UNCLASSIFIED - DTICFinal 13b. TIME COVERED From To . 14. DATE OF REPORT (Yr.. Mo., Day) September...

Preview:

Citation preview

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la. REPOFIT SECURITY CLASSIFICATION

Unclassified 2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

NORDA Technical Note 370

6. NAME OF PERFORMING ORGANIZATION

Naval Ocean Research and Development Activity

6c. ADDRESS (City. SIsle, and ZIP Code)

Ocean Science Directorate NSTL, Mississippi 39529-5004

8a. NAME OF FUNDING/SPONSORING ORGANIZATION

Naval Ocean Research and Development Activity

8t), OFFICE SYMBOL (It applicable)

8c. ADDRESS (City, State, and ZIP Code)

Ocean Science Directorate NSTL, Mississippi 39529-5004

lb. RESTRICTIVE MARKINGS

None 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.

5. MONITORING ORGANIZATION REPORT NUMBER(S)

NORDA Technical Note 370

7a, NAME OF MONITORING ORGANIZATION

Naval Ocean Research and Development Activity

7b, ADDRESS (City. Stale, and ZIP Code)

Ocean Science Directorate NSTL, Mississippi 39529-5004

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

10. SOURCE OF FUNDING NOS

PROGRAM ELEMENT NO.

61153N

PROJECT NO

3205, 3208

11, TITLE (Include Security Classilication)

Inverted Echo Sounder Data Near the New England Seamounts 1985-1986 12. PERSONAL AUTHOR(S)

Zachariah R. Hallock and William J. Teague

TASK NO.

3G0, 3H0

WORK UNIT NO.

13217E/132 37D/13317G 13217J/132 37F/13317V

13a TYPE OF REPORT

Final 13b. TIME COVERED

From To .

14. DATE OF REPORT (Yr.. Mo., Day)

September 1987 16. SUPPLEMENTARY NOTATION

15. PAGE COUNT

165

COSATI CODES

FIELD SUB GR

18. SUBJECT TERMS (Continue on reverse il necessary and identity by block number)

GEOSAT, topography, satellite, echo sounders, AXBT probes, thermociine depth, moored instrumentation, LORAN

19. ABSTRACT (Continue on reverse il necessary end identity by block number)

A major component of the field activities for the Northwest Atlantic Regional Energetics Experiment (REX) is focused on collecting and analyzing data from inverted echo sounders (lESs). These instruments provide information concerning the height of the sea surface, as well as information concerning move- ment of the Gulf Stream and mesoscale features in the REX area. In this report the collection, process- ing, and preliminary analysis of the lES data and the associated ship expendable bathythermograph and conductivity-temperature-depth data are described, and various plots are presented. These data are generally of good quality and constitute a significant contribution to our understanding of Gulf Stream dynamics.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED Z SAME AS RPT DTIC USERS _

22a NAME OF RESPONSIBLE INDIVIDUAL

Zachariah R. Hallock

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified 22b TELEPHONE NUMBER (Include Area Code)

(601) 688-5242

22c. OFFICE SYMBOL

Code 331

DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

mmnf R^sE^GH nmms dmsm MAVAl POSTGRADUATE StHOOi

Naval Ocean Research and iNORDA^chnical Note-370 ^^T^f^o. [fpten^ber, 1987 '

Inverted Echo Sounder Data Near the New England Seamounts 1985-1986

u^Zachariah R. Hallock William J. league

Oceanography Division Ocean Science Directorate

Approved for public release; distribution is unlimited. Naval Ocean Research and Development Activity, NSTL, Mississippi 39529-5004.

Executive Summary

A major component of the field activities for the Northwest Atlantic Regional Energetics Experiment (REX) is focused on collecting and analyzing data from inverted echo sounders (lESs). These instruments provide information concerning the height of the sea surface, as well as information concerning movement of the Gulf Stream and mesoscale features in the REX area. In this report the collection, processing, and preliminary analysis of the lES data and the associated ship expendable bathythermograph and conductivity- temperature-depth data are described, and various plots are presented. These data are generally of good quality and constitute a significant contribution to our understanding of Gulf Stream dynamics.

Acknowledgments

Field instruction and assistance, provided by Dr. Randy Watts, Mr. Gerry Chaplin, and Mr. Mike Mulroney of the University of Rhode Island in the deployment and recovery of inverted echo sounders, were invaluable and are greatly appreciated. Support from Mr. Steve Sova and Mr. Richard Myrick of NORDA, Mr. Lou Banchero, formerly of NORDA, and Dr. Laury Miller of NOAA NGS are gratefully acknowledged. Thanks are extended to the crew of the U.S.N.S. Bartlett, who made this data collection effort possible. Data reduction and plotting were primarily done by Ms. Jan Dastugue of Plan- ning Systems, Incorporated. This work was supported by the Office of Naval Research under Program Element 61153N, Dr. H. C. Eppert, Jr., Program Manager, as part of the basic research project. Ocean Dynamics from Altimetry.

Contents

Introduction

Background

Instrument Description

lES Data Processing

CTD Data Collection and Processing

XBT Data Collection and Processing

Discussion lES Temperatures lES Pressures lES Travel Times CTD Profiles XBT Profiles

References

1

1

2

2

3

3.

3 3 5 5 6 6

111

Inverted Echo Sounder Data Near the New England Seamounts 1985-1986

Introduction Developing a suitable satellite system for the global

observation of the world's oceans is rapidly becoming a major thrust within the oceanographic research and development communities. Much of this effort within the U.S. Navy is appropriately focused upon mission planning for the Navy satellite systems scheduled for launch during the next decade. A major focal point for interim activity, however, is the U.S. Navy GEOdesy SATelhte, launched in March 1985, and the associated Northwest Atlantic Regional Energetics Experiment (REX) (Mitchell et al., 1985). The REX represents the first concurrent application of several developing oceanographic techniques. The goal is to increase the fundamental, process-oriented knowledge of the dynamics and energetics of the Gulf Stream and associated rings. The major experiment (Fig. 1) centers around the analysis of:

• topographic data from the U.S. Navy GEOSAT; • long time series of sea surface and thermocline

fluctuations collected via arrays of Inverted Echo Sounders with Pressure Gauges (lES/PG);

• extensive Airborne Expendable Bathythermograph (AXBT) surveys;

• regional eddy-resolving numerical model results (using much of the data as model input and as a means of refining model dynamics).

Field activities for the REX focus on collecting and analyzing data from regional AXBT surveys (using the Naval Research Laboratory's P-3 aircraft) and from arrays of bottom-moored lES/PGs deployed slightly up- and downstream of the New England Seamount Chain (Mitchell and Hallock, 1984). Figure 2 shows the arrays of lES/PGs, which were deployed by NORDA across the mean axis of the Gulf Stream in June 1985, and were recovered in July 1986 during a joint NORDA-University of Rhode Island (URI) effort. Of the 13 NORDA instruments, 12 were suc- cessfully recovered (one instrument not recovered was located, but would not release its anchor) along with 10 URI lESs. Another NORDA lES deployment is scheduled for the same region in August 1987. Thus far, four AXBT surveys have been made: May, August, and December 1985 (Mitchell et al., 1987; Teague et al., 1987; Hallock et al., 1987), and

December 1986 (report in progress). Additional AXBT surveys are planned during 1987-1988. This report describes the lES data and the complementary ship- acquired data in detail.

Background The capability to monitor and describe fluctuations

in oceanic mesoscale features, such as the Gulf Stream and associated rings and eddies, is essential for understanding the evolution of such features. Tradi- tionally, this has been accomphshed with hydrographic surveys which are limited to relatively short time inter- vals with current meter moorings that are expensive and exclude the upper layers of the ocean in high- energy regions. More recently, satellite infrared imagery has provided series of s>Tioptic pictures of sea- surface temperature where major mesoscale features can often be seen in great detail. The latter technique sees only the surface signature; however, experience has shown that sea-surface temperature often provides a distorted picture of dynamically significant features and, in some cases, fails to see them at all.

In the past decade an elegant, new technique for obtaining time series of changes in first-mode baroclinic features has evolved as the inverted echo sounder (lES). The lES is a bottom-moored, upward-looking echo sounder, which records time series of round-trip acoustic travel time (TT) to the sea surface. The entire mooring configuration is compact, weighs about 250 lb in air, and extends 2 m above the bottom. Changes in the thermal structure of the intervening water col- umn (i.e., raising or lowering of the thermocline) and, to a lesser extent, changes in sea-surface height, result in changes in TT. Changes in the depth of the ther- mocline are indicative of movement of such mesoscale ocean features, as eddies or current meanders.

The method of acoustically monitoring the depth of the thermocline was first proposed by H. T. Rossby (1969). The first scientific use of the lES was related by Watts and Rossby (1977). Many experiments using lESs have subsequently been undertaken by Watts and his associates.

Until about 1983, lESs were obtainable through URI but were not commercially available. Subse- quently, the Sea Data Corporation (SDC) of Newton,

Massachusetts, became the first to offer the lES to the general oceanographic community. NORDA made the first major purchase of 15 units in 1984, which were used in a field program in the eastern Gulf Stream region (Mitchell et al., 1985). The lESs procured by NORDA also incorporate precision pressure sensors, temperature sensors, and ambient noise receivers to provide additional data with TT.

The lES is moored with an expendable anchor that is jettisoned by an acoustically operated release mechanism. In principle, lES deployment and recovery procedures are similar to those used for current-meter moorings. The moorings, however, are usually much larger than an lES, so fewer current-meter mooring deployments (e.g., 1-5) than lES deployments are feasible for a given cruise. Consequently, many lESs can be deployed or recovered on a single cruise (up to about 25), since deployment requires only about 1 hour and recovery about 3 hours. Deployment and recovery procedures are discussed by Teague and Hallock (1987). The analysis and interpretation of lES observations are discussed elsewhere (Hallock, 1987; Watts and Rossby, 1977).

Instrument Description The Sea Data Model 1665 IBS (Fig. 3) weighs about

150 lb in air; the anchor adds about 100 lb. The lES electronics package is housed in a 17-inch-diameter glass sphere near the top of the fiberglass shroud. Addi- tional flotation (a 13-inch sphere) is located in the lower part. The anchor line (!4-inch nylon braid) is shackled to several links of stainless steel chain, which is, in turn, secured to a hinged pin in an assembly (known as a release block) on the bottom of the shroud. Electrical connections run through the large sphere to the release block and to the transducer, which is located on the top of the shroud. When deployed, the lES floats about 1 m above the bottom with its transducer pointed upward. Tethered to the protective bale around the transducer, a 10-inch glass sphere floats about 10 m above the lES. The 10-inch sphere contains a radio beacon and strobe, which are activated whenever the sphere is rotated from its deployed position. During normal operation, the lES samples pressure, temperature, ambient noise, and a burst of up to 24 travel times over a period of several minutes during each samphng interval (e.g., 1 hour).

The 1665 lES uses the Paroscientific 10,000 psi DIGIQUARTZ quartz pressure sensor for extreme pressure accuracy and resolution. The pressure chan- nel measures with a resolution of about 1:1,000,000 (0.01 psi or about 0.6 mb). Ambient noise is measured through a single WOTAN (Weather Observation Through Ambient Noise) channel at 10 kHz. Temperature is measured with a 0.1 °C interchangeable thermistor, which has an overall accuracy of 0.15°C and a resolution of about 0.0007°C.

lES Data Processing lES data are internally recorded on cassette tapes.

These tapes are normally removed from the instrument at sea. At NORDA, data are transferred in hexidecimal format from the tapes to disk files on the Code 331 VAX 11/750 via the communications program VAX- NET in conjunction with an SDC Asynchronous Reader Interface (ARI) connected to an SDC Model 12B Reader. Engineering data, recorded every 4 hours, are then separated from the lES data record. Engineer- ing data include system voltages, currents, and other information useful for tracking the performance of the lES. The ASCII-encoded hexidecimal data are decoded and stored in a disk file in VFEB format, a standard format used by the Physical Oceanography Branch at NORDA. Each sample in this raw, unedited file con- sists of 28 variables: time, pressure, temperature, ambi- ent noise, and 24 travel times. Appropriate cahbrations are applied and the results written to another VFEB file consisting of five variables for each sample: time, pressure, temperature, ambient noise, and a single travel time.

For the data described in this report, single travel times were computed from three consecutive bursts (72 realizations) using the mode of the Rayleigh distribu- tion (Watts and Rossby, 1977). Using three bursts instead of one reduced much of the noise in the data, which resulted from a travel-time detector problem that caused an abnormally high number of late or missed echoes (this detector problem is now believed to be fixed, but has not been field tested).

Pressure and temperature data were relatively clean and were despiked using a first difference test. Eight primary tidal constituents (Ol, Kl, Ql, PI, M2, K2, N2, and S2) were then subtracted from the pressure series. Resulting detided pressure data were then plot- ted, and any remaining pressure spikes were manually removed from the original pressure series. Amplitudes and phases of each tidal constituent provided a cross check on the absolute time attached to each record. To determine the long-term sensor drift, an exponen- tial function was fitted to the low-pass filtered pressure series. The resulting exponential trend was subtracted from the unfiltered series.

Travel-time records contained noisy segments, which were identified by examining high-pass-filtered travel- time data. Questionable points and segments were removed from the original series.

Calibration and utility of the ambient noise measurements are uncertain at this time. No further reference is made to the ambient noise measurements in this report.

Final processed data are stored in VFEB format. Plots of the lES pressure, temperature, and travel time are presented in Figures 4-15, 16-27, and 28-39, respectively. Times and positions of the lES/PGs are given in Table 1.

Table 1. Times and positions of the lES/PGs.

lES No. Latitude (N)

Longitude (W)

Depth (m)

Deployed Recovered

IES85001 390 13.9' 067=28.5' 3580 30 May 85 10 July 86 IES85002 38°48.6' IES85003 38°36.0' IES85004 38''09.9' IES85005 37''57.7'

067°33.3' 067O02.8' 067O09.9' 066O39.3'

4125 4465 4620 4765

30 May 85 10 July 86 31 May 85 11 July 86 31 May 85 11 July 86 1 June 85 11 July 86

IES85006 37°31.7' 066°47.6' 4910 1 June 85 12 July 86 IES85007 37°18.0' 066017.3' IES85008 Not Recovered

4950 1 June 85 11 July 86

IES85009 40°23.4' 057040.4' 5125 3 June 85 4 July 86 IES85010 40=01.3' IES85011 39°40.0'

058=01.1' 057°38.8'

5140 5180

4 June 85 3 July 86 4 June 85 30 June 86

IES85012 39°18.1' 057°59.7' 5170 4 June 85 30 June 86 IES85013 38058.5' 057=27.8' 5200 5 June 85 29 June 86

Table 2. Locations and times of casts.

CTD No.

Julian Day

Time (Z)

Latitude (N)

Longitude (W)

Cast Depth (m)

1001 150 0436 39=19.3' 67=28.7' 1213 2002 151 0403 38047.4' 67=33.9' 2007 3003 151 1125 38037.5' 67=2.2' 2001 4004 151 1910 39=9.0' 67=2.2' 712 7005 152 1409 37=19.1' 66=17.5' 2998 8006 154 1752 40=45.3' 57=59.8' 2013 9007 154 2343 40=24.3' 57=41.1' 2054

10008 155 0545 4001.2' 57059.2' 693 11009 155 1118 39=39.7' 57=36.1' 1994 12010 155 1813 39=16.9' 57=58.6' 2008 13011 155 2212 38=57.4' 57=39.7' 1987 4012 159 2142 38=12.5' 67=5.9' 1483

CTD Data Collection and Processing CTD (conductivity-temperature-depth) data were

acquired only during the deployment cruise. Location of the CTD stations is shown in Figure 40. A Neil Brown Instrument System, Inc. (NBIS) Mark III CTD unit was used for profiling conductivity and tempera- ture versus pressure. Data were acquired at approx- imately 30 Hz as the CTD underwater unit was lowered at about 60 m/min. Data were recorded in full on nine- track digital tape and analog (audio) tape, and at about one sample'per meter on diskette. Temperature, con- ductivity, and salinity profiles were plotted for all stations aboard ship for quality control.

Salinities of water samples obtained with a rosette sampler were determined using a Guildline salinometer according to the practical salinity scale 1978 algorithm (Lewis, 1980). CTD-obtained salinities, which were 0.018 psu lower than the salinities obtained from the water samples, were corrected accordingly. Accuracies of about 0.005 psu in salinity, 0.005 °C in temperature, and 5 dbar in pressure are claimed.

Final data processing was performed at NORDA on the Physical Oceanography Branch's VAX 11/750 computer. All data were processed from the analog tapes because the digital tape recorder had a faulty buffer. Data processing consisted of editing, calibrat- ing, matching temperature and conductivity response times, low-pass filtering and reducing to 1-m vertical levels, and computing derived quantities (salinity, den- sity, Brunt-Vaisala frequency, and sound speed). A three-point matching filter (Fofonoff et al., 1974) with a time constant of 60 msec was used to compensate for the difference in response time between temperature and conductivity sensors. Some salinity spiking still exists in strong gradient regions. Both raw and final processed data are stored in VFEB format.

Graphs of the data (at 1-m levels) are presented in Figures 41-52 for quality assessment and analyses. Locations and times of the casts are given in Table 2.

XBT Data Collection and Processing During the lES deployment cruise, XBT data

(Fig. 53) were acquired with Sippican T-7 probes using a microcomputer (Hewlett-Packard 9825T) data acqui- sition system developed at NORDA (Holland et al., 1980). This system digitizes and records temperatures at 20 Hz for 2.5 minutes, which corresponds to a pro- file at a depth of about 950 m. Immediately following each drop, the data are recorded on cassette tape, and temperature is plotted versus depth.

During the lES recovery cruise, XBT data (Fig. 54) were acquired again with Sippican T-7 probes; however, a Bathy Systems data acquisition system using a Hewlett-Packard 85 computer was used. This system digitizes and records temperatures at 10 Hz to a depth of about 900 m. Similarly, following each drop, the data are recorded on cassette tape, and temperature is plotted versus depth.

Final data processing was performed at NORDA on the VAX 11/750 computer. All data were transferred from the cassettes to disk files on the VAX. The data were then converted to physical units (meters and degrees Celsius), edited for spikes, and processed to 2-m levels. Manufacturer's standard conversion for- mulas were used to convert the voltage to temperature, and the time to depth. Raw data and final processed data are stored in VFEB format. Plots of the data are presented in Figures 55-104 for the lES deployment cruise and in Figures 105-139 for the lES recovery cruise. Times and locations of the drops are given for the deployment cruise in Table 3 and for the recovery cruise in Table 4.

Discussion lES Temperatures

The IBS temperature records exhibit significant variability about their averages, which range from 2.14 to 2.39°C. The root-mean-square (RMS) amplitude

Table 3. Times and locations of drops for the deployment cruise.

XBT No.

Julian Day

Time (Z)

Latitude (N)

Longitude (W)

Cast Depth (m)

1 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21

150 151 151 151 151 152 152 152 152 152 152 152 154 155 155 155 155 155 155

Begin Section 22 156 23 24 25 26 27 28 29 30 31 32

156 156 156 156 156 156 156 156 156 156

End Section 1 Begin Section

33 156 34 35 36 37 38 39 40 41 42 43 44 45 47 48 49

156 156 156 156 156 156 156 156 156 156 156 156 156 156 156

End Section 2 50 156 51 52 53 54

156 157 157 157

2129 1351 1506 2057 2212 0120 0319 0428 0740 0910 1015 1410 2032 0247 0801 0812 1408 2003 2056

0300 0330 0400 0430 0500 0530 0600 0630 0700 0730 0800

0945 1015 1045 1115 1145 1215 1245 1315 1345 1415 1445 1515 1545 1619 1645 1715

1800 2100 0000 0202 0401

39=14.1' 38°29.0' 38°17.9' 38°9.0' 38°6.5' 37''58.4' 37°50.0' 37040.5' 37°32.6' Z7°27.T 37»22.1' 37'>18.6' 40°33.7' 40° 11.7' 39''50.0' 39°48.3' 39''29.2' 39''11.0' 39°4.0'

38''58.4' 38''54.8' 38°49.3' 38°46.6' 38°42.6' 38°38.2' 38''33.7' 38"'29.3' 38°24.8' 38°20.5' 38"'16.9'

38°19.2' 38°23.8' 38028.7' 38°33.5' 38''38,5' 38°43.3' 38°48.2' 38°52.9' 38°57.6' 39=2,5' 39''7.0' 39°11.8' 39° 16.4' 39°21.8' 39°26.3' 39°30.7'

39°29.5' 39°22.1' 39°16.1' 39°13.7' 39''14.8'

67''27.7' 67''4.8' 67'='6.3' 67°0.6' 66045.0' 66°39.8' 66''43.5' 66»45.5' 66''47.3' 66°36.0' 66°26.6' 66°17.3' 57050.2' 57052.9' 57°51.5' 57050.2' 57048.4' 57053.8' 57046.5'

57021.2' 57°21.5' 57022.4' 57022.9' 57°24.0' 57025.4' 57027.1' 57029.O' 57°30.8' 57°32.6' 57035.6'

57055.2' 57055.7' 57056.3' 57°56.6' 57°56.8' 57056.5' 57055.9' 57055.2' 57054.6' 57054.6' 57054.5' 57054.5' 57054.6' 57054.6' 57054.5' 57054.5'

58O2.0' 58037.5' 59015.5' 59040.5' 59053.7'

800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800

800 800 800 800 800 800 800 800 800 800 800

800 800 800 800 800 800 800 800 800 800 800 800 800 800 800 800

800 800 800 800 800

XBT Julian Time Latitude Longitude Cast No. Day (Z) (N) (W) Depth (m)

55 157 0602 39°15.1' 60=31.7' 800 56 157 0800 39016.0' 60=56.9' 800 57 157 1000 39012.0' 61=20.4' 800 58 157 1200 3904.6' 61=38.5' 800 59 157 1500 38058.3' 62O0.8' 800 60 157 1729 38047.2' 6204.9' 800 61 157 1931 38038.3' 6207.6' 800 62 157 2138 38°30.7' 62=13.8' 800 63 158 0000 38025.6' 62=21.3' 800 64 158 0300 38O22.0' 62=30.5' 800 65 158 0307 38O20.4' 62=31.0' 800 67 158 0900 38=8.3' 62=53.7' 800 68 158 1202 38=7.3' 63=9.2' 800 69 158 1501 38=10.3' 63=32.2' 800 70 158 1800 33012.6' 63=54.6' 800 71 158 2100 38012.5' 64=16.8' 800 72 159 0000 38022.3' 64=35.5' 800 73 159 0300 38=33.7' 64=53.8' 800 74 159 0600 38029.2' 65=27.6' 800 75 159 0901 38021.6' 65=47.7' 800 76 159 1200 38019.7' 66=12.6' 800 77 159 1500 38=21.2' 66=37.8' 800

Begin Section 3 78 159 1948 38O20.6' 67=9.2' 800 80 159 2042 38015.1' 67=9.8' 800 81 159 2128 38=10.1' 67=10.2' 800 82 160 0102 38=5.0' 67=4.3' 800 83 160 0146 37=59.9' 67=5.6' 800 84 160 0229 37=55.0' 67=2.6' 800 85 160 0311 37=50.0' 66=59.6' 800 86 160 0352 37045.O' 66=57.2' 800 87 160 0443 37040.0' 66=53.9' 800 89 160 0547 37=33.3' 66=49.0' 800

Begin Section 4 90 160 0632 37=32.1' 66=46.6' 800

End Section 3 91 160 0746 37=38.8' 66=40.0' 800 92 160 0831 37043.8' 66=33.9' 800 93 160 0902 37048.5' 66=34.1' 800 94 160 0946 37053.1' 66=38.4' 800 95 160 1018 37=58.0' 66=40.0' 800 96 160 1047 38=3.0' 66=41.2' 800 97 160 1118 38=8.0' 66=42.5' 800 98 160 1150 38=13.4' 66=45.0' 800 99 160 1230 38=18.0' 66=47.7' 800 100 160 1302 38=22.7' 66=48.4' 800 101 160 1347 38=27.9' 66=51.4' 800 102 160 1505 38=33.1' 66=59.1' 800 103 160 1635 38=38.0' 67=7.2' 800 104 160 1807 38=42.7' 67=21.5' 800 106 160 2033 38=49.4' 67=35.2' 800 107 160 2046 38=49.9' 67=36.8' 800 End Section 4

about the mean ranges from 0.012 to 0.04°C. With the exception of lESOOl the amplitudes are similar. They are slightly higher in the eastern array (IES009- IES013) than in the western array. The most energetic

fluctuations in temperature appear to be several-day events interposed with relatively quiescent periods. lESOOl, however, shows about a three-fold increase in amplitude over the other records in the western

Table 4. Times and locations of the drops for the recovery cruise.

XBT Julian Time Latitude Longitude Cast No. Day (Z) (N) (W) Depth (m)

1 172 1400 35°31,6' 73=23.1' 499 2 172 1415 35 ='31.8' 73=23.7' 793 3 174 0019 37°33.6' 70=58.0' 793 4 174 0214 37°48.7' 70=40.5' 793 5 174 0435 38''9.2' 70=25.5' 793 6 174 0744 38''0.5' 70=23.3' 485 7 174 0846 37°53.9' 70=16.5' 793 8 174 1130 37°47.4' 70=10.8' 793 9 174 1423 37''39.8' 70=6.2' 793

10 174 1526 37=31.7' 70=5.1' 793 11 174 1628 37°24.1' 70=0.6' 793 13 174 2248 37°9.8' 69=53.7' 285

113 174 2250 37°9.8' 69=53.7' 793 14 175 1632 37°31.0' 71=22.0' 793 15 175 1823 37°43,4' 71=29.3' 793 16 175 2030 37=54.5' 71=33.1' 793 17 176 0048 37°57.0' 71=52.5' 793 18 176 0259 38=5.0' 72=6.0' 793 19 177 1552 36=56,0' 71=52.8' 793 20 177 2100 36=58.3' 70=42.4' 793 21 178 0125 36=55.9' 69=45.0' 793 22 178 0433 36=41.1' 69=36.8' 793 23 178 0748 36=25.9' 69=29.2' 793 24 178 1346 37=0.5' 69=1.1' 793 25 178 2230 37=30.8' 67=37.2' 793 26 179 0121 37=46.4' 66=53.4' 793 27 179 0331 37=50.8' 66=20.2' 793 28 179 0520 37=56.7' 65=49.4' 793 29 179 0924 38=17.6' 64=39.6' 793 30 179 1330 38=38.6' 63=37.8' 793 31 179 1730 38=53.5' 62=43.1' 793 33 179 2129 39=12.7' 61=51.3' 793 34 179 2333 39=18.6' 61=25.6' 793 35 180 0303 39=21.5' 60=37.2' 793 36 180 0705 39=19.5' 59=32,2' 793

XBT Julian Time Latitude Longitude Cast No. Day (Z) (N) (W) Depth (m)

37 180 1105 39=11.4' 58=21.9' 793 38 180 1712 38=57.1' 57=28.4' 793 39 181 0000 39=7.4' 57=44.1' 793 40 181 0243 39=18.0' 57=59.8' 793 41 181 0618 39=28.5' 57=45.3' 793 42 181 0725 39=39.7' 57=38.0' 793 43 182 0821 39=27.3' 57=45.9' 793 44 182 1807 39=43.0' 57=59.1' 793 45 182 1910 39=34,0' 57=54.8' 793 46 182 2016 39=25,0' 57=50.0' 793 47 182 2126 39=15,7' 57=48.0' 793 48 182 2237 39=6,4' 57=42.4' 793 49 184 0329 40=1,9' 58=1.6' 129 149 184 0331 40=1,9' 58=1.6' 793 50 184 1415 40=1,6' 58=0.6' 219 51 184 1423 40=1,7' 58=0.7' 793 52 184 2356 40=44,8' 58=0.4' 539 53 185 0834 40=24.0' 57=41.0' 793 54 191 1605 39=21.7' 67=41.3' 793 55 191 1814 39=13.5' 67=28.0' 793 56 191 2136 39=0.9' 67=34.3' 793 57 191 2248 38=48.6' 67=33.1' 793 58 192 0203 38=42.0' 67=16,6' 793 59 192 0322 38=35.9' 67=2,4' 793 60 192 0735 38=15.5' 67=6,9' 793 61 192 0828 38=9.6' 67=8,3' 793 62 192 1126 38=5.3' . 66=54,5' 793 63 192 1245 37=58.1' 66=39,7' 793 64 192 1940 37=18.0' 66=17.6' 793 65 193 0053 37=31.7' 66=47.8' 793 66 193 1629 37=34.1' 69=17.7' 793 67 193 2129 37=55.5' 69=22.2' 793 68 194 0022 38=5.9' 69=32.5' 793 69 194 1222 37=6.5' 70=26.5' 405 70 194 1232 37=5.8' 70=27.7' 793

array. The increase may be associated with bottom topography at this location.

lES Pressures Semidiurnal and diurnal tidal components, with

amphtudes of about 1 dbar, dominate the unfiltered pressure series (Figs. 4-15). After removal of periods shorter than about 40 hours, variability of several days to several weeks prevails (Figs. 140-151). In several records (e.g., IES004) seasonal-to-annual trends appear; these trends are questionable, since they are of the same time scale as the sensor drift described above. Several energetic events appear (e.g., IES006 near days 345 and 535), which were at first suspect. The nearly simultaneous occurrence of such features near the start of records IES009 and lESOlO suggests that they are real, but that their cause is not clear. The weekly to monthly excursions are most hkely associ- ated with barotropic mesoscale changes. Low-level (0.05-0.10 dbar), three- to five-day oscillations

throughout the presssure records may be associated with atmospheric events.

lES Travel Times The dominant signal in the travel times is the

baroclinic mesoscale variability. This signal is caused primarily by the meandering of the Gulf Stream and the passage of rings and eddies. Also evident are tidal frequency fluctuations with amplitudes of about 10% of that of the mesoscale signal. During a number of periods of up to two days' duration, no good echoes were received, resulting in broad spikes (e.g., lESOOl near day 475). Since some of these spikes appear simultaneously in two or more adjacent records, they are probably the result of elevated noise levels during storms. These erroneous data are to be manually edited prior to analysis. The general character of the meso- scale variability seen in the travel-time records indicates vigorous Gulf Stream meandering over the entire domain of the lES arrays.

CTD Profiles During the 1985 deployment, attempts were made

to acquire CTD data at each lES site. The first three digits of the station coincide with the lES that has the same number. Wind and current conditions prevented successful casts at sites 5, 6, and 10 (a successful cast is one to a depth of at least 1200 m). The data that were acquired are of good quahty, despite some prob- lems during processing. Its primary use will be in lES calibration.

XBT Profiles During the 1985 deployment, 100 good XBT pro-

files were acquired. Some of these profiles were used to locate the Gulf Stream and did not necessarily form part of a planned pattern. Some XBT drops were made at the lES sites to complement or to substitute for the CTD casts. Two continuous transects of the axis of the Gulf Stream were made in each of the two deploy- ment areas. The drop separation was about 9 km and the sections were about 100 km long. The data from these four transects were contoured and appear as sec- tions 1-4 (Figs. 152-155). Each shows the Gulf Stream, and dynamic computations imply a surface geostrophic current of about 200 cm/sec, which is consistent with ship-drift observations.

During the 1986 recovery cruise 70 good XBT profiles were acquired. Virtually all were for lES calibration and for Gulf Stream location, and no extensive transects were made. In addition to their primary purposes as stated, XBT observations from both cruises will be used to enhance regional statistics of hydrographic variability.

References Fofonoff, N. P., S. P. Hayes, and R. D. Millard,

Jr. (1974). WHOI/Neil Brown CTD Microprofiler: Methods of Calibration and Data Handling. Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, Technical Report WHOI 74-89.

Hallock, Z. R. (in press). Regional Characteristics for Interpreting Inverted Echo Sounder (lES) Obser- vations. Journal of Atmospheric and Oceanic Technology 4 (2), pp. 298-304.

Hallock, Z. R., W. J. Teague, J. L. Mitchell, and J. M. Dastugue (1987). REX AXRl Data in the North- west Atlantic, December 1985. Naval Ocean Research and Development Activity, NSTL, Mississippi, NORDA Report 198.

Holland, C. R., R. T. Miles, and R. A. Brown (1982). Operation and Maintenance Manual for the Expendable Probes Data Acquisition System. Naval Ocean Research and Development Activity, NSTL, Mississippi, NORDA Technical Note 127.

Lewis, E. L. (1980). The Practical Salinity Scale 1978 and Its Antecedents. IEEE, Journal of Oceanic Engineering OE-5 pp. 3-8.

Mitchell, J. L. and Z. R. Hallock (1984). Plans for Oceanography from the U.S. Navy GEOSAT. Proceedings of the Pacific Congress on Marine Technology (PACON '84), April 24-27, Honolulu, Hawaii.

Mitchell, J. L., Z. R. Hallock, and J. D. Thomp- son (1983). The REX and the U.S. Navy GEOSAT. Naval Research Reviews, Office of Naval Research, Three/1985, Vol. XXXVII, pp. 16-23.

Mitchell, J. L., W. J. Teague, and Z. R. Hallock (1987). REX AXBT Data in the Northwest Atlantic, May 1985, Naval Ocean Research and Development Activity, NSTL, Mississippi, NORDA Report 196.

Rossby, H. T. (1969). On Monitoring Depth Varia- tions of the Main Thermocline Acoustically. Journal of Geophysical Research 74:5542-5546.

Teague, W. J., Z. R. Hallock, J. L. Mitchell, and J. M. Dastugue (in press). REX AXBT Data in the Northwest Atlantic, August 1985. Naval Ocean Research and Development Activity, NSTL, Missis- sippi, NORDA Report 197.

Teague, W. J. and Z. R. Hallock (in press). Deployment and Recovery Procedures for Inverted Echo Sounders, Naval Ocean Research and Devel- opment Activity, NSTL, Mississippi, NORDA Technical Note 366.

Watts, D. R. and H. T. Rossby (1977). Measuring Dynamic Heights with Inverted Echo Sounders: Results from MODE. Journal of Physical Oceanography 7:345-358.

Figure 1. Artist's concept of the mV Atlantic Regional Energetics Experiment (REX). The major components of the REX are sea surface topography provided by the U.S. Navy GEOSAT, field data collected from bottom-moored Inverted Echo Sounders with Pressure Gauges (JES/PG) and regional AXBT surveys, and extensive regional numerical modeling studies.

45 N IT

40° N

80° W 75 W 70 W 65 W 60° W 55 W

Figure 2. Inverted Echo Sounder locations.

h^ 19"-

HYDROPHONE

ELECTRONICS

FLOTATION

RELEASE

ANCHOR

u

u

/^

/ \ s

\ /

y /Iir^-":i^ -€—:?' V

40''

Figure 3. Sea Data Model 1665 Inverted Echo Sounder.

^ in LD UD ro tn

o

3

5

3 BO

^ CO O K-1 ^"^

K) ^ in in ID CD fO rO

(dvaa) S3dd (dvaa) s3Hd (dvaa) S3dd

10

CM O O tn

o o

3

■a

3

(dvaa) S3yd (dvac) S3dd (dvaa) S3dd

11

R : U-)

(dvaa) S3dd (dvaa) S3dd

^ g CN 5 m S ^ ^ '^

(dvac) S3dd

^S

o K) u">

s^ LD IT! ou

■t:

2 in

O

1— (u

§ —

P 3

Ci.

CO ■Q

1 >-

J- 1 bJ ^. o

nn :2 -<»■ t— 00

3 o _60

[^ ^ii ■'f

S ■*

t o r5 : o

.1. Kl

cn

14

O O W) UJ

Is. o

1..

<^

3

(dvaa) S3dd

<^ IT) -^ r-0 fO lO O O O uf) LD iT)

(dVGG) S3yd

N-) o

(dvaa) S3dd

15

o

o K1 in

P. LD IT) CXD

cn ■e

§ k '~ 3

Q E S P 1^

H— ■a to su

1 >-

Ld 1

OO :s O •*-, ''J- \—

3

k s; ■^

O 9 in in

(dvaa) S3dd (dvaa) S3dd (dvaa) S3dd

16

o o

3

I 3 60

to CN (^ r- <N (N in in

(dvaa) S3dd (dvaa) S3dd (dvaa) S3dd

17

O , CO 3

in 00 CM in

5 CO 00 CN CN OJ tn U-) iD

o OO CN

O

o

CM

O

CM 1—

o F ^ i 2 CM

CO

g h=

o S2

o

o

^S

O ~ in :

00 CN in

t3 O U

3

<4»

3 60

(dVGG) S3Hd (dvac) S3dd (dvaa) S3yd

18

o

3

■<3

3 60

yygQ] sG^d dugo) S3dd mm\ S3dd

19

o

3

k.

3

(dvaa) S3dd (dvaa) SBHd (yvaa) S3dd

20

*«-•■

O 00 UJ

oo r^ l/^ in ^o m in in

o o

3

■a

^

r= "^

3 60

(dvaa) S3yd (dVGG) S3dd (dvac) S3dd

21

o o UJ

o

o in a)

Q

^

o K-) ID

O m IT) a)

en T3

O

iT) ^ ■ 3

O c t 2

!?^ £ <4)

en o >^ ■^3 CT) J-

Ld *?■ ^ 2 :i ■<t 1— v6

f) >< r^ 3 •^ 00

o ID ■<t

: O

: O 1 fO

(3 030) d^NII (3 030) dniL (3 030) d^N31

22

-L-1—I 1 I

O O 00 bJ

;5 to CN

, O - OO

O

CM

CM

S 00 CD

<=> t

o >- CM 3,

UJ 8^ C-J I—

o OO

o

o to

ts

C\l o O CO

J—I 1 L-J 1 1111

: ^

o ^0

m 00 CT)

o

o E

^2 o

o CM

O : fO

: O -O

E o CM

CM g o

tS

s o to

R LTV En OO

(D

8 ^

§-8

-* t—

§

CM CM l«0 CM

CvJ CN

: O r5 : o

fO

o u 1^

3

Cv| C4 ^0 CM

CM CM

(3 030) dl^3i id 030) d^NlL (0 030) d^NlL

23

O O

00

3 Co

(3 030) d^NlI (3 030) dkNli (3 030) d^Nll

24

"2 o o

3 a

I 3 60

(O 03a) d^NlL (3 03a) d^^li (o 030) dmi

25

til] , 1 1 I 1 1 1 o

1 1 1 1 1 1 L 1 o

1 1 1 1 O

^^ : ^

— ro '- ■^

— t\ E ^

''^~-~-^ - z 1

> - - 'X : O ^ : o ; E o

f - oo : ^

: o E

-ro

: o /

- UD E ^

E o ~ ^^ -1\ 1 ^ : 'T ( - LO : ID J

■ J «=c ; - < I f- ; J : o : ) : o ^. E o

\ - CD : '^^ 1

: j - o - T r - T

=^ : O ^~. ; < ̂ : o ^^ ( : O ^-. " \ rK; ir> ~ ^ rS LT^ " I rS Ln

( t OD " ^ : 03 : v^ - CO s : cn : - 1 \ cn ; / : cn J—-* : o .—1 - V ■ : o —1 ) : o •—1 — '—, — ■^ — \ - OD / — r\] r : f^J _

■ - 1 ^ : ro \ : LO ■d } : C - - 1 \ : C s : C O J : O :

: 1 I : 0 i o ~1 \ : O

: o ~i — [ - ro _ i ! - [\ < ^ ^ : rsj _ ^ I ■ ^ _i - LD k.

■ 3 / ■

) ; o e ■

- i o £

f '- o £

J / rfM O -CD 0 - o o 1 ^ J^ : ^ L I : ^ L : Ln L

': ^ \ : ^ : U- ■ - . I " "a

: CD ,^ ' : o ,, " o <u ■; \

1 01 : (Ai IT)

~ -in 01 -cn CD

/ : O I : 0 : O 1 f ■ ^ "0 : - ^ '^ : XI ^ ] : o , ,

- o _i - CD _^ : o - OD ^ 1 : (M ; : to ; ^r Ci

1 E M ; : LJ : LJ ^ ^ 1 : z: : : T: : 51 >^

s : o , , : : o _ : o ,—, 3 ISO r fS ^

j

-to . : to E—' . TT t—1

: o ]

: o : o

J - OD ': r :>

- r\j : ^

-ID - "T

^ E o '_ f : o <z 1

> : O _ V - [\ — ^ — •—< - in ^ Z <—1 ; : to - ^r in : y : in

J : IT) o - K : O ■ j - O -_ CD ': z E o o ■ c^ ': o O : o cn - i r (i3 cn

E "" LJ "E f E LJ

- ^

1 1 ; s ; 1—( ; 5 : 1—1 ; — E o ; ^^ : o : o

- LP r - CD ^ to —I—1—1—I— 1—r r T T —1—1—1—1— ^ ! 1 1 ' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ! 1,11

T"

LO -r ro Osi LTi ^ r~i CM in -T- ro fM

c \i r *J r \i -j r s. r J r \) r SJ r sj r \J r \i r NJ

3 33G] dW3. (3 930] dW31 (3 330) dW31

26

CD O O (/I

in

O ^ CM i_

oo

^ O

^ o o o LaJ

S CM

00

(3 030) d/^ll (3 030) d'A31 (O 030) d^\31

27

o

O CM

P 5

o o

o f«0

C5 VV po CO

R 5

s § M—

o

R fo

o : fO

: O

^ O

CN oi

O : C/) :

R ID

O i8

in

S o iD

En 00

2 c o o

U ) --) ^ •>— 1^

3

O F ? V, p

CO

1 o C30 1 ■* 1—

o Ci 3 ■* Oo

s ■>t

in CN CN

: O 5

- O

CN CN

(0 030) d^NBl (3 030) dmi (0 030) 6^31

28

R : in

o

in

^

o K1 in

^ 17)^ ITI

CT) ^

9 in

C o

T— 1^

o F 3

in ^ 5 (/) <4)

o >. ? 3, o (X)

LJ 1 o ^ r^ ■^ ■><• ,^

: -*

5

o

(3 030) dmi (0 030) d^li (O 030) d^Nli

29

o

o m in

°^ ui OO O}

■? o E

o o 1^

%> T~~ l»

3

o E 2 •^- E C/l ^

o >>.

^& r-. LJJ <^ s ^ ^ "^ t—

^^ <N

o ■M r< W ."=«

(O 030) d^Nli (3 930) d^N31 (D 030) 6mi

30

o in

CN

O 14;

a

s

■ft

s:

S 00

(3 930) d/^li (3 030) dAli (3 030) d^Mi

31

.8 ^ o

ID

, O

: O - ro : iD

^So oo en

N^ o p U-)

O?

- oo ^ ^ I—

^§ o

3

in o3

: O

: O

(O 030) d/^lL (3 030) d^^31 (0 030) d^^li

32

O in

s iD

o ?i

o f) in

o in in U) X

CJ)

in ^ 3

' a Q

P ° i- 00 Tn o >> ^^^

? ^ o ^

1— <N

o S

!^ 00

S ■<t

(3 030) ami (3 030) d/sli (0 030) d^^31

33

o O : cn - LLJ '-

o CM

L 1 1 1 > M 1 LLLUJ _LLL_L 1 1 1 1 O

^ y :

O ; o CO - rsj r\i

j; : ^ -

o ^ - -. o

tv _3 —' r\) -rf" . -T

-i ̂ - - o

\ [_ - : o

UD - o f\i -

o ^-, -

K] L^ r?? ^ OD : CO cn I CD

o ^^ I o ^ 'T •<. ^ 03 <A1 ^ :: r--) c -r^ : C

0 : 0 o ~i : o ) ro — 7^ fNJ ___^ E : ro

^ ~_ *" '

o e \ : o s f\) o ^ - X) 0 f>j L ^ : ^ L

<-^ ^ : '^ 2 CO LS W oo in ; : t--) -J

0 : O u = ID o J" : o _

o - ■>?- r\j : fo

LiJ - LJ 21 : 2Z

o _ : o ,—, 2 ^-

o : o oo -r\]

> : f^

o 4? : o t\ -^^ — ■—■

_^f ~ r^j r 1 _^^ 2

O p I

o O ■^1 ' : O "3 !n ?| r ^

L 1 ? 1 ; K -. ^ 1 -

o ^ ¥ j : o u"i J ^ ! - T) ■—

—I^ ■ : 1 iTi -TTT . •■T , 1 I 1 M --r ^-yj

r--^ .^si -- O cn CO >' ̂j •" -j \ — ^ —

o r^ in

o UD LD

O LO LT)

O ■q-

in

o

Ln LO 00 cn

o .—( rNj LO c ts

0 1^

o ~1 i^

J-)

5 o £ T o o LP L >

a ^ i:

O ■-;

cn 01 ■Si

^ m 0 ^^

TD > o i:^ X) •sr

LJ 00

^ o l^

f-^ 3

o OD C"

o ^ ■sr

CC CD

[3JS ii iJbi i. OJS) 11

34

,LL^

(N - O - O ~ (/) :

f^ 1^ ;::^

(N

: O - «

O

s

2

S CO

i O C f-^ O CN

p >> A

o ^ CM 1—

: O r 00

O

^ o

K) ro ro

CM O O

in •«j fO (N u; Kl fO K) '^ d d d o

o

5

1^

1^

ON <N

t>0

(03S) 11 (33S) n (03S) 11

35

O O in

o lO in

Q

^

o K1 in

o in IT! uu ■«

<)■) 1^

o

in 1 '—

o F -I ^ 2 >

H—

(A •^ o >. 1<

S$ 5. ■Si

1 Ld i:^ o

CO 2 1—

p 3 60

!^ h-

g; 00 Ci ID LQ 2 d d d d d d

05 00 ^ ID ^ ^ d d d d d d d

00 d

^ ID in odd

r5 : O

d

(33S) 11 (D3S) 11 (33S) 11

36

o o C/) LJ

R in

oi 00 [ri to LQ ^ d d o c> d (5

ai eg fi tD in ^ d d d d <5 d

s in

o ^

o lo in

^^ [n 00 t5 (J) ^ o

o

s^ .,— -

i?{ e **— (/i t;

2 >- ;" ^"-R v_^ '"f? c ^ Li-' l:^ « :^ ^ F=

"w >^ 5 3

_60

: -^

t O

O

: O

03 CO ^ ID LQ 2 d d d d d d

(D3S) 11 (33S) 11 (33S) 11

37

in

o m in

o ^

o K-) in

o trT L~> uu I3

(T> L.

.^ o in

c

' C/) ■^

- 9 >- 1^ - O) : ^ 3, - Ld b : 0 - OD ^ : ^ 1—

^R 3= : -"ij- Li,

: 0 - IS) - ■>*■

: O

: O _r_ m

(03S) 11 (33S) U (D3S) n

38

o

' I ' ' 1 ! [ I I I I -rrrr-m-r- UO

^ S ;2 P f: *" o d 5 5 ° JD in ^ rO (N ?=

d d d 5 d <=>

11111111111 1111

CD in ^ f>o CN J=

d d d d d ^

o

.g I

■*^

I 3

(03S) 11 (33S) n (03S) 11

39

o to UJ

o o

I

3

^ ^ ^ fsi O 25 CN CN ij CM r- d d o o o

TT rO CN CN CN CN d o d

CN d

O <T>

d o CN ■^ rO (N

CN CN CN ^ d <5 d °

CN d

(33S) n (03S) 11 (03S) 11

40

Ci to in Tt ro p o o o o o d d <D o

o d

r>; to in ■^ Ki CN o o o o o o d di <o CD di d

t; to in ■* ro o o o o o d d d d d

h o

CN O d

5

5

(33S) n (33S) 11 (03S) 11

41

^

00 t U3 m -t ^0 O P O O O O (5 di d) c5 <D <D

00 t; 5JD in -t o o o o o <D d <D d <D

t o CD CM

to o d

g

s ' in

Q

^

o fo m

R in ITI U.J •^

w CD

S2 k 1—

o ^ 1

1?) i_ >

w— ■«^

(A 13 o >-. 5U

5? ^ 1 Ul ^> o m :?

■^ F= I.

o 3 k oo ■^ t;

2 ■^

CO t; UD iT) -t rO O Q O O O O d d d d CD d

(03S) 11 (33S) 11 (03S) 11

42

o LJ

L 1 1 1 ,

< 1 1 1 1111 -R ^ ; t. : "^ *. ^R ;

-< : ■^

: ^

: O

; ~i : 5

': is : ^ -. -t

: ^ Lg ] 5" : fo

\ ^ ^s^ : ^^ : ^ CO q —1, h cn : J: 1—

i ^

~:^^

• o C

I ^ : ■<—

z f^ ? - O ~

- r «^— : ~< : CO ; t

;^|; i

: t

: O '^

; ^

': 1 ^ U

I %

: ro

: 1 LR I %

: ro

: ^ - 9 ': : fO

: ^8

: ■^

: ro

'_ \ - o ^^ " CD

! 1 1111 ho^

fo csi ;= o en 00 d c 3 <: ̂ c ̂ ^

3 C 3 C

3 3

o 00 LLJ

^ o

5U

3

(D3S) 11 (33S) 11 (D3S) 11

43

CN O Ld

o o

;§ 00

3

CN ?^ O CJl QO r^. 505000

(33S) 11 (03S) 11 (03S) U

44

^ tfi in 5 rO CN d d d d o CD

^ ^ in ^ rO fsj d d d d ci c5

^ 56 IQ ^ K} CN

d d d d d d

o 5U

_60

(33S) ii (33S) 11 (03S) 11

45

• • ♦

* 1 *

o

O CO

I

•2 s

ft)

50

in o CO

46

STATION 001001 CRUISE 130785

SIGMA-T 24 24.5

1 25

1 255

1 26 26.5 27

1 1 1 27.5

1 28

1 28.5

1 29

1

34 1

345 1

35 1

35.5 i

SALINITY (PSU) 36 36.5 37

1 1 1 37.5

1 38

1 38.5

1 39

1

300 n

600-

900-

g 1200

^ 1500-

W 1800- Pi

2100

2400-

2700^

3000

6 TEMPERATURE (DEG C) 9 12 15 18 21 24

Figure 41. CTD profile plot.

47

STATION 002002 CRUISE 130785

SIGMA-T 24 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29

i : \ \ 1 I I \ 1 I I

^ 1500

in in W 1800

2700

3000

SALINITY (PSU) 34 34.5 35 35.5 36 36.5 37 37.5 38 38.5 39

I \ \ \ \ I I I I \ I

TEMPERATURE (DEC C)

Figure 42. CTD profile plot.

48

STATION 003003 CRUISE 130785

SIGMA-T 24

1 24.5

1 25

1 25.5

1 26 26.5 27

1 1 1 27.5

1 28

1 28.5

1 29

1

34 1

34.5 1

35 1

35,5 1

SALINITY (PSU) 36 36.5 37

1 1 1 37.5

1 38

1 38.5

1 39

1

0

< CQ Q

300

600

900

1200-

2 1500- D GO m tJ 1800H

2100-

2400-

2700

3000

3 TEMPERATURE (DEG C)

6 9 12 15 18 21 24 27 I

30

Figure 43. CTD profile plot.

49

STATION 004004 CRUISE 130785

SIGMA-T 24

1 24.5

1 25 25.5

1 26 26.5 27

1 1 1 27.5

1 28

1 28.5

1 29

1

34 1

34,5 1

35 1

35.5 1

SALINITY (PSU) 36 36.5 37

1 1 1 37.5

1 38

1 38.5 39

1

300

600

900

^ 1200-

to g 1500-

m m tJ 1800•

OH

2100-

2400-

2700-

3000-

TEMPERATURE (DEC C)

Figure 44. CTD profile plot.

50

STATION 007005 CRUISE 130785

K 1500- D m U 1800H

a.

SIGMA-T 24 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29

I ^ 1 ^ 1 I \ \ \ \ I

SALINITY (PSU) \ 34 34.5 35 35.5 36 36.5 37 37.5 38 38.5 39

I 1 1 1 \ \ \ I I I I

TEMPERATURE (DEG C) 0 3 6 9 12 15 18 21 24 27 30

J \ \ I \ L

3000

Figure 45. CTD profile plot.

51

STATION 008006 CRUISE 130785

SIGMA-T 24 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29

I 1 \ 1 I I I I I 1 I

SALINITY (PSU) 34 34.5 35 35.5 36 36.5 37 37.5 38 38.5 39

I J i 1 I I I I I I I

TEMPERATURE (DEG C) 0 3 6 9 12 15 18 21 24 27 30

0-1 1 ^ 1 ,^-J 1 U ^ I L

300-

600

900

Oi < PQ 1200 Q

W K 1500 D m If) w 1800 D^ Du

2100

2400-

2700

3000

Figure 46. CTD profile plot.

52

STATION 009007 CRUISE 130785

SIGMA-T 24 24.5 25 25.5 26 26.5 27

I \ i \ I I L_

^ 1500- D

U^ 1800

CX

2700

3000

27.5 28 28.5 29

34 34.5 35 I : I L_

3 A,

SALINITY (PSU) 35.5 36 36.5 37 37.5 38 38.5 39

1 \ I \ I I _L

TEMPERATURE (DEG C) 9 12 15 18 21 24 -L

15 L

21 27

Figure 47. CTD profile plot.

53

STATION 010008 CRUISE 130785

SIGMA-T 24 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29

I i 1 1 I I 1 1 1 1 I

SALINITY (PSU) M 34.5 35 35.5 36 36.5 37 37.5 38 38.5 39

1 1 1 1 \ I I I \ I I

0

300-

600

900-

m 1200H

0^ 1500- D CO CO U 1800-

a, . 2100-

2400-

2700-

3000-^

TEMPERATURE (DEG C) 24 27 30

Figure 48. CTD profile plot.

54

STATION 011009 CRUISE 130785

0

300

600-

900-

m 1200H

W K 1500- D

W 1800H

2100-

2400-

2700-

3000

SIGMA-T 24 24.5 25 25.5 26 26.5 27 27.5 28 28 5 29

' ^ ^ ^ \ L— \ \ \ \ I

SALINITY (PSU) 34: 34.5 35 35.5 36 36.5 37 37.5 38 38 5 39

I 1 1 1 1 I I I I I I

TEMPERATURE (DEG C) 6 9 12 15 18 21 24 27 1

30

Figure 49. CTD profile plot.

55

STATION 012010 CRUISE 130785

SIGMA-T 24 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29

I \ 1 \ I i i I I I I

SALINITY (PSU) 34 34.5 35 35.5 36 36.5 37 37.5 38 38.5 39

I \ 1 \ I I I I I I I

0

300-

600-

900 H

m 1200H

s Q^ 1500 •

K 1800-

2100-

2400-

2700-

3000

TEMPERATURE (DEG C) 24

I 27 30

Figure 50. CTD profile plot.

56

STATION 013011 CRUISE 130785

SIGMA-T i 24 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29

0

300-

600-

900 H

•^ 1200- Q,

S 1500-

CO tJ 1800

2100-

2400

2700-

3000

SALINITY (PSU) ' 34 34.5 35 35.5 36 36.5 37 37.5 38 38 5 39

1 1 1 1 1 I \ I I I I

TEMPERATURE (DEG C) 6 9 12 15 18 21 24 27 30

Figure 51. CTD profile plot.

57

STATION 004012 CRUISE 130785

SIGMA-T 24 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29

_L

g 1500 D

W 1800-

2700

3000

J_ J

SALINITY (PSU) 34 34.5 35 35.5 36 36.5 37 37.5 38 38.5 39

I 1 \ 1 I I I I I I I

TEMPERATURE (DEG C) 0 3 6 9 12 15 18 21 24 27

0-k ^ ' 1 ^ ^ i J L

Figure 52. CTD profile plot.

58

\^

s

o o

o o

z o

z o K o UJ 03

o

3

t I I V

-S 3

13

13

.o Q o

"-1

e

—r— Z

o O

59

.>•'

o

CD

to

Si)

•S 3

■a

c o

8

3 00

o

60

OO. CM

CN

OO .

d LJ O Q. J2-

OO-

ro-

00. CM

I I \ 1 \ 1 1 1

100 200 300 400 500 600 700 800

DEPTH M

CM'

OO _

d LJ o

oo-

ro-

100 200 300 400 500 600 700

DEPTH M 800

Figure 55. XBT profiles from IBS deployment cruise.

61

CO. CM

o2 d LJ Q Q- ^

LJ

CD

«i -

to

00. CM

100 200 300 400

DEPTH M 500 600 700 800

Cvl

d LLJ Q

Ld

oo-

lO-

in

—I 1 1 1 ^—

100 200 300 400 500 —\ 1— 600 700 800

DEPTH M

Figure 56. XBT profiles from lES deployment cruise.

62

to

00.

d LJ O Q. '^■ 2

(0-

ro-

OO .

d LJ o CL ^■

80-

100 200 300 400

DEPTH M 500 600 700 800

•o- I I \ I 1—

100 200 300 400 500 I 1—

600 700 800

DEPTH M

Figure 57. XBT profiles from lES deployment cruise.

63

00.

oo. O -

ui Q CL J5- 2

oo-

lO-

(N

100 200 300 400

DEPTH M 500 600 700 800

oo

d UJ Q

oo-

cn

100 200 300 400

DEPTH M 500 500 700 800

Figure 58. XBT profiles from lES deployment cruise.

64

00. CM

CM '

CO. O -

d ui Q

Ui

(M

K)-

CM

100 200 300 400

DEPTH M 500 600 700 800

oo _

d UJ Q

CO-

lO-

100 200 300 400 500 600 700

DEPTH M 800

Figure 59. XBT profiles from lES deployment cruise.

65

00. CM

(N

d Ld Q a. '^■

fO-

00.

100 200 300 400

DEPTH M

I I 1 1 500 600 700 800

(N

tn

oo.

C) Ul Q a. :2-

CO-

fO- T" T" 100 200 300 400

DEPTH M 500 600 700 800

Figure 60. XBT profiles from lES deployment cruise.

66

CO. CM

CM

OO .

ui o 2 LJ

40

OD-

lO

100 200 300 400

DEPTH M

—I 1 1 1 500 600 700 800

00 -

d LJ Q

ID

co-

fO-

100 200 300 400

DEPTH M 500 600 700 800

Figure 61. XBT profiles from lES deployment cruise.

67

CO. cs"

CN

eg

o^- f\ -J . , ■ ■ ■ ■ 1

LLJ 1— IA^—^ '■ :,•

oo-

^^^^~^^^--^^:__ K> - 1 1 1 I ■■ —1—1—1—1

CN

CM

d UJ Q Q. :2

oo-

lO

100 200 300 400

DEPTH M 500 600 700 800

—I 1 1 1 1 \ 1—

100 200 300 400 500 600 700 800

DEPTH M

Figure 62. XBT profiles from lES deployment cruise.

68

oo. CM

to cs

oo.

d UJ O

CO

lO-

100 200 300 400

DEPTH M 500 600 700 800

200 300 400

DEPTH M 500 600 700

Figure 63. XBT profiles from lES deployment cruise.

800

69

00.

to CN

CD .

d LJ o

oo-

K)-

00. CM

»o CM

d UJ Q

oo-

ro-

100 200 300 400

DEPTH M 500 600

(N CM

700 800

CM

—I 1 1 1 1 1 1—

100 200 300 400 500 600 700 800

DEPTH M

Figure 64. XBT profiles from lES deployment cruise.

70

CO. CM

<N

OO . O "

d

a. 'P-

00-

K)-

OO.

too 200 300 400

DEPTH M 500 600 700 800

OO _

d LiJ o

UJ

eo-

to- I I I I I 1 1—

100 200 300 400 500 600 700

DEPTH M 800

Figure 65. XBT profiles from lES deployment cruise.

71

00.

to CM

OO .

d ui o

OO-

^4^

100 200 300 400

DEPTH M 500 600 700 800

ro

OO. o - d o

oo-

Csl

ro-i 1 1 1 1 ^ 1 p 1

100 200 300 400 500 600 700 800

DEPTH M

Figure 66. XBT profiles from lES deployment cruise.

n

OO. r4

CM

OO .

d Q Q. S3-

CD-

lO-

OO. CM

CM

OO .

d LJ O

CO-

CO

100 200 300 400

DEPTH M 500 600 700 800

tn-

100 200 300 400

DEPTH M 500 600 700 800

Figure 67. XBT profiles from lES deployment cruise.

73

00. CM

(N

oo.

d UJ Q

O

lO-

too 200 300 400

DEPTH M 500 600 700 800

CM

OO -

o UJ o

00-

fO-

100 200 300 400 500 600 700

DEPTH M 800

Figure 68. XBT profiles from lES deployment cruise.

74

00. CM

(N

oo. O -

d o

oo-

K)-

00-,

(N

oo,

d UJ a 2

oo-

100 200 300 400

DEPTH M 500 600 700 800

ro

'HIS-

1 ^ I I 1 1 —1— 100 200 300 400 500 600 700 800

DEPTH M

Figure 69. XBT profiles from lES deployment cruise.

75

CO.

to

o2- d Ul o 2

00-

•o-

to.

100 200 300 400

DEPTH M 500 600 700 800

CN

o^^ O LJ Q

00

—I 1 1 1 ]—

100 200 300 400 500 600 700 800

DEPTH M

Figure 70. XBT profiles from lES deployment cruise.

76

200

00.

300 400

DEPTH M 500 600 700 800

CN

00.

d UJ o

^

00-

ro- 100 200 300 400

DEPTH M 500 600 700 800

Figure 71. XBT profiles from liSS deployment cruise.

77

CO. CM

CM

oo. o - d LJ o Q. '^■

LJ

CO

ro-

100 200 300 400

DEPTH M 500 600 700 800

iD Ul O

oo-

lO- I I I I I— 100 200 300 400 500

DEPTH M

lo

600 700 800

Figure 72. XBT profiles from lES deployment cruise.

78

OO. ^4

300 400

DEPTH M 500 700 800

tN

d Q D. to- 2

m-

ro- I I I I I i 1— 100 200 300 400 500 600 700 800

DEPTH M

Figure 73. XBT profiles from lES deployment cruise.

79

00.

00 . (J -

o a. ^-

9

ro-

00. (N

100 200 300 400

DEPTH M 500 600 700 800

oo _

d Ul o

co-

tO-

100 200 300 400

DEPTH M 500 600 700 800

Figure 74. XBT profiles from lES deployment cruise.

SO

800

100 200 300 400

DEPTH M 500 600 700 800

Figure 75. XBT profiles from lES deployment cruise.

81

CO.

CO . O -

o LJ Q

!^

oo ■

to ■

00 . CN

100 200 300 400

DEPTH M 500 600 700 800

CN"

00. O - d

DL 'P-

in

eo-

100 200 300 400

DEPTH M 500 600 700 800

Figure 76. XBT profiles from lES deployment cruise.

82

OO. C>4

00 .

d UJ o

OO-

?

K)-

100 200 300 400

DEPTH M 500 600 700 800

CM

00 ■

d UJ Q CL :2-

UJ

oo-

^0 I I ^ I 1— 1 1

100 200 300 400 500 600 700

DEPTH M 800

Figure 77. XBT profiles from lES deployment cruise.

83

00. CM

ID (N

lO

d o a. 'P- UJ

00

ro-

00. CM

100 200 —1 1— 300 400

DEPTH M 500 600 700 800

CM

OO-

CD Ul O D. J3- LiJ

oo-

lO-

O ID

100 200 300 400 500 —I 1—

600 700 800

DEPTH M

Figure 78. XBT profiles from lES deployment cruise.

84

so. CM

<N

oo.

d Ul

a. '^■

CO-

eo 200 300 400

DEPTH M 500 600 700 800

200 300 400

DEPTH M 500 600 700 800

Figure 79. XBT profiles from IBS deployment cruise.

85

(O.

OO .

c5 LJ Q

LLJ

in in

ro-

OO.

100 200 300 400

DEPTH M 500 600 700 800

to CM

CO.

d LJ Q Q_ ;2-

in

03-

K) ■ I I I 1 1 \ 1 TOO 200 300 400 500 600 700

DEPTH M

Figure 80. XBT profiles from lES deployment cruise.

800

m

00. ex

oS2- ^

d UJ

\/^-—.^ a. S2-

^^^^

03-

'

rO - 1 1 1 1 1

00 CN

CO

d LJ Q a. '^■

UJ

oo-

K)-

!n

100 200 300 400

DEPTH M 500 600 700 800

^ 1 \ I 1 1 1— 100 200 300 400 500 600 700 800

DEPTH M

Figure 81. XBT profiles from i::S deployment cruise.

87

CO. CM

(N

CO .

d LJ Q Q. 2-

LJ

»■

CD in

00. CM

100 200 300 400

DEPTH M 500 600 700 800

(N

CO.

d LJ o

oo in

-a

eo-

I \ 1 I 1 1 1—

100 200 300 400 500 600 700 800

DEPTH M

Figure 82. XBTprofiles from IE'! deployment cruise.

m

100

800

200 300 400

DEPTH M 500 600 700 800

Figure 83. XBT profiles from lES deployment cruise.

89

00. CM

CM

OO .

d UJ

LJ

CO -

CN

00 -

d o a. :2

co-

tn

100 200 300 400

DEPTH M 500 600 700 800

<N

I I I I \ 1 1—

100 200 300 400 500 600 700 800

DEPTH M

Figure 84. XBT profiles from lES deployment cruise.

90

00. CN

CN "

CO .

d ui Q CL '^■

co-

in CD

ro-

OO. CN

100 200 300 400

DEPTH M 500 600 700 800

CN

00 . o - d UJ Q Q. 'P^

00-

ro • I I I I 1— 100 200 300 400 500 600 700 800

DEPTH M

Figure 85. XBT profiles from lES deployment cruise.

91

00.

d Q

LiJ

00 to

Kl ■

100 200 300 400

DEPTH M 500 600 700 800

300 400

DEPTH M 500 600 700 800

Figure 86. XBT profiles from lES deployment cruise.

92

00.

OO .

d LJ a

oo-

lO-

100 200 300 400

DEPTH M 500 600 700 800

500 DEPTH M

600 700 800

Figure 87. XBT profiles from lES deployment cruise.

93

OO.

CM

OO .

LJ o

UJ

P:!

lO-

100 200 300 400

DEPTH M 500 600 700 800

CM

OO. O -

d UJ

io_

OO-

K) ■

100 200 300 400

DEPTH M 500 600 700 800

Figure 88. XBT profiles from lES deployment cruise

94

800

100 200 300 400

DEPTH M 500 600 700 800

Figure 89. XBT profiles from lES deployment cruise.

95

CO. CM

CN

CO.

d LJ

—I 1 1 1 1 1 1 1 100 200 300 400 500 600 700 800

"0^ DEPTH M

CM" ,^,V P

00 -

^\ d UJ o ^^

LJ ^"^^^x^

oo-

W^ —

^^^-

f i I 1 1 1 1 1 1 1

800

DEPTH M

Figure 90. XBT profiles from lES deployment cruise.

96

800

100 200 300 400 500

DEPTH M

1 r 600 700 800

I I

Figure 91. XBT profiles from lES deployment cruise.

97

CO. CM

d UJ o CL 2-

CO

in ■

00.

—I 1—

100 200 300 400

DEPTH M

■y T 500 600 700 800

to (N

oo.

d LLJ Q

oo-

ro- I I I I 1—

100 200 300 400 500

DEPTH M

o CO

—I 1—

600 700 800

Figure 92. XBT profiles from lES deployment cruise.

m I I

00. (N

d LJ Q

co-

T~ i r r T r 100 200 300 400 500 600 700

DEPTH M 800

Figure 93. XBT profiles from lES deployment cruise.

99

00. CM

K) (N

oo.

d UJ o

00-

lO-

00.

•o. <N

00.

UJ Q

oo-

ro ■

T T 100 200 300 400

DEPTH M

T

100 200

DEPTH M

in 00

T 500 600 700 800

CO

—I 1 1 1 1— 300 400 500 600 700 800

Figure 94. XBT profiles from lES deployment cruise.

100

800

200 300 400

DEPTH M 500 600 700 800

Figure 95. XBT profiles from lES deployment cruise.

101

CO. CN

CN

CO.

d LJ O

fO-

O

00-

ro-

100 200 —I 1— 300 400

DEPTH M 500 600 700 800

to CN

d UJ Q

CD 00

00-

lO- I I 1 i 1 1 1— 100 200 300 400 500 600 700 800

DEPTH M

Figure 96. XBT profiles from lES deployment cruise.

m.

OO.

CN ■

OO ■

d LiJ Q

UJ

CO-

CM

K1 CM

d bj Q

CO

100 200 300 400

DEPTH M 500 600 700 800

O)

I I I I 1 1 1— 100 200 300 400 500 600 700

DEPTH M 800

Figure 97. XBT profiles from lES deployment cruise.

103

00.

CM

CO.

d bJ O

tO_

CO.

100 200 300 400

DEPTH M 500 600 700 800

rsi~

CN

oS2- ^ ^—-^_ d

Q

TEM

P

13

oo-

(O - 1 1 1 1 1

100 200 300 400

DEPTH M 500 600 700 800

Figure 98. XBT profiles from lES deployment cruise.

104

to. CM

CM

oo.

d UJ Q

Ld

oo-

CM^

100 200 300 400

DEPTH M 500 600 700 800

Cvl

OO.

d ui Q D. S2-

LiJ

CO -

fO-

100 200 300 400

DEPTH M 500 600 700 800

Figure 99. XBT profiles from lES deployment cruise.

105

00. CM

OO .

o

00

oo-

ro-

100 200 300 400

DEPTH M 500 600 700 800

CN

d UJ Q

to-

ro-

&;

—I \ 1 1 1 1 1—

100 200 300 400 500 600 700 800

DEPTH M

Figure 100. XBT profiles from lES deployment cruise.

106

00. CM 1

1

A,^^ '

wo

o2- ^^-^ ■ ! ■

d LiJ Q

V.^^^ ^^^^\^^

CO -

^^^^__

ro - 1 1 1 1 1 I ■■ 1 1

100 200

d LiJ Q Q. ;2

OO

300 400

DEPTH M 500 600 700 800

ro ~n I 1 1 \ 1 1— 100 200 300 400 500 600 700

DEPTH M 800

Figure 101. XBT profiles from lES deployment cruise.

107

«5.

(N '

d UJ Q Q- '^■

CO -

K)- —

0

CO.

100 200 300 400

DEPTH M 500 600

CM O

700 800

rvi"

tN \

o^- V O

d Q

^-^

0- 12-

LJ t—

CO-

^^--^^^

rO — r 1 1 1 1 1 1 1 1 800

DEPTH M

Figure 102. XBT profiles from lES deployment cruise.

108

200

CO. CN

300 400

DEPTH M 500 600 700 800

O LJ Q CL '^■

LJ

oo-

K5

100 200 300 400 500 600 700

DEPTH M 800

Figure 103. XBT profiles from lES deployment cruise.

109

OO. CM

(N

OO .

d Ul

D- ;2- 2

ro •

OO.

100 200 300 400

DEPTH M 500 600 700 800

(N ■

OO .

o

o Ul

co-

ro-

100 200 300 400

DEPTH M 500 600 700 800

Figure 104. XBT profiles from lES deployment cruise.

110

800

100 200 300 400

DEPTH M 500 600 700 800

Figure 105. XBT profiles from lES recovery cruise.

Ill

00. CM

OO

d UJ o

io_

•ig"

oo-

fO-

CN

OO-

d LJ Q

UJ

00

ro

100 200

100

—I 1— 300 400

DEPTH M 500 600 700 800

ro

200 —I 1 1 1 1— 300 400 500 600 700 800

DEPTH M

Figure 106. XBT profiles from lES recovery cruise.

112

00.

CM

00. UD

O

LJ Q Q- 2-

UJ

00-

ro- 100 200 300 400

DEPTH M 500 600

—I 1 700 800

100 200 300 400

DEPTH M 500 600 700 800

Figure 107. XBT profiles from lES recovery cruise.

113

00.

(N

00 oo.

O " O LJ o a. 22-

oo-

ro-

CN

100 200 300 400

DEPTH M 500 600 700 800

OO-

d LJ Q Q.

LxJ

(O

00

lO

100 200 300 400

DEPTH M 500 600 700 800

Figure 108. XBT profiles from lES recovery cruise.

114

CM

CO-

O

ui Q 0- 'P-

00-

800

100 200 300 400

DEPTH M 500 600 700 800

Figure 109. XBT profiles from lES recovery cruise.

115

00. CM

tn CO-

O d o a. LJ

rO.

lO-

CM

100 200 300 400

DEPTH M 500 600 700 800

oo. O d Q

co-

ro I I 1 1 1—

100 200 300 400 500 I I

600 700 800

DEPTH M

Figure 110. XBT profiles from lES recovery cruise.

116

00. CM

rO

OO.

S o d o

:E LiJ

00-

I 100 200

oo-

300 400

DEPTH M 500 600 700 800

O

UJ Q

oo-

m

—1 1 1 1 1— 100 200 300 400 500

—I 1— 600 700 800

DEPTH M

Figure 111. XBTprofiles from lES recovery cruise.

117

00. CM

OO.

O " (3 LJ Q

iD

OD-

CM

100 200 —I 1— 300 400

DEPTH M 500 600 700 800

in CM"

00.

ui

in

—I 1 1 1 1—

too 200 300 400 500 600 700 800

DEPTH M

Figure 112. XBT profiles from lES recovery cruise.

118

OO.

to

OO.

d UJ Q

OO-

CO

lO-

OO. CM

>o CN"

100 200 300 400

DEPTH M 500 600 700 800

CO-

O d LJ Q

fO_

oo-

ro-

100 200 300 400

DEPTH M

—I 1 \ 1 500 500 700 800

Figure 113. XBT profiles from lES recovery cruise.

119

00. CM

CM

OO.

o d ui Q

2

K5-

100 200 300 400

DEPTH M

—I 1 1 1 500 600 700 800

CN

d Q

oo-

O)

"T T 100 200 300 400

DEPTH M 500 600 700 800

Figure 114. XBT profiles from IBS recovery cruise.

120

CO. CM

CN"

OO.

d LxJ O

eo-

ro-

CO.

100 200 300 400

DEPTH M 500 600 700

—I 800

CN"

Q fO.

LJ

(N

CO-

I I i 1 1— 100 200 300 400 500

I 1— 600 700 800

DEPTH M

Figure 115. XBT profiles from lES recovery cruise.

121

CO.

CM

OO.

O " d UJ o Q. :2-

co-

lO-

00. CM

100 200 300 400

DEPTH M 500 600 700 800

CM^

OO.

d o

OO-

to- —I 1 1 1 1— 100 200 300 400 500 600 700 800

DEPTH M

Figure 116. XBT profiles from lES recovery cruise.

122

00.

X) CM

00.

O

UJ Q D- '^■

oo-

K5- ■~l 100

oo. CM

200 300 400

DEPTH M 500 600 700 800

CM

OO.

o ^ d ut Q

OO-

100 200 300 400

DEPTH M 500 600 700 800

Figure 117. XBT profiles from lES recovery cruise.

123

00. CM

CN

Kl -

d LiJ Q

\-

oo -

r^ K)

lO-

CN ■

00.

O d UJ Q

co-

fO

—I— 100 200 300 400

DEPTH M 500 600 700 800

100 200 —I 1— 300 400

DEPTH M 500 600 700 800

Figure 122. XBT profiles from lES recovery cruise.

128

00. CM

CN

03.

o " d UJ Q

tn-

CO. CM

100 200 300 400

DEPTH M 500 600 700 800

CN'

oo-

d UJ Q Q. 2

oo-

100 200 300 400

DEPTH M 500 600 700 800

Figure 123. XBT profiles from lES recovery cruise.

129

00. CM

oo_ O d Q

CO-

fO-

OO.

100 200 —I 1— 300 400

DEPTH M 500 600 700 800

to CM

oo- O c5 LJ Q

Kt.

2

O

oo-

rO- —I 1 1 1 1 1 \ 100 200 300 400 500 600 700 800

DEPTH M

Figure 124. XBT profiles from lES recovery cruise.

130

00. CM

to

oo. O (3 UJ Q Q. 23-

LJ I—

OO-

100 200 300 400 DEPTH M

500 600 700 800

oo.

d UJ a a. '^■

UJ I-

oo-

tn- 'III I 1 1—

100 200 300 400 500 600 700

DEPTH M 800

Figure 125. XBT profiles from lES recovery cruise.

131

CO. CM

CM

oo. o " d UJ o a. t^-

'Q

00-

ro-

OO. CM

1 1 100 200 300 400

DEPTH M

—1 1 1 1 500 600 700 800

CM

co-

d UJ O D_

LJJ

co-

lO- —I 1— 100 200 300 400

DEPTH M 500 600 700 800

Figure 126. XBT profiles from lES recovery cruise.

132

CO. CN

to CM

00.

o CD Ld

CO-

lo-

100 200 300 400

DEPTH M 500 600 700 800

CO-

d LJ o

oo-

tO-

100 200 300 400

DEPTH M 500 600 700 800

Figure 127. XBT profiles from lES recovery cruise.

133

«.

o d o 2

CM"

'0_ (N

1

i ;- : 2-

^

co-

ro - 1 1 1 1 r 1

1Q0 200

<N

300 400

DEPTH M 500 600 700 800

OO

O " d LLJ Q CL J?^

00

00

I 1 I I 1 \ 1— TOO 200 300 400 500 600 700 800

DEPTH M

Figure 128. XBT profiles from lES recovery cruise.

134

CO. CN

CO.

d UJ Q

UJ

to-

O ID

K)-

00. CSI

too 200 300 400

DEPTH M 500 600 700 800

CN

CO.

(J *" d LLJ o Q. 2-

UJ

00-

fO-

DEPTH M

Figure 129. XBT profiles from lES recovery cruise.

S

~T \ I 1 \ 1 1 TOO 200 300 400 500 600 700 800

135

00. CM

tN

CO.

O '" d ui o

UI h-

oo •

in

lO-

100 200 300 400

DEPTH M 500 600 700 800

K->

oo

o " CD LJ Q

rO-

lO

00-

rO- —T 1 1 1 1 1 1 100 200 300 400 500 600 700 800

DEPTH M

Figure 130. XBT profiles from lES recovery cruise.

136

00. CM

CN

s CO.

d Q a. ^' Kl_

oo-

fO-

CM

100 200 300 400

DEPTH M 500 600 700 800

CN

K)

CO.

O d LJ Q a. ro.

CO-

1 I I 1 1 100 200 300 400 500 600 700 800

DEPTH M

Figure 13]. XBT profiles from lES recovery cruise.

137

CO. CM

CO.

d UJ Q Q. :2

lo-

to.

100 200 300 400

DEPTH M

in

500 600 700 800

m (N ■

CO -

o d UJ Q D_ :;-' rO-

in in

CO-

ro- —I 1 100 200 300 400

DEPTH M 500 600 700 800

Figure 132. XBT profiles from lES recovery cruise.

138

CO.

oo. O " d o

00-

lO-

00.

00.

o d

Q. '2-

oo-

ro-

100 200 300 400

DEPTH M 500 600 700 800

100 200 300 400 500 600 700

DEPTH M 800

Figure 133. XBT profiles from lES recovery cruise.

139

00. CM

to CM

o *£>

oo.

d Q

oo-

eo-

00. CM

100 200 300 400

DEPTH M 500 600 700 800

•o.

00_

in

o m Q CL 2^

co-

to- I I I \ I I 1— 100 200 300 400 500 600 700

DEPTH M 800

Figure 134. XBT profiles from lES recovery cruise.

140

00. CM

(SI

CO.

d UJ o Q. ^■

CO'

^

ro-

CN

00-1

O " d LxJ o

UJ

CO-

K)

100

100

200 300 400

DEPTH M

200 300 400

DEPTH M

500 600 700 800

m

500 600 700 800

Figure 135. XBT profiles from lES recovery cruise.

141

00. CM

OO.

O " d Ul Q

oo-

100 200 300 400

DEPTH M 500 600 700 800

(N

CO-

d o

co-

to

ro- I 1 1 1 1—

100 200 300 400 500 600 700 800 DEPTH M

Figure 136. XBT profiles from lES recovery cruise.

142

00. CM

O d Ld Q D. Z^

UJ

rO_

OO-

fO-

OO. CM

100 200 300 400

DEPTH M 500 600 700 800

oo-

d LJ Q

LiJ

co-

to- i I I I I 1 1 1

1Q0 200 . 300 400 500 600 700 800

DEPTH M

Figure 137. XBT profiles from lES recovery cruise.

143

CO. CM

CD.

o d UJ Q

CO

K)-

100 200 300 400

DEPTH M 500 600 700 800

CO-

o d UJ Q

(O-

ro-

fe

—I 1 1 1 1 100 200 300 400 500 600 700 800

DEPTH M

Figure 138. XBT profiles from IBS recovery cruise.

144

00. tN

CO-

o d UJ o O- fO.

oo-

lO-

100 200 300 400

DEPTH M 500 600 700 800

(N

OO.

d Ul Q Q. :2-

to-

rn

to-

100 200 300 400

DEPTH M 500 600 700 800

Figure 139. XBT profiles from lES recovery cruise.

145

o

D V)

I CL. :

O O

e

I

3 O

c;

o

■53

•I

51.

a ■S 3

3

a.

(dvaa) 3dnss3dd

146

Q "O C o

D (A (A

a.

CM o LJJ

-J I I L. ' '

- rO

- fO LJ

■ O) I—

o ?5 o in CNI

o m CM

o ?j

o CD

^ CNI

<5)

&: a

3 O

Ci

-s:

^ ■

O

I- o ^ in

a

■Si -o

a * v> ■»» S? a

(dvaa) 3ynss3Hd

147

Q

(0

<0

O

UJ

o in

^ in •5)

1^

o -_, in ■2

s <4)

■* o

o s r^ tf

o o

o ^ OO

■^

t O) 3

s ^ -s: ro Q ~^ O c r^ '"" a rO £ •«

e o C/) rO >- '^ t

2 ^ 1^

rO LJJ

S g 1— ■s 1=^ cs "^1 o '"^ £s •s 1 o ■^^>

vT) :;: ^ CN

O a ro ^ i: (N -Si -ci

O Co to ?J

o ^ ^ O} ^1 P . "a. C::

o "~" ■Q IT) (a ^

>^ -s:

•SP-S

(dvaa) 3dnss3Hd

148

-I I L.

O

(A

I

o o C/1

en

-J 1 L-

Pi

It)

in

— m

I

- -^

fO

S 00

C D

o _

" E

o (/)

^^ f^ UJ

CM

CM

o *- in

I c o

■« c o

>»>

s

c

O

3

:? I

a

a

C3

a

-£?-S

(dvaa) 3dn$s3dd

149

D

D

I ID O O in

•<3

1^

C O

o

3 O

-s:

^^ K

•s:

Si)

•S

Ci.

5 '^ * -s:

:5 I

•it ^

•Si ■«!

s * to --

(dvaa) 3dnss3Hd

150

T5 C D

e D (/) (/)

I to O o LxJ

1^

I c o "a > o

a

o

3

^ >

3 ■■<: CO a

(dvaa) 3dnss3dd

151

Q XI C D

D (/) (/)

6 9, LJ

I

5

3

-s:

3

a

a

CO Q

(dvaa) 3dnss3ad

152

' ' ' L.

I ■'a e

•s:

a

Q ■D C D

^ J H (/) (/)

I CD O O

^ ^

CN in

o to

C

o

o

o

■5 i:^

"S g S

§ -a o ^

S

to a 5 3

(dvaa) 3dnss3dd

153

Q

C D 0) -

(/I CO

8

C

O

3 O

o

3

^ •« Cl,

1^ 3

3 *

. ^

"" -a

CIO Q

(dvaa) 3dnss3dd

154

Q -

? : D

15 (/) in

I O LJ

13

o

St

O

3 o

o 1~

til 1.. 3

5u c;

•Si -cs

^ cs

So ~

ON C > "c: ~^ ^ (^ ^

(■JDqp) 3dnSS3dd

155

O :

c D

e D if) (/) <1>

Q_ :

CNl

O

1^

o

a

o

3 O

-c:

o

o

t3

a

■^ 3

!D

3

(dvaa) 3dnss38d

156

I/) en

I

O

-! 1 " T"

h O ^

O - fO

c

2 **— CO

o

cs o CN

- O csi

t- o

o

- o

in

e

I

O &

c -s:

o

-5 3

5 su

W 3 ^ to

<3

3

(dvaa) 3dnss3ad

157

LU

u -1 1 1 1 1 —1 1

^^^^^^^

-

100

-^^^

aoo "^ y 500 , ^^ y^ ///■

- 'V//^ 400 \ 11 / ^^^J

/ / / 500 ^^y/ //y-

—-^^^^ '^ x/ ///" GOO yyyy / /y'-

^ ^/^^y// '//^' 700

-^y////, /y. 800 U 1 1 1 1 1 1

58,4 58,6 38,8

LATITUDE (DEG)

Figure 152. XBT section 1 (deployment cruise).

158

I r

a.

1 00

£00

500

400

500

GOO

700

800 t 58.4 58,6 58,8 5 9.0 53.5 58.4

LATITUDE (DEG)

Figure 153. XBT section 2 (deployment cruise).

159

1 00

200

300

400

500

600

700

■ 800 5 7.6 5 7.8 58,0 58^

LATITUDE (DEG)

Figure 154. XBT section 3 (deployment cruise).

160

0 I r

LLI

1 00

800

200

400

500

GOO

700

800 5 7^ 57B

-1 1 I i_

58.0 5a2 -I I I 3

38.4 58£ 5 as

LATITUDE (DEG)

Figure 155. XBT section 4 (deployment cruise).

161

U234554