ui,2 z2 ≥ 0

z2 ≥ (-Ui,2/Ui,1)z1

z2 = (-Ui,2/Ui,1)z1

0 1 2 3 4 5 6-1

-0.5

0

0.5

1Visualizing the rows of the data

x1

x2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-1

-0.5

0

0.5

1Visualizing the columns of the data

y1

y2

Chromatographic data

0 1 2 3 4 5 6 7

-2

-1

0

1

2

Visualizing the rows of the data

x1

x2

0 1 2 3 4 5 6 7-2

-1

0

1

2Visualizing the columns of the data

y1

y2

Chromatographic data

0 1 2 3 4 5 6 7 8 9-5

0

5Visualizing the rows of the data

x1

x2

0 2 4 6 8 10 12 14 16-10

-5

0

5

10

15Visualizing the columns of the data

y1

y2

Kinetics data

0 1 2 3 4 5 6 7 8 9-5

0

5Visualizing the rows of the data

x1

x2

0 2 4 6 8 10 12 14-4

-2

0

2

4

6

8

10Visualizing the columns of the data

y1

y2

Kinetics data

Calibration data

0 1 2 3 4 5 6 7 8 9-6

-4

-2

0

2

4Visualizing the rows of the data

x1

x2

0 1 2 3 4 5 6 7-4

-2

0

2

4Visualizing the columns of the data

y1

y2

Calibration data

0 1 2 3 4 5 6 7 8 9-6

-4

-2

0

2

4Visualizing the rows of the data

x1

x2

0 1 2 3 4 5 6-2

-1

0

1

2Visualizing the columns of the data

y1

y2

Intensity ambiguity in V space

v1

v2

a

k1ak2a

T11

T12

k1T11

k1T12

k2T11

k2T12

Normalization to unit length

v1

v2

a

k1ak2a

T11

T12

k1T11

k1T12

k2T11

k2T12

an

an = (1/||a||) a

Normalization to first eigenvector

v1

v2

a

k1ak2a

T11

T12

k1T11

k1T12

k2T11

k2T12

1

an = (1/(v.a))a an

v1

v2

12

4

3

51’ 2’ 3’

4’

5’

Normalization to unit length

v1

v2

1

12

4

3

5

a = T1 v1 + T2v2

a’ = v1 + T v2

1’ 2’ 3’

4’

5’

Normalization to first eigenvector

Chromatographic data- Normalized to unit length

0 0.2 0.4 0.6 0.8 1-0.5

0

0.5Normalization to unit length-Row Space

x1

x2

0 0.2 0.4 0.6 0.8 1 1.2-0.4

-0.2

0

0.2

0.4

Normalization to unit length-Column Space

y1

y2

Chromatographic data- Normalized to 1th eigenvector

0 0.2 0.4 0.6 0.8 1 1.2-0.5

0

0.5Normalization to first eigenvector-Row Space

x1

x2

0 0.2 0.4 0.6 0.8 1 1.2-0.4

-0.2

0

0.2

0.4

Normalization to first eigenvector-Column Space

y1

y2

Kinetics data- Normalized to unit length

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

0.6

Normalization to unit length-Row Space

x1

x2

0 0.2 0.4 0.6 0.8 1-0.4

-0.2

0

0.2

0.4

0.6

0.8

Normalization to unit length-Column Space

y1

y2

Kinetics data- Normalized to 1th eigenvector

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Normalization to first eigenvector-Row Space

x1

x2

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Normalization to first eigenvector-Column Space

y1

y2

Multivariate calibration data- Normalized to unit length

0 0.2 0.4 0.6 0.8 1 1.2-0.5

0

0.5

1Normalization to unit length-Row Space

x1

x2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-0.2

0

0.2

0.4

Normalization to unit length-Column Space

y1

y2

Multivariate calibration data- Normalized to 1th eigenvector

0 0.2 0.4 0.6 0.8 1 1.2-0.5

0

0.5

1Normalization to first eigenvector-Row Space

x1

x2

0 0.2 0.4 0.6 0.8 1 1.2

-0.2

0

0.2

0.4

Normalization to first eigenvector-Column Space

y1

y2

• The normalized abstract space of two component systems is one dimensional

Data points regionOne dimensional normalized space

• There are 4 critical points in normalized abstract space of two-component systems:

First inner point Second inner point

First outer point Second outer point• The 4 critical points can be calculated very easily

and so the complete resolving of two component systems is very simple

First feasible region Second feasible region

Lawton-Sylvester Plot

Microscopic Observation of Two Component systems using Lawton-Sylvester Plot

First feasible solutions Second feasible solutions

General Microscopic Structures of Two-Component Systems

Second feasible solutions

Case I)

Case II)

Case III)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.60

0.5

1

1.5

2Visualizing the rows of the data

x2

x1

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.40

0.5

1

1.5

2Visualizing the columns of the data

y2

y1

Lawton-Sylvester Plot- Multivariate calibration

Feasible Bands- Multivariate calibration

Feasible Bands- Chromatographic Data

Feasible Bands- Kinetics Data

400 420 440 460 480 500 520 540 560 580 6000.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2Simulated Spectra

Wavelength (nm)

Abs

orba

nce

Kinetics Data (I)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2Visualizing the rows of the data

x2

x1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.20

0.5

1

1.5

2Visualizing the columns of the data

y2

y1

LS plot as a microscope for kinetics data (I)

Feasible bands for kinetics data (I)

400 420 440 460 480 500 520 540 560 580 6000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8Simulated Spectra

Wavelength (nm)

Abs

orba

nce

Kinetics Data (II)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.80

0.5

1

1.5

2Visualizing the rows of the data

x2

x1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.40

0.5

1

1.5

2Visualizing the columns of the data

y2

y1

LS plot as a microscope for kinetics data (II)

Feasible bands for kinetics data (II)

Recommended