UNIDAD TRES NUTRICIÓN VEGETALmorfo-fisio-vegetal.yolasite.com/resources/nutric pres 1-2.pdf ·...

Preview:

Citation preview

UNIDAD TRES

NUTRICIÓN VEGETAL

SUELO

RAICES

IONES

OBJETIVOS : • Recordar las interacciones iónicas en el suelo que regulan la absorción de nutrientes por las raíces

• Conocer los elementos minerales de los que se alimenta la planta.

• Identificar los sintomatología asociada al diagnóstico de desórdenes nutrimentales.

• Conocer las formas simbióticas de la raíz-microorganismos que facilitan la nutrición vegetal: bacterias fijadoras de nitrógeno y micorrizas.

Concepto

• Estudia los procesos relacionados con la adquisición de los elementos minerales del suelo o medio de

crecimiento, los procesos relacionados con su absorción su asimilación y la función que éstos representan en la vida de las plantas.

Nutrición Mineral de las plantas

Nutrición mineral de las plantas

• Aproximadamente el 96% de la masa seca de los tejidos vegetales esta compuesto por C, H y O .

• Los otros 16 elementos sólo representan cerca del 4% de esta masa seca

• No obstante, las deficiencias de cualquiera de estos 16 elementos, reduce la producción y limita el crecimiento de los cultivos

- Los demás elementos son tomados, principalmente del suelo, absorbidos por la raíz junto con el agua.

• El contenido mineral en vegetales.

• Tipo de planta, clima durante el crecimiento, la composición química del medio y la edad del tejido, entre otros.

• Los primeros tres nutrientes están disponibles a partir del aire y el agua y forman la materia orgánica, sintetizada por la fotosíntesis

(O) Oxigeno (C) Carbono (H) Hidrogeno

Agua y aire

Característica físicas y químicas, del suelo

Propiedades físicas de los suelos.

* Color.

* Textura.

Estructura

Porosidad.

físico-químicas del suelo. a. Nutrientes. b. pH. c. Estructura. d. Contenido hídrico.

En los procesos químicos la materia orgánica interviene en:

• El suministro de elementos químicos (mediante la mineralización) macro y micronutrientes disponibles para las plantas.

• La estabilización de la acidez del suelo.

• La capacidad de cambio catiónico y aniónico (donde se acumulan, iones=nitratos, fosfatos y sulfatos) de los suelos.

Zona de interacción única y dinámica entre raíces de plantas y microorganismos del suelo. Región caracterizada por el aumento de la biomasa microbiana y de su actividad.

Rizosfera Región del suelo que se extiende entre 1 y 3 mm desde la superficie de las raíces al interior del suelo

Liberación de sustancias orgánicas e inorgánicas al suelo.

Microsistemas especializados que propicia el crecimiento de una población microbiana diversificada

FACTORES QUE CONTROLAN EL CRECIMIENTO Y DISTRIBUCION DE RAICES

T° latentes durante temperaturas bajas.

Microorganismos secretan compuestos que afectan el crecimiento y

distribución de las raíces, además aumentan la obtención y traslocación

de minerales del suelo.

Luz Esta inhibe el crecimiento de raíces disminuyendo la razón de

división y elongación celular.

Gravedad - geotropismo positivo, esto es crecen hacia la gravedad de

la Tierra.

Diferencias genéticas

Factores que afectan el crecimiento y desarrollo de las plantas

pH

cantidad de etileno en el suelo disminuirá la extensión de éstas

Textura

CUALQUIER FACTOR QUE AFECTE EL CRECIMIENTO DE LA RAÍZ REDUCE LA ABSORCIÓN DE NUTRIENTES

Absorción de iones y carga en el xilema

Medición de absorciópn del ion

Reactivo añadido

Segmento de raíz

Medición de carga del xilema

Podemos medir la relación entre el ion la absorción en la raíz y el xilema de carga mediante la colocación de un segmento de raíz a través de dos compartimentos y la adición de un trazador radioactivo a uno de ellos (en este caso un compartimento). La velocidad de desaparición del trazador del compartimiento A da una medida de la absorción de iones, y la tasa de aparición en el compartimento B proporciona una medición de la carga de xilema. (De Lüttge y Higinbotham 1979.)

El método más moderno para estudiar las

raíces se llama rizotrón y consiste de cámaras

bajo el suelo con paredes de cristal

Como obtener muestras de raíces finas en los Ingrowth cores

Biomasa. Mg/ha. Longitud. km/ha. Área . m2/ha. Volumen. m3/ha. Software utilizado WinRhizo

Crecimiento y mortandad Biomasa. Mg/ha. Longitud. km/ha. Área . m2/ha. Volumen. m3/ha.

Téctincas de estudio de la raíz

Rizotrón

Los Ingrowth cores

Proceso de transporte de iones y absorción de sales minerales por la raíz

Capacidad de intercambio catiónico

Máxima cantidad de de cationes que un material

puede adsorber, expresada en centimoles de cargas

(c) por kg de su peso (cmolc kg-1 = meq/100 g)

Capacidad de

intercambio catiónico

El grado con el que el suelo

puede adsorber e

intercambiar iones .

Principio de electroneutralidad: Es el principio que dice que una solución debe ser eléctricamente neutra; es decir, la concentración total de la carga positiva debe ser igual a la concentración total de la carga negativa.

Ing. Mario O’Hara Gaberscik

Transporte a corta

distancia: los iones del

suelo son absorbidos por la

raíz (pasiva y activamente)

Transporte radial

Torrente

xilemático

Flujo en masa

Transporte a

corta distancia

La vía de transporte comprende la absorción de

iones especialmente por la raíz y su movimiento

MOVIMIENTO DE IONES A TRAVÉS DE LA PLANTA.

Flujo en masa:

movimiento de

nutrientes a través del

xilema, gracias a la

presión radicular y la

evapotranspiración

Transporte radial: de iones

a través de la raíz por el

apoplasto al simplasto de

la raíz.

ABSORCIÓN DE IONES POR LA PLANTA

• . Elementos minerales en el suelo: complejo de cambio.

• Absorción de iones por transporte pasivo:

• espacio libre aparente.

• Transporte activo: características. Concepto de transportador. Bombas electrogénicas.

• Movimiento de iones a través de la planta.

• Epstein y Hagen (1952) comprobaron que cuando se analizan estrechos rangos de concentraciones frente a velocidad se obtienen gráficas de absorción iónica que corresponden con la ecuación de Michaelis-Menten.

• Debido a la existencia de diferentes mecanismos de transporte:

• Transportadores de gran afinidad: se unen al elemento (K+) cuando apenas está presente (bajas concentraciones)

• Transportadores de baja afinidad: se unen al elemento (K+) cuando aparece en gran proporción.

• Si existen varios transportadores para el mismo elemento se habla de cinéticas multifásicas.

• Cada transportador suele situarse en distintas estructuras:

• Ej. El transporte vía simplasto implica atravesar la membrana plasmática, el citoplasma, la vacuola y el espacio extracelular. Para cada localización habría un transportador específico.

Mediante el experimento de incorporación de K+ en raíces de cebada se observó una cinética

bifásica:

TRANSPORTE ACTIVO

EN CONTRA DE GRADIENTE

TRANSPORTE PASIVO

A FAVOR DE GRADIENTE

Incorporación

Concentración externa

Gradiente de concentración (solutos sin

carga)

Difusión facilitada

Gradiente electroquímico (iones)

Transporte activo.--- Acarreadores específicos

PROTEINAS

TRANSPORTADORAS

Canales. (transp. de iones

dependiente del radio de

hidratación)

Difusión simple

TRANSPORTE PASIVO ESPECÍFICO O DIFUSIÓN FACILITADA

Otras bombas primarias: bombas iónicas: Ca++, Na+, K+.

NADHATP-asa,

transporte activo ligado a simporte de protones;

transporte activo ligado a simporte de iones Na+

transporte activo dirigido por ATP

transporte acoplado a translocación de grupos.

MOVIMIENTO DE IONES A TRAVES

DE MEMBRANAS

tipo caracteristicas

cinetica Energia que utiliza

ejemplos

Bombas primarias

Activo

Primario

electrogénico

Michaelis-Menten

ATP o NADH

ATPasa, Ca, Na..

Bombas secundarias

Activo

Primario

electroforetico

Michaelis-Menten

Indirectamente energia metabolica fuerza H+ o Na+ motriz

NO3-.NH4+,aminoacidos glucosa.etc

canales Pasivo p secundario

Saturacion a altas ( )

Fisica o ion motriz

Canales de K+,Na+, etc.

Elemento esencial:

1. - Su ausencia impide completar su ciclo vital (formar semillas)

2. - Debe tener una clara y determinada función fisiológica

no reemplazable por otro elemento

3. - Debe formar parte de una molécula esencial en el metabolismo vegetal ( reacción enzimática)

Clasificación de los Elementos Minerales

MACRONUTRIENTES MICRONUTRIENTES

Nitrógeno (N) Hierro (Fe)

Fósforo (P) Cobre (Cu)

Potasio (K) Zinc (Zn)

Azufre (S) Cloro (Cl)

Calcio (Ca) Manganeso (Mn)

Magnesio (Mg) Boro (Bo)

Molibdeno (Mo)

*Silicio (Si)

*Níquel (Ni)

De acuerdo su contenido en la planta:

Movilidad dentro de la planta

MOVILES INMOVILES

Nitrógeno

Potasio Azufre

Fósforo Boro

Magnesio Cobre

Cloro Hierro

Zinc Calcio

Molibdeno Manganeso

Sodio

• Captado

• Transportado

• Acumulado de

forma temporal o

permanente

• asimilado

METABOLISMO DE LOS ELEMENTOS MINERALES

• ABSORBIDOS, REDUCIDOS (N,S) E INCORPORADOS AL METABOLISMO DE LA PLANTA

Disponibilidad de elementos para la planta.

• La presencia del elemento en el suelo

• Composicion del suelo (interaccion con otros elementos)

• pH

• Aireacion del suelo (concentracion de CO2)

• Flora microbiana

• Estructura radicular.

MOVIMIENTO INTERNO DE

NUTRIENTES

• Los nutrientes son transportados desde las raices hacia

las hojas a traves del xilema

• Los nutrientes pueden ser transportados

(redistribuidos, translocados) desde las hojas viejas

hacia las hojas jovenes y raices a traves del floema

•Xilema: en la transpiracion (pasivo)

•Floema: por gradiente de presion hidrostatica (activo

= se requiere energia)

DEFICIENCIAS DE NUTRIENTES

• El elemento en la solución del suelo está disponible para la planta, pero su concentración es muy baja.

• El elemento está presente bajo una forma química que no puede ser utilizada por la planta, no hay disponibilidad.

• Antagonismo: la presencia de un elemento en una determinada concentración puede impedir la absorción del otro. El Mg es antagónico con al Ca y K.

conductímetro

•menor a 2 dS m-1) se pueden inducir deficieencias nurimentales.

•CE mayores a 6 dS m-1 inducen deficiencia hídrica y aumentan la relación K

+ : (K

+ + Ca

2+ +

Mg2+

+ NH4

+) ocasionando desbalances

nutrimentales (principalmente en los nutrimentos que se mueven por flujo de masas).

• Cuando se estudia la respuesta del crecimiento frente a cantidades variables de un nutriente, se obtiene una curva como la siguiente, llamada CURVA DE COSECHA.

43

Solución utritiva

sustrato inerte

HIDROPONIA

Suelo por agua o

(cuarzo, vermiculita o perlita),

Normas DRIS relaciones de nutrimentos y constituye la media de una poblacion de altos rendimientos con los cuales se calculan los indices DRIS, el orden de requerimientos y el índice de desbalance nutricional de una muestra foliar (Walworth y Sumner 1987).

Cuando se exceden los

valores de pH de 6.5,

la formación de

precipitados puede

causar importantes

problemas de nutrición

vegetal, mientras que

para pH´s inferiores a

5.0 el sistema radicular

corre graves riesgos de

ser dañado.

pH DE LA SOLUCIÓN NUTRITIVA

Á cido B á sico

0 7 14

•Los iones alteran su forma química en función del pH

DISPONIBILIDAD DE LOS NUTRIMENTOS EN FUNCIÓN DEL pH

NITROGENO

FOSFORO

POTASIO

AZUFRE

CALCIO

MAGNESIO

HIERRO

BORO

MANGANESO

COBRE Y ZINC

MOLIBDENO

5.0 4.5 4.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

ÁCIDO pH ALCALINO

Clasificación de los elementos minerales

La concentración en la planta (Epstein, 1994)

• Macronutrientes (>0.1%): H-C-O-N-K-Ca-Mg-P-S-Si (sólo en algunas especies)

• Micronutrientes (<0.1%): Cl-Fe-B-Mn-ZN-Cu-Ni-Mo-Na (sólo en algunas especie)

La función bioquímica o bilógica (Mengel y Kirby, 1987)

*Elementos formadores de compuestos orgánicos: N-S

* Elementos relacionados con la conservación de energía y/o compuestos estructurales: P-B-Si

*Elementos que permanecen como iones - cofactores :

K-Na-Mg-Ca-Mn-Cl

*Elemtos involucrados en reacciones redox, transferencia de electrones : Fe-Cu-Zn-Mo- Ni (en algunas especies)

> 0.1% 1000mg/Kg peso seco

1000 ppm

< 0.01% 100mg/Kg de peso seco

100ppm

INTERACCION IONICA.

a. Antagonismos: Un Elemento reduce el efecto tóxico del otro.

b. Sinergismos: Un Elemento favorece la absorción de otro.

c. Inhibición:

> Competitiva, cuando tienen el mismo transportador.

> No Competitiva, la presencia del ión inhibe al otro.

Interacciones más comunes (Malavolta, 1989).

Función de los Elementos Esenciales

•Absorción:

• Anión nitrato NO3- , Catión amonio NH4

+

–Coenzimas

Frijol (solución completa)

Deficiencia de nitrógeno

• La relación tallo /raíz se altera

FOSFORO

• 0.1-0.4 % peso seco de la planta

• Funciones

– Acidos nucleicos/ADN (código genético)

– Azúcares

– ATP (energia)

– Fosfolípidos

– Coenzimas

• Absorción: anión fosfato H2PO4- ; HPO4

2-

• Forma precipitados insolubles con Ca, Mg, Al, Fe

65

Potasio • Papel osmorregulador (abertura y cierre

estomas)

• Movimientos de plantas (nactias y tactismos)

• Activador de enzimas

Deficiencia de fósforo. Color verde oscuro, senescencia temprana de las hojas viejas

POTASIO • 1-4 % del peso seco de la planta

• Funciones

– Regulación de la presión osmótica

– Regulación de > 60 sistemas enzimaticos

– Colabora en la fotosíntesis

– Promueve la translocación de fotosintatos

– Regula la apertura de los estomas y el uso del agua

– Promueve la absorción de N y la síntesis de proteínas

• Absorción: catión potasio K+

• Movilidad limitada en el suelo (adsorción)

• Puede lavarse en suelos arenosos

NUTRIENTES SECUNDARIOS

• Calcio (Ca++)

– Paredes celulares y membranas

• Magnesio (Mg++)

– Atomo central de la clorofila

– Cofactor enzimático

• Azufre (SO4--)

– Proteínas

– Formación de clorofila

71

Calcio • Pared celular (pectinas) y membrana

• Segundo mensajero en cascadas de señales de las plantas

• Unión a Calmodulina

Deficiencia de magnesio: Clorosis entre las nervaduras de las hojas

viejas

Deficiencia de calcio :Hojas abarquilladas, nervaduras oscuras, muerte de

los puntos de crecimiento que origina ramificación

75

Hierro • Forma parte de los grupos catalíticos de

muchas enzimas redox del tipo hemoproteínas como citocromos, catalasas, peroxidasas…

• Forma parte de sulfoferroproteínas: ferredoxina, nitrito reductasa, sulfito reductasa, nitrogenasa…

Hierro La forma preferente de asimilación es el Fe2+. Algunas gramíneas asimilan el Fe3+ directamente. Se absorbe activamente Se transloca principalmente en el xilema como quelato con ácido cítrico. Poco móvil en el floema

Fe2+ Fe2+

Fe2+

Fe2+

Fe2+

Fe2+

Deficiencia de hierro.

Clorosis amarillenta fuerte en las hojas jóvenes

79

Manganeso

• Transporte de electrones en fotosíntesis desde el agua al fotosistema II

• Activador de muchos enzimas del ciclo de Krebs

81

Boro • El 95% se halla en las paredes celulares

• Relación con los principales procesos de la fisiología vegetal: división y crecimiento, germinación, regulación hormonal

Boro Sus funciones se relacionan con: • Elongación, división celular

y metabolismo de ácidos nucleicos.

• Metabolismo de carbohidratos y proteínas

• Diferenciación de tejidos, metabolismo de auxinas y fenoles

• Permeabilidad de las membranas celulares

• Germinación del polen y crecimiento del tubo polínico.

83

Molibdeno

• Nitrato reductasa y Nitrogenasa

Molibdeno Aunque es un metal, en solución acuosa se encuentra como MoO4

2- (oxianión). Se comporta como anión, en el suelo es similar al fosfato, siendo también fijado a bajo pH.

Hace parte de enzimas como: • Nitrogenasa • Nitrato reductasa

86

Azufre • Forma parte de sulfolípidos, aminoácidos,

de diversas coenzimas…

• Fitoquelatinas, proteínas de bajo pm con un elevado número de aa azufrados que forman complejos con metales pesados

87

Magnesio • Clorofila

• Activador de enzimas como Rubisco, PEP carboxilasa y glutamato sintasa

• Forma complejos con el ATP

• Síntesis de ATP a partir de ADP

88

Cobre

• Está presente en diversas proteínas y enzimas implicadas en procesos de oxidación/reducción – Plastocianina (fotosíntesis)

– Citocromo c oxidasa (respiración mitocondrial)

89

Zinc

• Estabilizador de la molécula de clorofila

• Relación con los niveles de auxinas

– Papel en la síntesis del triptófano, precursor de las auxinas

• Necesario para la actividad de numerosos sistemas enzimáticos

• Regulador de la expresión génica por su papel en la estabilidad del ribosoma y su presencia en la RNA polimerasa

90

Cloro • Soluto osmóticamente activo

• Protector del cloroplasto

• Participación en la fotolisis del agua, con emisión del O2

• Mantenimiento del gradiente de pH entre citosol y vacuola por activación de la ATPasa del tonoplasto

91

Níquel • Ureasa (metabolismo de ureidos, hidrólisis

de la urea)

92

Elementos beneficiosos

93

• No son necesarios para la generalidad de las plantas pero producen efectos beneficiosos en algunas.

• Pueden reemplazar a algún elemento esencial en alguna de sus funciones menores, o bien compensar los efectos tóxicos de otros elementos

94

• Sodio= plantas C4, transporte de pirúvico entre células del mesófilo y de la vaina

• Silicio= resistencia mecánica de la pared celular (endurece tejidos como en gramineas)

• Cobalto= fijación de N2

• Aluminio= reduce toxicidad causada por otros elementos

• Selenio= procesos de óxido-reducción

• Titanio= incrementa la producción de biomasa, activador de pigmentos fotosintéticos (Fe2+)

Aplicaciones fertilizantes

50 0 0 0-0-50 Sulfato de potasio

17 17 17 17-17-17 Triple 17

0 46 18 18-46-0 Fosfato diamònico

(DAP)

0 0 21 21-0-0 Sulfato de amonio

Macro nutriente

múltiple

60 0 0 0-0-60 Cloruro de potasio

(muriato)

0 46 0 0-46-0 Superfosfato triple

0 0 46 46-0-0 Urea

0 0 33.5 33.5-0-0 Nitrato de amonio

0 0 82 82-0-0 Amoniaco (gas)

_____________%________________ Macro nutriente

solo

K2O P2O5 N Grado usual Fertilizante

Las principales ventajas de la fertilización foliar, son:

•Nutrir al cultivo en momentos críticos

•Soluciona deficiencias de micronutrientes

•Aporta nutrientes a los cultivos en condiciones de inmovilización

temporal en el suelo

•Se independiza de las condiciones ambientales de la disolución y

transformación de los fertilizantes en el suelo

•Alta eficiencia de absorción de nutrientes

•No hay pérdidas por lixiviación y/o volatilización

Una técnica de nutrición instantánea, que

aporta elementos esenciales a los cultivos,

solucionando la deficiencia de nutrientes

mediante la pulverización de soluciones

diluidas aplicadas directamente sobre las

hojas.

La fertilización foliar es: CaBoron (fertilizante biológico)

Líquido del cinc (fertilizante biológico)

Otros Fertilizantes

* Fertilizantes organicos

* Ácidos húmicos

* Fertilizantes químicos

* Fertilizantes de lenta liberaciòn liquidos

* Fertilizantes elaborados con extractos de algas

CICLO DEL NITRÓGENO

Suelo

Aire

Oxido nitrico

Asimilacón del nitrogeno

• Absorción NO3‾‾ NH4+

• Fijación NO3‾‾ NH4+

• Asimilación de NH4 -- glutamina y glutamato aa

• El paso de nitrato a nitrito está catalizado por el enzima nitrato reductasa.

• Enzima citoplásmica que toma e- del NADH y NADPH se oxida y produce reducción del nitrato (NO3 ) con participación de LA ENZIMA FAD, Citocromo b-557 y Molibdeno.

• El paso de nitrito (NO2 ) a amonio (NH4) está catalizado por el enzima nitrito reductasa, que se encuentra en los plastos y toma e- de la Ferredoxina.

Proceso global de la asimilación no biológica de nitrógeno.

SIROHEME

De NH3 inhibe producción de NADPH o NADP

NO3, Forma amonica espinaca–betabel “remolacha”-glutamina, trigo- asparagina a-a (compuesto org) Urea (asperción foliar)

En los tejidos vegetales prácticamente la totalidad del nitrógeno es asimilado por una reacción catalizada por la enzima glutamina sintetasa (GS), seguida de otra reacción catalizada por la glutamato sintasa (GOGAT), una amido transferasa.

ATP

ADP + Pi

Gs

Glutamina sintetasa

Mg2+

GS-GOGAT

200 millones de Tn de N2 fijadas al año El 69% por fijación biológica. 15 % fijado por el hombre para combertirlo en abonos

Fijación simbióntica

Con bacterias que son capaces de asimilar el nitrógeno atmosférico ( en simbiosis o en forma independiente).

La simbiosis se produce entre la bacteria Rhizobium y la Familia Leguminoseae.

Esta fijación es muy efectiva y suele utilizarse para la recuperación de suelos degradados (fitorremediación).

Fijación biológica de nitrógeno (FBN).

Los pasos del establecimiento de la

simbiosis son:

Reconocimiento celular modulado por

aproximación y señalización

Infección: crecimiento desorganizado

Establecimiento de la simbiosis

DIAZOTROFA. La fijación biológica del nitrógeno

Como se forman los nódulos

Flavonoides se liberan de las raíces

Se establece comunicación con

bacterias

Activación de expresión de genes nod

Los factores nod se liberan de la

bacteria e interaccionan con la raíz

Activación de expresión de genes de

nodulina

Infección de la raíz

Formación del bacterioide/crecimiento

del nódulo

Se da un proceso de expresión génica da lugar a una estructura llamada simbiosoma que contendrá a las bacterias modificadas (bacteroides).

La enzima nitrogenasa

La reducción de N atmosférico a amonio, mediante las condiciones del simbiosoma necesitan la función de la enzima nitrogenasa, con ausencia de oxígeno. Este ambiente anaerobio lo proporciona la Leghemoglobina

Todo el proceso está regulado por la disponibilidad de nitrógeno que tenga la planta.

Leghemoglobinas están generadas de manera coordinada por la bacteria y la planta.

Así el grupo globina (glicoproteina) se codifica en los genes del vegetal y el grupo hemo en los genes bacterianos, y ambos conjuntos genéticos solo se activan cuando se ha conformado el nódulo en el interior de la raíz

Sección transversal de nódulos radicales con Leghemoglobina

La nitrogenasa:

formada por dos metalproteínas;

Ferroproteína(II) y molibdoferroproteína (I).

Unidad 1: Formada por 4 subunidades proteicas de unos 200 KDa. Lleva Fe, Mb y S. Es el centro donde se reduce el N2 y el que tiene la actividad reductora. Unidad2: formada por una Fe-proteína son 2 subunidades con 4 átomos de Fe y 4 de S.

Fig. 3 Flujo de electrones hacia el sitio de la nitrogenasa para la reducción del N2. Los electrones generados por la actividad metabólica son transferidos vía flavodoxina (Fld) o ferrodoxina (Fd), hacia la ferroproteina reductasa, que a su vez los transfiere a la ferro-molibdeno-dinitrogenasa, por cada par de electrones transferidos se requiere la hidrólisis de 2 mol de ATP.

Fijación en raíz con nódulo y

transporte a las hojas

• La Nitrogenasa:

• Es inhibida por O2

• Consta de dos sistemas proteicos

• Contiene átomos de metales (Fe y Mb) de transición para facilitar el transporte de electrones.

• Necesita Mg

• Su actividad requiere gasto de ATP

• Es inhibida por ADP

• Para que se produzca de forma espontánea se requieren presiones y temperaturas muy altas. Este proceso se conoce como proceso Haber- Bosch.

No-leguminosas –fijadoras de nitrógeno

•Azolla

•Anabaena

•Frankia plantas actinoricicas en árboles

Ademas de Rhizobium

Risosfera:

Los hongos pueden establecer relaciones beneficiosas con las raíces de las plantas llamadas Micorrizas .

Micorriza; del origen griego:

myco: hongo,

“Hongo de la Raíz”

rhiza: raíz.

Descubierta por; Albert Bernhard Frank (1885)

Se dividen en : ECTOMICORRIZAS y ENDOMICORRIZAS

MICORRIZAS

Endomicorrizas

Se encuentran Principalmente en; Trigo, Maíz, Tomate, Manzanos y Prados de Ganadería.

Forman su estructura característica; Arbuscúlo.

Facilitan la captación de H2O en medios áridos.

Normalmente miembros de los Zigomycetos.

Endomicorrizas

“ En las cuales el micelio del hongo se encuentra incrustado en el tejido de la raíz ”

ECTOMICORRIZAS

Se encuentran en árboles que forman bosques de zona templada.

En las raíces;

cortas: Envoltura fúngica, divididas dicotomicamente.

largas: Habitualmente no están presentes.

Se alimentan de; Carbohidratos sencillos de la raíz.

ECTOMICORRIZAS

Poca especificidad; un mismo pino puede establecer micorrizas con mas de 40 especies de hongos.

Beneficios para la planta; Mejor crecimiento.

Mayor aprovechamiento de nutrientes.

Desarrollo aún en suelos áridos.

Principales especies: Suillus, Cortinarius, Rhizopogon, Cenococcuym, Thelefora, Pisolithus.

Beneficios de los hongos micorrícicos Para las plantas:

1) Los pelos radicales aumentan la superficie de absorción, de agua y

minerales del suelo, con la asociación micorrizica.

2) Incrementan la tolerancia a las temperaturas del suelo y acidez

extrema causadas por la presencia de aluminio, magnesio y azufre. 3) Proveen protección contra ciertos hongos patógenos y nematodos.

4) Inducen relaciones hormonales para que las raíces alimentadoras permanezcan activas por periodos mayores que las raíces no

micorrizadas. Para el hongo: recibe principalmente carbohidratos y vitaminas

desde las plantas.

En suelos pobres, se ha demostrado mayor porcentaje de sobreviviencia de plantas con micorrizas.

Muy buena opción en agricultura para el desarrollo de plantaciones leguminosas.

Mejora de la tolerancia de stress ante la falta de agua mediante una mejor utilización del a humedad del suelo.

Mejora de la capacidad de resistencia frente a organismos patógenos y condiciones de stress ambiental (contaminación con metales pesados, hidrocarburos, suelos ácidos,etc.)

Beneficios

Recommended