The variational principle -...

Preview:

Citation preview

The variational principle

The variational principleQuantum mechanics 2 - Lecture 5

Igor Lukacevic

UJJS, Dept. of Physics, Osijek

November 8, 2012

Igor Lukacevic The variational principle

The variational principle

Contents

1 Theory

2 The ground state of helium

3 The linear variational problem

4 Literature

Igor Lukacevic The variational principle

The variational principle

Theory

Contents

1 Theory

2 The ground state of helium

3 The linear variational problem

4 Literature

Igor Lukacevic The variational principle

The variational principle

Theory

What is a problem we would like to solve?

To find approximate solutions of eigenvalue problem

Oφ(x) = ωφ(x)

Igor Lukacevic The variational principle

The variational principle

Theory

What is a problem we would like to solve?

To find approximate solutions of eigenvalue problem

Oφ(x) = ωφ(x)

A question

Can you remember any eigenvalue problems?

Igor Lukacevic The variational principle

The variational principle

Theory

What is a problem we would like to solve?

To find approximate solutions of Oφ(x) = ωφ(x).

A question

Can you remember any eigenvalue problems?

Hψα = Eαψα , α = 0, 1, . . .

whereE0 ≤ E1 ≤ E2 ≤ · · · ≤ Eα ≤ · · · , 〈ψα|ψβ〉 = δαβ

Igor Lukacevic The variational principle

The variational principle

Theory

Theorem - the variational principle

Given any normalized function ψ (that satisfies the appropriate boundaryconditions), then the expectation value of the Hamiltonian represents an upperbound to the exact ground state energy

〈ψ|H|ψ〉 ≥ E0 .

Igor Lukacevic The variational principle

The variational principle

Theory

Theorem - the variational principle

Given any normalized function ψ (that satisfies the appropriate boundaryconditions), then the expectation value of the Hamiltonian represents an upperbound to the exact ground state energy

〈ψ|H|ψ〉 ≥ E0 .

A question

What if ψ is a ground state w.f.?

Igor Lukacevic The variational principle

The variational principle

Theory

Theorem - the variational principle

Given any normalized function ψ (that satisfies the appropriate boundaryconditions), then the expectation value of the Hamiltonian represents an upperbound to the exact ground state energy

〈ψ|H|ψ〉 ≥ E0 .

A question

What if ψ is a ground state w.f.?

〈ψ|H|ψ〉 = E0

Igor Lukacevic The variational principle

The variational principle

Theory

Proof

ψ are normalized ⇒ 〈ψ|ψ〉 = 1

Igor Lukacevic The variational principle

The variational principle

Theory

Proof

ψ are normalized ⇒ 〈ψ|ψ〉 = 1

On the other hand, (unknown) ψ form a complete set ⇒ |ψ〉 =∑α cα|ψα〉

Igor Lukacevic The variational principle

The variational principle

Theory

Proof

ψ are normalized ⇒ 〈ψ|ψ〉 = 1

On the other hand, (unknown) ψα form a complete set ⇒ |ψ〉 =∑α cα|ψα〉

So,

〈ψ|ψ〉 =⟨∑

β

cβψβ

∣∣∣∑α

cαψα⟩

=∑αβ

c∗βcα 〈ψβ |ψα〉︸ ︷︷ ︸δαβ

=∑α

|cα|2 = 1

Igor Lukacevic The variational principle

The variational principle

Theory

Proof

ψ are normalized ⇒ 〈ψ|ψ〉 = 1

On the other hand, (unknown) ψα form a complete set ⇒ |ψ〉 =∑α cα|ψα〉

So,

〈ψ|ψ〉 =⟨∑

β

cβψβ

∣∣∣∑α

cαψα⟩

=∑αβ

c∗βcα 〈ψβ |ψα〉︸ ︷︷ ︸δαβ

=∑α

|cα|2 = 1

Now

〈ψ|H|ψ〉 =⟨∑

β

cβψβ

∣∣∣H∣∣∣∑α

cαψα⟩

︸ ︷︷ ︸∑α cαH|ψα〉︸ ︷︷ ︸

Eα|ψα〉

=∑αβ

c∗βcαEα 〈ψβ |ψα〉︸ ︷︷ ︸δαβ

=∑α

Eα|cα|2

Igor Lukacevic The variational principle

The variational principle

Theory

Proof

ψ are normalized ⇒ 〈ψ|ψ〉 = 1

On the other hand, (unknown) ψα form a complete set ⇒ |ψ〉 =∑α cα|ψα〉

So,

〈ψ|ψ〉 =⟨∑

β

cβψβ

∣∣∣∑α

cαψα⟩

=∑αβ

c∗βcα 〈ψβ |ψα〉︸ ︷︷ ︸δαβ

=∑α

|cα|2 = 1

Now

〈ψ|H|ψ〉 =⟨∑

β

cβψβ

∣∣∣H∣∣∣∑α

cαψα⟩

︸ ︷︷ ︸∑α cαH|ψα〉︸ ︷︷ ︸

Eα|ψα〉

=∑αβ

c∗βcαEα 〈ψβ |ψα〉︸ ︷︷ ︸δαβ

=∑α

Eα|cα|2

But Eα ≥ E0 , ∀α, hence

〈ψ|H|ψ〉 ≥∑α

E0|cα|2 = E0∑α

|cα|2 = E0

Igor Lukacevic The variational principle

The variational principle

Theory

Example: One-dimensional harmonic oscilator

a] Find the ground state energy and w.f. of one-dimensional harmonic oscilator:

H = − ~2

2m∆ +

1

2mω2x2 .

Igor Lukacevic The variational principle

The variational principle

Theory

Example: One-dimensional harmonic oscilator

a] Find the ground state energy and w.f. of one-dimensional harmonic oscilator:

H = − ~2

2m∆ +

1

2mω2x2 .

How to do this using the variational principle...

(i) pick a trial function which somehow resembles the exact ground state w.f.:

ψ(x) = Ae−αx2

α parameter

A =4

√2α

π from normalization condition (do it for HW)

Igor Lukacevic The variational principle

The variational principle

Theory

Example: One-dimensional harmonic oscilator

a] Find the ground state energy and w.f. of one-dimensional harmonic oscilator:

H = − ~2

2m∆ +

1

2mω2x2 .

How to do this using the variational principle...

(i) pick a trial function which somehow resembles the exact ground state w.f.:

ψ(x) = Ae−αx2

α parameter

A =4

√2α

π from normalization condition

(ii) calculate 〈H〉 = 〈T 〉+ 〈V 〉

Igor Lukacevic The variational principle

The variational principle

Theory

Example: One-dimensional harmonic oscilator

How to do this using the variational principle...

(i) pick a trial function which somehow resembles the exact ground state w.f.:

ψ(x) = Ae−αx2

α parameter

A =4

√2α

π from normalization condition

(ii) calculate 〈H〉 = 〈T 〉+ 〈V 〉

〈T 〉 =~2α2m

〈V 〉 =mω2

On how to solve these kind ofintegrals, see Ref. [5].

Igor Lukacevic The variational principle

The variational principle

Theory

Example: One-dimensional harmonic oscilator

How to do this using the variational principle...

(i) pick a trial function which somehow resembles the exact ground state w.f.:

ψ(x) = Ae−αx2

α parameter

A =4

√2α

π from normalization condition

(ii) calculate 〈H〉 = 〈T 〉+ 〈V 〉

〈T 〉 =~2α2m

〈V 〉 =mω2

On how to solve these kind ofintegrals, see Ref. [5].

〈H〉 =~2α2m

+mω2

Igor Lukacevic The variational principle

The variational principle

Theory

Example: One-dimensional harmonic oscilator

(iii) minimize 〈H〉 wrt parameter α

d

dα〈H〉 = 0 =⇒ α =

2~

Igor Lukacevic The variational principle

The variational principle

Theory

Example: One-dimensional harmonic oscilator

(iii) minimize 〈H〉 wrt parameter α

d

dα〈H〉 = 0 =⇒ α =

2~

(iv) insert back into 〈H〉 and ψ(x):

〈H〉min =1

2~ω

ψmin(x) = 4

√mω

π~e−

mω2~ x2

Igor Lukacevic The variational principle

The variational principle

Theory

Example: One-dimensional harmonic oscilator

(iii) minimize 〈H〉 wrt parameter α

d

dα〈H〉 = 0 =⇒ α =

2~

(iv) insert back into 〈H〉 and ψ(x):

〈H〉min =1

2~ω

ψmin(x) = 4

√mω

π~e−

mω2~ x2

exact ground state energy and w.f.

A question

Why did we get the exact energy and w.f.?

Igor Lukacevic The variational principle

The variational principle

Theory

Example: One-dimensional harmonic oscilator

b] Do the same, but with trial function ψ(x) = Bxe−βx2

Igor Lukacevic The variational principle

The variational principle

Theory

Example: One-dimensional harmonic oscilator

b] Do the same, but with trial function ψ(x) = Bxe−βx2

(i) normalization gives B =

√2√π

(mω~

)3/4

Igor Lukacevic The variational principle

The variational principle

Theory

Example: One-dimensional harmonic oscilator

b] Do the same, but with trial function ψ(x) = Bxe−βx2

(i) normalization gives B =

√2√π

(mω~

)3/4(ii) calculate 〈H〉 =

3~3

2mβ +

3mω2

8

1

β

Igor Lukacevic The variational principle

The variational principle

Theory

Example: One-dimensional harmonic oscilator

b] Do the same, but with trial function ψ(x) = Bxe−βx2

(i) normalization gives B =

√2√π

(mω~

)3/4(ii) calculate 〈H〉 =

3~3

2mβ +

3mω2

8

1

β

(iii) minimize 〈H〉 =⇒ β =mω

2~

Igor Lukacevic The variational principle

The variational principle

Theory

Example: One-dimensional harmonic oscilator

b] Do the same, but with trial function ψ(x) = Bxe−βx2

(i) normalization gives B =

√2√π

(mω~

)3/4(ii) calculate 〈H〉 =

3~3

2mβ +

3mω2

8

1

β

(iii) minimize 〈H〉 =⇒ β =mω

2~(iv) get minimal values

〈H〉min =3

2~ω

ψmin(x) =

√2√π

(mω~

)3/4xe−

mω2~ x2

Igor Lukacevic The variational principle

The variational principle

Theory

Example: One-dimensional harmonic oscilator

b] Do the same, but with trial function ψ(x) = Bxe−βx2

(i) normalization gives B =

√2√π

(mω~

)3/4(ii) calculate 〈H〉 =

3~3

2mβ +

3mω2

8

1

β

(iii) minimize 〈H〉 =⇒ β =mω

2~(iv) get minimal values

〈H〉min =3

2~ω

ψmin(x) =

√2√π

(mω~

)3/4xe−

mω2~ x2

exact 1st excited stateenergy and w.f.

Igor Lukacevic The variational principle

The variational principle

Theory

Example: One-dimensional harmonic oscilator

In conclusion...

ψb]trial (x) = Bxe−βx2

ψa]trial (x) = ψgs

exact(x) = Ae−αx2

}=⇒

⟨ψ

b]trial (x)|ψgs

exact(x)⟩

= 0

Igor Lukacevic The variational principle

The variational principle

Theory

Example: One-dimensional harmonic oscilator

In conclusion...

ψb]trial (x) = Bxe−βx2

ψa]trial (x) = ψgs

exact(x) = Ae−αx2

}=⇒

⟨ψ

b]trial (x)|ψgs

exact(x)⟩

= 0

Also, 〈H〉b]min accounts for 1st excited state

Igor Lukacevic The variational principle

The variational principle

Theory

Example: One-dimensional harmonic oscilator

In conclusion...

ψb]trial (x) = Bxe−βx2

ψa]trial (x) = ψgs

exact(x) = Ae−αx2

}=⇒

⟨ψ

b]trial (x)|ψgs

exact(x)⟩

= 0

Also, 〈H〉b]min accounts for 1st excited state

Corollary

If 〈ψ|ψgs〉 = 0, then 〈H〉 ≥ Efes , where Efes is the energy of the 1st excitedstate.

Igor Lukacevic The variational principle

The variational principle

The ground state of helium

Contents

1 Theory

2 The ground state of helium

3 The linear variational problem

4 Literature

Igor Lukacevic The variational principle

The variational principle

The ground state of helium

H = − ~2

2m(∆1 + ∆2)

− e2

4πε0

(2

r1+

2

r2− 1

|~r1 −~r2|

)

A question

What does each of these terms mean?

Igor Lukacevic The variational principle

The variational principle

The ground state of helium

H = − ~2

2m(∆1 + ∆2)

− e2

4πε0

(2

r1+

2

r2− 1

|~r1 −~r2|

)

A question

What does each of these terms mean?

Igor Lukacevic The variational principle

The variational principle

The ground state of helium

H = − ~2

2m(∆1 + ∆2)

− e2

4πε0

(2

r1+

2

r2− 1

|~r1 −~r2|

)

kinetic energy of electrons 1 and 2

Igor Lukacevic The variational principle

The variational principle

The ground state of helium

H = − ~2

2m(∆1 + ∆2)

− e2

4πε0

(2

r1+

2

r2− 1

|~r1 −~r2|

)

electrostatic attraction between the nucleusand electrons 1 and 2

Igor Lukacevic The variational principle

The variational principle

The ground state of helium

H = − ~2

2m(∆1 + ∆2)

− e2

4πε0

(2

r1+

2

r2− 1

|r1 − r2|

)

electrostatic repulsion between the electrons1 and 2

Igor Lukacevic The variational principle

The variational principle

The ground state of helium

H = − ~2

2m(∆1 + ∆2)

− e2

4πε0

(2

r1+

2

r2− 1

|~r1 −~r2|

)

Our mission to calculate the ground state energy Egs

E expgs = −78.975 eV

Igor Lukacevic The variational principle

The variational principle

The ground state of helium

H = − ~2

2m(∆1 + ∆2)

− e2

4πε0

(2

r1+

2

r2− 1

|~r1 −~r2|

)

A question

Can you identify the troublesome term in H?

Igor Lukacevic The variational principle

The variational principle

The ground state of helium

H = − ~2

2m(∆1 + ∆2)

− e2

4πε0

(2

r1+

2

r2− 1

|~r1 −~r2|

)

A question

Can you identify the troublesome term in H?

Vee =e2

4πε0

1

|~r1 −~r2|

Igor Lukacevic The variational principle

The variational principle

The ground state of helium

For start, let us ignore Vee

A question

Can you “guess” what happens then with H, how ψ looks like and what’s theenergy?

Igor Lukacevic The variational principle

The variational principle

The ground state of helium

For start, let us ignore Vee

A question

Can you “guess” what happens then with H, how ψ looks like and what’s theenergy?

H = H1 + H2

ψ0(~r1,~r2) = ψ100(~r1)ψ100(~r2) =23

a3πe−2

r1+r2a

E0 = 8E1 = −109 eV

Igor Lukacevic The variational principle

The variational principle

The ground state of helium

Now, let us account for Vee :

ψ0 99K trial w.f. (is this justifiable?)

〈H〉 = 8E1 + 〈Vee〉

〈Vee〉 =

(e2

4πε0

)(23

a3π

)2 ∫e−4

r1+r2a

|~r1 −~r2|d~r1d~r2

Igor Lukacevic The variational principle

The variational principle

The ground state of helium

Now, let us account for Vee :

ψ0 99K trial w.f. (is this justifiable?)

〈H〉 = 8E1 + 〈Vee〉

〈Vee〉 =

(e2

4πε0

)(23

a3π

)2 ∫e−4

r1+r2a

|~r1 −~r2|d~r1d~r2

A question

What do you expect for 〈Vee〉 and why?

Igor Lukacevic The variational principle

The variational principle

The ground state of helium

Now, let us account for Vee :

ψ0 99K trial w.f. (is this justifiable?)

〈H〉 = 8E1 + 〈Vee〉

〈Vee〉 =

(e2

4πε0

)(23

a3π

)2 ∫e−4

r1+r2a

|~r1 −~r2|d~r1d~r2 = 34 eV

HW

Calculate〈Vee〉 usingRefs. [2] and[5].

Igor Lukacevic The variational principle

The variational principle

The ground state of helium

Now, let us account for Vee :

ψ0 99K trial w.f. (is this justifiable?)

〈H〉 = 8E1 + 〈Vee〉

〈Vee〉 =

(e2

4πε0

)(23

a3π

)2 ∫e−4

r1+r2a

|~r1 −~r2|d~r1d~r2 = 34 eV

〈H〉 = −109 eV + 34 eV = −75 eV

E expgs = −79 eV

Rel. error 5.1%

Igor Lukacevic The variational principle

The variational principle

The ground state of helium

Zeff effective nuclearcharge

Trial w.f.

ψ1(~r1,~r2) =Z 3

eff

a3πe−Zeff

r1+r2a

Igor Lukacevic The variational principle

The variational principle

The ground state of helium

Zeff effective nuclearcharge

Trial w.f.

ψ1(~r1,~r2) =Z3

eff

a3πe−Zeff

r1+r2a

Zeff - variationalparameter

Igor Lukacevic The variational principle

The variational principle

The ground state of helium

Let us rewrite the Hamiltonian:

H = − ~2

2m(∆1 + ∆2)− e2

4πε0

(Zeff

r1+

Zeff

r2

)+

e2

4πε0

[Zeff − 2

r1+

Zeff − 2

r2− 1

|~r1 −~r2|

]

Igor Lukacevic The variational principle

The variational principle

The ground state of helium

Let us rewrite the Hamiltonian:

H = − ~2

2m(∆1 + ∆2)− e2

4πε0

(Zeff

r1+

Zeff

r2

)+

e2

4πε0

[Zeff − 2

r1+

Zeff − 2

r2− 1

|~r1 −~r2|

]

=⇒ 〈H〉 =

[−2Z 2

eff +27

4Zeff

]E1

For calculation details, see Ref. [2].

Igor Lukacevic The variational principle

The variational principle

The ground state of helium

Let us rewrite the Hamiltonian:

H = − ~2

2m(∆1 + ∆2)− e2

4πε0

(Zeff

r1+

Zeff

r2

)+

e2

4πε0

[Zeff − 2

r1+

Zeff − 2

r2− 1

|~r1 −~r2|

]

=⇒ 〈H〉 =

[−2Z 2

eff +27

4Zeff

]E1

Now minimizing 〈H〉 we getZmin

eff = 1.69

Igor Lukacevic The variational principle

The variational principle

The ground state of helium

Let us rewrite the Hamiltonian:

H = − ~2

2m(∆1 + ∆2)− e2

4πε0

(Zeff

r1+

Zeff

r2

)+

e2

4πε0

[Zeff − 2

r1+

Zeff − 2

r2− 1

|~r1 −~r2|

]

=⇒ 〈H〉 =

[−2Z 2

eff +27

4Zeff

]E1

Now minimizing 〈H〉 we getZmin

eff = 1.69

Which gives

〈H〉min = Emin = −77.5 eV ,Egs − Emin

Egs= 1.87%

Note:For more precise results see E. A. Hylleraas, Z. Phys. 65, 209 (1930) or C. L. Pekeris,

Phys. Rev. 115, 1216 (1959).

Igor Lukacevic The variational principle

The variational principle

The linear variational problem

Contents

1 Theory

2 The ground state of helium

3 The linear variational problem

4 Literature

Igor Lukacevic The variational principle

The variational principle

The linear variational problem

ψ normalized trial function depends on α1, α2 . . .

〈ψ|H|ψ〉 very complex function of α1, α2 . . .

Igor Lukacevic The variational principle

The variational principle

The linear variational problem

ψ normalized trial function depends on α1, α2 . . .

〈ψ|H|ψ〉 very complex function of α1, α2 . . .

Suppose

|ψ〉 =N∑

i=1

ci |ψi 〉 , 〈ψi |ψj〉 = δij

Igor Lukacevic The variational principle

The variational principle

The linear variational problem

ψ normalized trial function depends on α1, α2 . . .

〈ψ|H|ψ〉 very complex function of α1, α2 . . .

Suppose

|ψ〉 =N∑

i=1

ci |ψi 〉 , 〈ψi |ψj〉 = δij

=⇒ (H)ij = Hij = 〈ψi |H|ψj〉 matrix representation in basis {|ψi 〉}

Igor Lukacevic The variational principle

The variational principle

The linear variational problem

ψ normalized trial function depends on α1, α2 . . .

〈ψ|H|ψ〉 very complex function of α1, α2 . . .

Suppose

|ψ〉 =N∑

i=1

ci |ψi 〉 , 〈ψi |ψj〉 = δij

=⇒ (H)ij = Hij = 〈ψi |H|ψj〉 matrix representation in basis {|ψi 〉}

H hermitian{|ψi 〉} real

}⇒ H symmetric

Igor Lukacevic The variational principle

The variational principle

The linear variational problem

ψ normalized trial function depends on α1, α2 . . .

〈ψ|H|ψ〉 very complex function of α1, α2 . . .

Suppose

|ψ〉 =N∑

i=1

ci |ψi 〉 , 〈ψi |ψj〉 = δij

=⇒ (H)ij = Hij = 〈ψi |H|ψj〉 matrix representation in basis {|ψi 〉}

H hermitian{|ψi 〉} real

}⇒ H symmetric

ψ normalized ⇒∑

i

c2i = 1

Igor Lukacevic The variational principle

The variational principle

The linear variational problem

ψ normalized trial function depends on α1, α2 . . .

〈ψ|H|ψ〉 very complex function of α1, α2 . . .

Suppose

|ψ〉 =N∑

i=1

ci |ψi 〉 , 〈ψi |ψj〉 = δij

=⇒ (H)ij = Hij = 〈ψi |H|ψj〉 matrix representation in basis {|ψi 〉}

H hermitian{|ψi 〉} real

}⇒ H symmetric

ψ normalized ⇒∑

i

c2i = 1

the expectation value depends on cij :

=⇒ 〈ψ|H|ψ〉 =∑

ij

cijHij

Igor Lukacevic The variational principle

The variational principle

The linear variational problem

ψ normalized ⇒∑

i

c2i = 1

the expectation value depends on cij :

=⇒ 〈ψ|H|ψ〉 =∑

ij

cijHij

Unfortunately,∂

∂ck〈ψ|H|ψ〉 = 0 , k = 1, 2, . . . ,N

is unsolvable for ck are mutually dependent.

Igor Lukacevic The variational principle

The variational principle

The linear variational problem

ψ normalized ⇒∑

i

c2i = 1

the expectation value depends on cij :

=⇒ 〈ψ|H|ψ〉 =∑

ij

cijHij

Unfortunately,∂

∂ck〈ψ|H|ψ〉 = 0 , k = 1, 2, . . . ,N

is unsolvable for ck are mutually dependent.

Lagrange’s method of undetermined multipliers

L(c1, . . . , cN ,E) = 〈ψ|H|ψ〉 − E(〈ψ|ψ〉 − 1

)=∑

ij

cicjHij − E

(∑i

c2i − 1

)

Igor Lukacevic The variational principle

The variational principle

The linear variational problem

Unfortunately,∂

∂ck〈ψ|H|ψ〉 = 0 , k = 1, 2, . . . ,N

is unsolvable for ck are mutually dependent.

Lagrange’s method of undetermined multipliers

L(c1, . . . , cN ,E) = 〈ψ|H|ψ〉 − E(〈ψ|ψ〉 − 1

)=∑

ij

cicjHij − E

(∑i

c2i − 1

)

〈ψ|H|ψ〉 and L are minimal for same ck

Igor Lukacevic The variational principle

The variational principle

The linear variational problem

Let us now choose c1, c2, . . . , cN−1 as independent

⇒ cN is given by∑

i

c2i = 1

Igor Lukacevic The variational principle

The variational principle

The linear variational problem

Let us now choose c1, c2, . . . , cN−1 as independent

⇒ cN is given by∑

i

c2i = 1

Then we have∂L∂ck

= 0 , k = 1, 2, . . . ,N − 1

but not necessarily∂L∂cN

= 0

Igor Lukacevic The variational principle

The variational principle

The linear variational problem

Let us now choose c1, c2, . . . , cN−1 as independent

⇒ cN is given by∑

i

c2i = 1

Then we have∂L∂ck

= 0 , k = 1, 2, . . . ,N − 1

but not necessarily∂L∂cN

= 0

But we still have undetermined multiplier E , so now we choose it so that

∂L∂ck

= 0 , k = 1, 2, . . . ,N − 1,N

Igor Lukacevic The variational principle

The variational principle

The linear variational problem

Let us now choose c1, c2, . . . , cN−1 as independent

⇒ cN is given by∑

i

c2i = 1

Then we have∂L∂ck

= 0 , k = 1, 2, . . . ,N − 1

but not necessarily∂L∂cN

= 0

But we still have undetermined multiplier E , so now we choose it so that

∂L∂ck

= 0 , k = 1, 2, . . . ,N − 1,N

On the other hand

∂L∂ck

=∑

j

cjHkj +∑

i

ciHik − 2Eck

Igor Lukacevic The variational principle

The variational principle

The linear variational problem

Then we have∂L∂ck

= 0 , k = 1, 2, . . . ,N − 1

but not necessarily∂L∂cN

= 0

But we still have undetermined multiplier E , so now we choose it so that

∂L∂ck

= 0 , k = 1, 2, . . . ,N − 1,N

On the other hand

∂L∂ck

=∑

j

cjHkj +∑

i

ciHik︸ ︷︷ ︸equal, since Hij=Hji

−2Eck

So, ∑j

Hijcj − Eci = 0

Igor Lukacevic The variational principle

The variational principle

The linear variational problem

Or in matrix formHc = Ec

A question

What represents this equation?

Igor Lukacevic The variational principle

The variational principle

The linear variational problem

Or in matrix formHc = Ec

⇒ Hcα = Eαcα , α = 0, 1, . . . ,N − 1 , (cα)†cβ =∑

i

cαi cβi = δαβ

Igor Lukacevic The variational principle

The variational principle

The linear variational problem

Or in matrix formHc = Ec

⇒ Hcα = Eαcα , α = 0, 1, . . . ,N − 1 , (cα)†cβ =∑

i

cαi cβi = δαβ

Eαβ = Eαδαβ , Ciα = cαi =⇒ HC = EC

Igor Lukacevic The variational principle

The variational principle

The linear variational problem

Or in matrix formHc = Ec

⇒ Hcα = Eαcα , α = 0, 1, . . . ,N − 1 , (cα)†cβ =∑

i

cαi cβi = δαβ

Eαβ = Eαδαβ , Ciα = cαi =⇒ HC = EC

Solving gives N orthonormal solutions

|ψα〉 =N∑

i=1

cαi |ψi 〉 , α = 0, 1, . . . ,N − 1

Igor Lukacevic The variational principle

The variational principle

The linear variational problem

Or in matrix formHc = Ec

⇒ Hcα = Eαcα , α = 0, 1, . . . ,N − 1 , (cα)†cβ =∑

i

cαi cβi = δαβ

Eαβ = Eαδαβ , Ciα = cαi =⇒ HC = EC

Solving gives N orthonormal solutions

|ψα〉 =N∑

i=1

cαi |ψi 〉 , α = 0, 1, . . . ,N − 1

What about E ’s:〈ψβ |H|ψα〉 = Eαδαβ

Igor Lukacevic The variational principle

The variational principle

The linear variational problem

HC = EC

Solving gives N orthonormal solutions

|ψα〉 =N∑

i=1

cαi |ψi 〉 , α = 0, 1, . . . ,N − 1

What about E ’s:〈ψβ |H|ψα〉 = Eαδαβ

For example,E0 = 〈ψ0|H|ψ0〉 ≥ E0

A question

What’s the meaning of other E ’s?

Igor Lukacevic The variational principle

The variational principle

The linear variational problem

HC = EC

Solving gives N orthonormal solutions

|ψα〉 =N∑

i=1

cαi |ψi 〉 , α = 0, 1, . . . ,N − 1

What about E ’s:〈ψβ |H|ψα〉 = Eαδαβ

For example,E0 = 〈ψ0|H|ψ0〉 ≥ E0

A question

What’s the meaning of other E ’s? Eα ≥ Eα , α = 1, 2, . . .

Igor Lukacevic The variational principle

The variational principle

The linear variational problem

In conclusion

Solving the matrix eigenvalue problem

HC = EC ,

by diagonalization, is equivalent to the variational principle in a subspacespanned by {|ψi 〉 , i = 1, 2, . . . ,N}.

Igor Lukacevic The variational principle

The variational principle

Literature

Contents

1 Theory

2 The ground state of helium

3 The linear variational problem

4 Literature

Igor Lukacevic The variational principle

The variational principle

Literature

Literature

1 A. Szabo, N. Ostlund, Modern Quantum Chemistry, Introduction toAdvanced Electronic Structure theory, Dover Publications, New York,1996.

2 D. J. Griffiths, Introduction to Quantum Mechanics, 2nd ed., PearsonEducation, Inc., Upper Saddle River, NJ, 2005.

3 I. Supek, Teorijska fizika i struktura materije, II. dio, Skolska knjiga,Zagreb, 1989.

4 Y. Peleg, R. Pnini, E. Zaarur, Shaum’s Outline of Theory and Problems ofQuantum Mechanics, McGraw-Hill, 1998.

5 I. N. Bronstejn, K. A. Semendjajev, Matematicki prirucnik, Tehnickaknjiga, Zagreb, 1991.

Igor Lukacevic The variational principle

Recommended