The SN – GRB - NSpersonal.psu.edu/nnp/sn_grb04.pdfMészáros, Tata sngrb 04 An explosive...

Preview:

Citation preview

Mészáros, Tata sngrb 04

TheSN – GRB - NS

Connection

Peter MészárosPennsylvania State University &

Institute for Advanced Study, Princeton

Mészáros, Tata sngrb 04

An explosive ancestry… leading to varying degrees of degeneracy :

SN – GRB – NS• Gamma Ray Bursts (GRB)ôBlack hole (BH)

ôSupernova (SN) ô collapsar, …• Magnetars, pulsars (neutron stars: NS), white dwarfs (WD)• And what they lead to…:

→ UHE g, UHE n (ultra-high energy g-ray,neutrinos)→ Ultra-high energy cosmic rays (UHECR) (GZK), → Gravitational Waves (GW) (KHz, mHz, mHz…)→ Electromagnetic (EM) flares : g, X, UV/O, sub-mm, R

Mészáros, Tata sngrb 04

Subramanian Chandrasekhar

• Explained WD as compact cores supported by degeneracy pressure of electrons

• Leading the way to later understanding of NS as more massive cores supported by deg.press. of neutrons;

• and understanding of BH , for even larger masses

Mészáros, Tata sngrb 04

GRB Sky & Temporal Distrib.

• Cosmological (isotropic) distribut.

• Out to z t 4.5 (20?)• ~ 1/day @ z d few• ~ 1/3 “short” (<2s)→ NS mergers/mag?

• ~ 2/3 “long” (>2s)→ massive coll/SN?

Mészáros, Tata sngrb 04

GeV gemission from

GRB, PSR,SNR,

other galactic, extragalactic

&un-id sources• GeV: space obs. (SAS-2, HEAO-A4, Kvant….)• EGRET spark chamber: 5 GRB, 6 PSR & 60 blazars @d10GeV• + ~25 other Unidentified EGRET g-ray sources

Mészáros, Tata sngrb 04

SNCommon physical classification:

• Thermonuclear runaway explosion, on accreting WD; progenitor: Mød 10 MŸ

→ Type Ia• Core collapse to NS (or BH)

+envelope ejection; progenitor: Mø t 10 MŸ

→ Type IIType Ib, Ic

Mészáros, Tata sngrb 04

Ia

(Cardall ’03)

IbIcII

Mészáros, Tata sngrb 04

Core collapse SN

Cardall 03 & U.Tenn

Mészáros, Tata sngrb 04

Core-collapse SN bounce, shock &thermal n (10-30 MeV) production

( Cardall 03 & Terascale Supernova Initiative)

Mészáros, Tata sngrb 04

SN spectral class:

•Type Ia: opt. brightest at max. light, and : good standard candles !→ supernova project: cosmology,

accel. U, dark energy… SNAP, etc•Type Ib, Ic, II (i.e. core collapse SNe):not very good standard candles…

but : very interesting ..! fl NS, BH..and GRB !

Filipenko 1997

•Type I: absence of H features- Ia: strong Si feature- Ib: no/weak Si, strong He- Ic: no/weak Si, no/weak He

•Type II: obvious H features- IIp: t 2MŸ H-env, H-abs. features- IIL: d 2MŸ H-env, weak H-abs.feat- IIn: no/weak H abs, narrow H emiss

L.C.: a) shock-heated envelopeb) 56Co → 56Fe radioact. tail

SN photometric class:

Mészáros, Tata sngrb 04

Mremn.vs.

Møms

• Non-rotating single ms ø

• Mass-loss simplified

• Metallicitydependence?

• Core rotation, binary evol’n?

• etc

(from Heger, et al 03)

Mészáros, Tata sngrb 04

Remnant Type vs. Init. Mass & Z

Heger et al aph/0212469

At higher mass,

high metallic flhigh wind massloss ∂ Z1/2 ;stronger afterH-env. is lost

flHe core incr.smaller

flRemnant incr. lessmassive

At low metallic.Mass lossUnimportant,BH boundarydet. by initialStellar mass

Mészáros, Tata sngrb 04

Remn. Type & envelope (or lack) fl SN type vs. Init. Mass & Z

Mészáros, Tata sngrb 04

Core rot.flCollapsar/Jet SN types

• Assumes

high

core

rotation

•Presence of JET fl collapsar or anisotrop. SN: •Occurs if can assume large core rotation, e.g. from magn instabin single ø, or binary evol, etc•Anisotr. SN: obs.•Evidence from opt pol (few %) (both SN & GRB)•May help also understandanomalies in nucleosy, etc

Mészáros, Tata sngrb 04

“Hypernova” fl Anisotropic SNIb/c?

• Nomoto, Woosley, Fryer, Heger et al.: degree of anisotropy (and He core mass) may influence ejected 56Ni mass (hence strength of optical display)

• Viewing angle infleunce observed velocity of ejection (and inferred Eiso )

Mészáros, Tata sngrb 04

Remnant type vs. redshift(tentative)

SN Ib/c

SN pair

BH

NS

• Fraction of massive stars leading to various SN and compact remnant types Ø follows from given Z-z dep.

• Implications: at high z, incr.

potential for- UV/X/g

ionizing flux- CRs, n’s, GW- seed accr BH

(→AGNs)- GRB, XR/IR

transients

Heger, Fryer etal, astroph/0212469

Mészáros, Tata sngrb 04

NS/MGRNS remnant fivarious outcomes:

• “Normal” B (d1013 G):-Young gamma/radio PSR-ms recycled PSR-Isolated neutron stars (XR,..)-Accreting X-ray pulsar

• “Higher” B (t1013 G)-“Anomalous” X-ray pulsar/AXP-Magnetar: SGR (… GRB ?)fl various interesting effects?

vacuum polariz.,photon splitting…

Mészáros, Tata sngrb 04

• Isolated pulsars: ~ 1300 known• Binary radio PSRs: ( many in

GCs,..); of particular interest for Gen.Relat., GW, mass det., etc

• XR surface emission: thermal spectrum – of interest for radius determinatio; not uniform (some pulsation); also a non-thermal PL component, ascribed to magnetospheric emission (more pulsed than thermal); extends down to O/IR

• Binary XRP: ~100, dozens w. cyclotron lines (e.g. XTE); of interest for field measurement. But : bright, Ø not best Chandra, XMM targets; recent advances have been in faint objects

• XMM: detected in binary XRPsXR lines at low energies, ascribed to metals in acc.disk

PSR/XRP

Mészáros, Tata sngrb 04

PSR• Radio to gamma emission: • polar or outer gaps?fl GLAST should tell

Mészáros, Tata sngrb 04

XRP

Cyclotron lines: XTE (Coburn et al, 02, ApJ 580, 394);

Inferred B compatible with spin up/down obs & young/ middle aged PSR surface fields .. (but..)

Mészáros, Tata sngrb 04

Isolated X-ray PSRs• 1E1207: XR lines lines at

0.7, 1.4, 2.1 (coinc. w.instrline), maybe 2.8 keV → ?

• Bignami et al: cyclotron harmonics, indicate lower than usual field?

• Pavlov et al: single PSR, low surf temp and field, so oscill. strenght of higher harm too low to explain harmonics. Could be He in strong field ?(magn. levels quite π unmagn.)

• Several middle aged (10Kyr-Myr) isolated PSR show such lines;

Mészáros, Tata sngrb 04

PSR Nebulae & MHD winds• PSR winds: seen by

Chandra in t20 PSR nebulae (t30 at other wavelenghts)

• Crab wind: outer wisps move (also opt)

• › Vela PSR: Chandra measures jet motion, especially interesting faint “outer jet”

Pavlov, GG, Teter, M.A, Kargaltsev, O, Sanwal, D, 2003,ApJ, 591, 1157 "The variable jet of the Vela pulsar"

Mészáros, Tata sngrb 04

SGR/MGR sim.(courtesy NASA) • SGRs: leading explanation

is MGR (NS w. Bt1013 G)• AXP: probably not powered

by accretion: No companion seen, and O/IR spectrum does not fit disk Ø may be that AXP ~MGR ?(but: no compelling MGR explanation for O/IR sp)

• Also, two AXPs have now been seen to burst

• SGR X-ray sp. in quiesc is same as AXP, fl AXP ¨SGR

• March 5 SGR: used to have harder quiesc sp than AXPs, recently softened, looks ~ AXP NS/MGR

Mészáros, Tata sngrb 04

QED effects on XR polarization modes

Even for B~1012 G, but particularly for BtBQ=m2 c3/ @e = 4.413 x 1013 G, at a critical freq (X/g) where vacuum effects cancel plasma effects Ø the polariz normal modes, as they go through the critical region, retain the same handedness, but change from para to perp (E resp B) ; in old plasma lit. the mode “does not change”, in some new lit. it “does change” identity.

(Ozel, Lai,….Pavlov, Meszaros..):

Mészáros, Tata sngrb 04`

Short(tg d 2 s)

Long(tgt 2 s)

GRB:→ (current paradigm)

Mészáros, Tata sngrb 04

“long” GRB from “collapsars”

Mészáros, Tata sngrb 04

Collapsar GRB (cont.)

Mészáros, Tata sngrb 04

GRB: basic numbers

• Distance: 0.1 d z d4.5 → D ~ 10 28 cm • Fluence: ~10-4 -10-7 erg/cm2

~ 1 ph/cm2

• Energy output: 1053 (Ω/4π) D228.5 F-5 erg

jet: Ω ~ 10-2 – 10-1 → E γ,tot ~ 1051 erg

E γ,tot ~ LΘ x 1010 year ~ Lgal x 1 year• Rate(GRB) ~ 1/day → 10-6(Ω/2π)-1 /yr/gal

(whereas Rate [SN] ~ 107 /yr ~ 1/s at z d1)

∫= dtfluxF .

Mészáros, Tata sngrb 04

BH + accr. Torus Jet• Both collapsar or merger → BH+accr.torus→fireball

• Massive rot. ø: sideways pressure confines/channel outflow → fireball Jet

• Nuclear density hot torus→ can have nn→e± jet

• Hot infall →convective dynamo → B~1015 G, twisted (thread BH?)→Alfvénic or e±pγ jet

• (Note: magnetar might do similar)

Mészáros, Tata sngrb 04

Explosion FIREBALL• E γ t 1051 Ω-2 D2

28.5 F-5 erg • R0 ~ c t0 ~ 107 t-3 cm

Huge energy in very small volume • τγγ ~ (Eγ/R3

0mec2)σTR0 >> 1 → Fireball: e±,γ,p relativistic gas

• Lγ~Eγ/t0 >> LEdd → expanding (v~c) fireball(Cavallo & Rees, 1978 MN 183:359)

• Observe Eγ> 10 GeV …but γγ→e±, degrade 10 GeV →0.5 MeV? Eγ Et >2(mec2)2/(1-cosΘ)~4(mec2)2/Θ2

Ultrarelativistic flow → Γ t Θ-1 ~ 102

(Fenimore etal 93; Baring & Harding 94)

Mészáros, Tata sngrb 04

Jet (outside the star) → shocks• Shocks expected in any

unsteady supersonic outflow (esp. in a non-vacuum environment)

• Internal shocks: fast shells catch up slower shells (unsteady flow)

• External Shock: flow slows down as plows into external medium

• NOTE: “external” and “internal” shocks might be expected also while jet is inside star, as well as after it is outside the star.If inside: gs do not escape (but n can)if outside: gs do escape (and n too)

ò“Internal” shocks

“external” shock →

reverse forward

Mészáros, Tata sngrb 04

Non-thermal gs: Internal & External Shocksin optically thin medium outside progenitor:SHORT & LONG-TERM BEHAVIOR

• Lorentz factor Γ first grows Γ∂ r, then coasts Γ∂constant, until …

• Outside the star, after jet is opt. thin: Internal shocks: ri~1012cm→γ-rays (burst, t~sec)

• Externals shocks start at re ~1016cm, progressively weaken as it decelerates

PREDICTION :• External forward shock spectrum

softens in time: X-ray, optical, radio …→long fading afterglow !(t ~ min, hr, day, month)

• External reverse shock (less relativistic):Optical → quick fading ( t ~ mins)(Meszaros & Rees 1997 ApJ 476,232)

Γ

rrc ri re

Shocks solve radiative inefficiency problem (reconvert bulk kin. en. into random en. → radiation)

Int

Ext

Mészáros, Tata sngrb 04

External Forward & Reverse ShockSynchroton & IC spectrum

← Forward shock IC (GeV g )

←Forward shock synchrotron(X,g)

← Reverse shock synchrotron (O)

Meszaros, Rees, Papathanassiou ’94, ApJ 432, 578

Mészáros, Tata sngrb 04

GRB 970228 : BeppoSAXDiscovery of an afterglow

• X-ray location:2-3 arcmin →raster

• →optical (arcsec) & radio location

• Can identify host galaxy, redshift

• located atcosmological dist.

NEW ERA!Feb 28 March 3

F_x ~3E-12 erg.cm2/keV/s , decr. By 1/20

(Costa et al 1997, Nature 387:783)

Mészáros, Tata sngrb 04

GRB afterglow blast wave model

• Simplest case: adiabatic forward shock synchrotron rad’n from shock-accel. non-thermal e-

• F(n,t) ∂ n-b t -a

• a = (3/2) b• Parameters E0, ee, eB,

(b=(p-1)/2)GRB 970228 as blast wave:

Wijers, Rees & Meszarosl 97 MNRAS 288:L51 fit to

Mészáros, Rees 97 ApJ 476:232 model

Mészáros, Tata sngrb 04

Snapshot Afterglow Fits• Simplest case:

tcool(γm)>texp, where N(γ)∂γp for γ>γm (i.e. γc(ool) >γm)

• 3 breaks: na(bs), nm, nc • Fn∂n2 (n5/2) ; n<na ;

∂n1/3 ; na<n<nm ;∂n-(p-1)/2 ; nm<n<nc∂n-p/2 ; n>nc

(Mészáros, Rees & Wijers ’98 ApJ499:301)

Sari, Piran, Narayan ’98 ApJ(Let) 497:L17)

Break frequency decreases in time (at rate dep. on whether ext medium homog. or wind (e.g. r∂r -2 )

Mészáros, Tata sngrb 04

Scintillation & Afterglow Limb Brightening

• Radio scintillations:→”sizes” Dr~1016 cm

at distance r~1017 cm• But: equal-arrival timesurfaces are “pears”,edges “younger/bright”→limb-brightening,obs. size < distance

(ÆWaxman 98; Sari 98; Panaitescu-Meszaros 98)

≠ (Granot et al, 99)

Mészáros, Tata sngrb 04

GRB Afterglow Radio Detections

GRB970508

Frail, Kulkarni et al 01fireball model & calorimetry

Waxman, Kulkarni, Frail 99:Scintillations → (small) size !

Mészáros, Tata sngrb 04

Shock Photon Spectrum• Non-thermal power law

spectrum, both in int. and ext. shocks, due to

• Synchrotron, peak at ~200 keV (or ~ eV?)

• Inv. Compton, peak ~ GeV (or ~200 keV ?

• Sy peak location, ratio Sy/IC dep. on Bsh , ge,m

• Peak softens with time• Ratio Sy/IC decr w. time

E

E2NE

Sy

IC

t

tF

E

E

X,OR g

Mészáros, Tata sngrb 04

Fast Opt. Transients: ROTSE

• Robotic Optical Transient Search Experiment (Akerlof, etal, 99, Nat 398, 400)

• Cannon f/1.8 35mm cams coupled to CCD

• fast slew (3s anywhere)• Detected bright, prompt

(15s after trigger) optical flash in GRB990123

• Succesor experiments: ROTSE III, Super-LOTIS, RAPTOR, KAIT, TAROT, NEAT, Faulkes,REM, etc.

Mészáros, Tata sngrb 04

Prompt Optical Flashes

• GRB 990123 → bright (9th mag) prompt opt. transient (Akerlof etal 99)

– 1st 10 min: decay steeper than forw. shock • Interpreted as reverse external shock • (predicted : Meszaros&Rees ’97)

• 99-02: Great Desert:Lack of flashes, upper limits mv~12-15

• but: New generation robotic tels: ROTSE III, Super-LOTIS, RAPTOR, KAIT, TAROT, NEAT, Faulkes, REM; etc

• → new prompt optical flashes:GRB 021004, 021211: similar to GRB 990123

• → new “semi- prompt” flashes,( ROTSE IIIa (AU), ROTSE IIIb (TX) ):

GRB 030418, 30723 : π from GRB 990123 !→ t >211, 50 s resp, see forw. shock only?steep rise (ascribed to dusty stell. wind) mR ~ 17 at t~ 30 min, then PL -1.35 decay

(Rykoff etal astro-ph/0310501)

Akerlof etal ’99 ↑

Kulkarni et al ’99 ↑

nFn

n

Sy (rev)

Sy (forw)

0 X,g

Mészáros, Tata sngrb 04

Light curve break: Jet Edge Effects

• Monochromatic break in light curve time power law

• expect G∂t-3/8, as long as qlight cone ~G-1 < qjet, (spherical approx is valid)

• “see” jet edge at G ~ qjet-1

• Before edge, Fn∂(r/G)2.In• After edge, Fn∂(rqjet)2.In ,

→ Fn steeper by G2∂t-3/4

• After edge, also side exp. → further steepen Fn∂t-p

Mészáros, Tata sngrb 04

Jet Collimation& Energetics

Berger etal 03

• Jet opening angle inv. corr. w. Lg(iso)

• → Lg(corr) ~ const.• GRB030329: evid.

for 2-comp. jet: qg~5o < qradio ~17o

• Etotal = Eg+Ekin~ const.

(→ quasi-standard candle )

Mészáros, Tata sngrb 04

Collapsar & SN :does one imply the other ?

• Core collapse of star w. Mt30 MŸ

→ BH + disk (if fast rot.core) → jet (MHD? baryonic? high G,

+ SNR envelope eject (?)• 3D hydro simulations (Newtonian

SR) show that baryonic jet w.high G can be formed/escape

• SNR: not seen numerically yet(but: several previous observational suggestions, e.g. late l.c. hump + reddening- and debate) ;

…… and more recently …

Collapsar & SN (ANIMATION!)

Credit: Derek Fox

& NASA Ø

Mészáros, Tata sngrb 04

GRB 030329 ¤ SN 2003dh : Yes !

• Nearest “unequivocal” cosmological GRB: z=0.17

• GRB-SN association: “strong”• Fluence:10-4 erg cm-2 ,

among highest in BATSE,but Dtg~30s, nearby; Eg,iso~1050.5erg: ~typical,

• ESN2003dh,iso ~1052.3 erg ~ ESN1998bw,iso (¨grb980425)

vsn,ej~0.1c (→ “hypernova”)• GRB-SN imultaneous? at most:

d 2 days off-set (from opt. lightcurve)

( ï i.e. not a “supra-nova”)• But: might be 2-stage (<2 day

delay) ø- NS-BH collapse ?→n predictions may test this !

Mészáros, Tata sngrb 04

Other GRB-SN• Earliest, most famous & debated

example: (Galama et al, 1998)

GRB980425-SN1998bw(Esn ~1052 erg, but z~0.008, Egrb,iso 1047 erg odd)

• Other possible examples (w/o SN sp.):“red bump” in lightcurve:

GRB980326 (Bloom 99), GRB970228 (Reichart99, Galama 00), GRB000911 (Lazzati 01), GRB991208 (Castro 01), GRB990712 (Sahu00), GRB011211 (Bloom 02), GRB020405 (Price 03)

• Red bump alternative model:dust sublimation or scattering?(Waxman-Draine 00, Esin-Blandford 00)

Possible, but SN spectrum now available in at least two cases

GRB021211 - SN 2002lt

(Dela Valle et al, 2003 AA 406, L33)

Mészáros, Tata sngrb 04

END

Mészáros, Tata sngrb 04

Fraction of massive stars leading to various SNe & GRB

Heger etal 03

Recommended