Title of Presentation - iNEMIthor.inemi.org/.../Presentations/.../IMC_Williams.pdf · •...

Preview:

Citation preview

No Interfacial

IMC

Maureen Williams, NISTECTC, Reno, NV

May 29, 2007

1

NIST NIST SnSn Whisker TeamWhisker Team

Metallurgy Division Gaithersburg, Maryland

William J. Boettinger

Kil-Won Moon

Gery Stafford

Maureen Williams

2

Motivation for this experimentMotivation for this experimentMeasured Deflection Curves for 3 Alloys (16 µm) 2005 work

-160

-120

-80

-40

0

40

-40

-32

-24

-16

-8

0

8

1000 104 105 106

Can

tilev

er D

efle

ctio

n (µm

) Initial Film Stress (M

Pa)

time (s)

Sn

Sn-Pb

Sn-Cu

3

How to separate the IMC effect from the deposit?How to separate the IMC effect from the deposit?

• To eliminate interfacial IMC electrodeposit Sn on a non-reactive substrate.– Sn on Tungsten (W)

Phase diagram constructed by U. Kattner, NIST, 2005

- based on Binary Phase Diagram, Massalski

4

GoalGoal

• Electrodeposit Sn, SnCu, and SnPb on W, a substrate that does not form an interfacial intermetallic.

• Determine if IMC is needed for hillock & whisker growth.

• Measure– whisker growth

– Stress as a function of time

5

OvOverview of erview of ApproachApproach

• Part One – experiments done in 2006 - Williams M.E., et al., JEM (36) 3, pp.214-219 (2007)

– 1 mm thick pure tungsten (W) substrates– Vapor deposited 0.2 µm (5-9’s) Sn with e-beam– Electroplated 15 µm Sn (made with 18 Mohm cm water)

• Part Two – experiments done in 2007– 150 µm phosphor bronze (Cu) cantilever substrate– Vapor deposited 0.02 µm (4-9’s) W with e-beam on both sides– Vapor deposited 0.2 µm (5-9’s) Sn with e-beam– Electroplated 15 µm Sn (made with 18 Mohm cm water)

6

ResultsResults

Surface eruptions form without interfacial intermetallic (IMC) between Sn and substrate.

Both Cu & W substrates:

•Similar compressive stress values for Sn

•Sn deposits have similar hillock formation.•SnCu deposits have similar whisker formation.•SnPb deposits are clean (some plating bumps).

7

ResultsResults

Avg. Stress 15 minutes after electroplatingmeasured by cantilever beam deflection (2007)

Pure Sn Sn-3 wt% Cu Sn-2 wt% Pb

W - 28.2 MPa - 57.6 MPa No data

Cu -31.2 MPa No data No data

8

Surface Defects on Pure Surface Defects on Pure SnSn Deposits Deposits

W substrate (2006)

10 µm

100 µm

500 µm

141 days oldebeam W on Cu substrate (2007) Cu substrate (2006)

256 days old

500 µm

100 µm

10 µm

26 days old

SEM photos of deposit surface

9

Surface Defects on Surface Defects on SnSn-- 3 wt% Cu Deposits3 wt% Cu Deposits

20 µm

100 µm

500 µm

Cu substrate176 days old

ebeam W on Cu substrate (2007)21 days old

500 µm

100 µm

10 µm

W substrate (2006)

10 µm

500 µm

100 µm

133 days old

SEM photos of deposit surface

10

Experimental OutlineExperimental Outline

• Sample – preparation

– FIB cross sections of the deposit - substrate interface

• Stress Measurement– Deflection of cantilever as a function of time

• Sn and SnCu on W• Sn on Cu and W

11

For Sn electroplating, need to overcome oxide barrier on W substrate surfacePreparation of a Preparation of a NNonon--reactive reactive Cantilever BeamCantilever Beam

Electron beam vapor deposition – Plasma etched the surface of diamond polished Cu cantilever beams in high vacuum (10-8 torr)

– vapor deposited 0.02 um of Tungsten (W) in high vacuum (10-6 torr) to both sides of cantilever beam

– vapor deposited 0.2 um of Tin (Sn) in high vacuum (10-6 torr) to one side of cantilever beam

–Performed ASTM adherence test

Surface of e-beam deposited Sn (0.2 um) on

e-beam deposited W layer (0.02 um)

10 um5 um

Surface of e-beam deposited W layer (0.02 um)

on Cu substrate

12

Cantilever BeamsCantilever Beams

• Sample Mounting– Mask is cut and placed on substrate– Sample is attached to cathode

• Plating Conditions **(same as 2005 experiments)– 1 liter of electrolyte (made with 18 Mohm cm water)

• 100 rpm rotating cathode• 5-9s pure Sn anode• current density of 60 mA/cm2

** Boettinger W.J., et al., Acta Materialia 53, 5033 (2005)

13

Pure Pure SnSn Deposit / Substrate InterfaceDeposit / Substrate Interface

Top FIB photo courtesy of

A. Deal, Lehigh Univ.

Bottom FIB photo courtesyof

G. Galyon & M. Palmer, IBM

3.0 µmSn / Cu interfaceCu substrate

Sn deposit

Cu6Sn5

Sn / W interface

W substrate

Sn deposit

1.0 µm

Sn on W substrateCu6Sn5

Sn on Cu substrate

14

SnSn--3 wt% Cu Deposit / Substrate Interface3 wt% Cu Deposit / Substrate Interface

Top FIB photo courtesy of

A. Deal, Lehigh Univ.

2 µmSn-Cu / W interface

Cu6Sn5

W substrate

Sn-Cu deposit

Bottom FIB photo courtesy of

G. Galyon & M. Palmer, IBM

1.5 µm

Sn-Cu deposit

Cu substrateSn-Cu / Cu interface

Cu6Sn5

SnCu on W substrate

SnCu on Cu substrate

15

-70

-60

-50

-40

-30

-20

-10

0

0 5 10 15 20 25

Sn-Cu

Sn

Time (days)

Stress Calculated from Stress Calculated from Cantilever Beam DeflectionCantilever Beam Deflection

Stoney’s single layer equation is valid - No interfacial IMC

Stre

ss (M

Pa)

16

Comparison of 16 um thick Comparison of 16 um thick SnSn deposit on deposit on TungstenTungsten (W) and (W) and phosphor bronzephosphor bronze (Cu) substrates(Cu) substrates

100

-80

-60

-40

-20

0

0 5 10 15 20 25 30

Sn on P-Bronze

Sn on W

Time (days)

Bea

m D

efle

ctio

n (u

m)

-

Without IMC Sn deflectionrelaxes to constant value

With IMC reaction Sndeflection moves in

positive direction

17

SummarSummaryy• Successfully plated Sn on a non-reactive cantilever beam• Measured residual stress in deposits without interfacial IMC

formation– Sn-Cu deposit shows higher initial stress than pure Sn– Sn has hillocks, and Sn-Cu has filament whiskers– deposits maintain compressive stress initially and after

relaxation• Comparison of Sn deposits on Cu and W cantilever beams

– with IMC, Sn deflection moves in positive direction– without IMC, Sn deflection relaxes to constant compressive

value• Interfacial IMC is not required to initiate whisker growth

18

www.inemi.orgEmail contacts:

Jim McElroy jmcelroy@inemi.org

Bob Pfahlbob.pfahl@inemi.org

Recommended