The shape of physics Elementary particles and their masses ...phys16/lectures/sl25.pdfFluid Dynamics...

Preview:

Citation preview

The shape of physics

Elementary particles and their masses

Symmetry and GUTs

States of the vacuum

Atomic/Molec/Optical 2,525 5.84%Astrophysics 1,759 4.07%

Biological 1,668 3.86%Computational 2,004 4.63%

Condensed Matter 5,410 12.51%Chemical 1,815 4.2%

Fluid Dynamics 1,596 3.69%Polymer 1,278 2.95%

Laser Science 1,321 3.05%Materials 2,228 5.15%

Nuclear 2,420 5.59%Beams 1,165 2.69%

Particles/Fields 3,299 7.63%Plasma 2,520 5.83%

Atomic/Molec/Optical PhysAstrophysics

BiologicalComputational

Condensed Matter PhysChemical

Fluid DynamicsPolymer

Laser ScienceMaterials

NuclearBeams

Particles/Fields PhysPlasma

Atomic/Molec/Optical PhysAstrophysics Astro, phys

Biological Bio, Chem, Phys, DEASComputational astro, phys

Condensed Matter PhysChemical Chem, Phys

Fluid Dynamics DEASPolymer phys

Laser Science physMaterials DEAS

Nuclear astroBeams phys

Particles/Fields PhysPlasma Astro

Atomic/Molec/Optical 10−10 m 1− 109?Astrophysics > 105 m ≈ ∞

Biological 10−7 − 10 m ≈ ∞Computational all scales tools

Condensed Matter 10−8 − 10−1 m ≈ ∞Chemical 10−10 − 10−7 m ¿∞

Fluid Dynamics À 10−10 m ≈ ∞Polymer À 10−10 m À 1

Laser Science all scales toolsMaterials À 10−10 m ≈ ∞

Nuclear 10−15 − 10−14 m 1− 300Beams all scales tools

Particles/Fields < 10−15 m ≈ 1Plasma À 10−10 m ≈ ∞

Atomic/Molec/Optical 10−10 m 1− 109?Astrophysics > 105 m ≈ ∞

Biological 10−7 − 10 m ≈ ∞Computational all scales tools

Condensed Matter 10−8 − 10−1 m ≈ ∞Chemical 10−10 − 10−7 m ¿∞

Fluid Dynamics À 10−10 m ≈ ∞Polymer À 10−10 m À 1

Laser Science all scales toolsMaterials À 10−10 m ≈ ∞

Nuclear 10−15 − 10−14 m 1− 300Beams all scales tools

Particles/Fields < 10−15 m ≈ 1Plasma À 10−10 m ≈ ∞

Atomic/Molec/Optical 10−10 m 1− 109?Astrophysics > 105 m ≈ ∞

Biological 10−7 − 10 m ≈ ∞Computational all scales tools

Condensed Matter 10−8 − 10−1 m ≈ ∞Chemical 10−10 − 10−7 m ¿∞

Fluid Dynamics À 10−10 m ≈ ∞Polymer À 10−10 m À 1

Laser Science all scales toolsMaterials À 10−10 m ≈ ∞

Nuclear 10−15 − 10−14 m 1−∞Beams all scales tools

Particles/Fields < 10−15 m ≈ 1Plasma À 10−10 m ≈ ∞

Atomic/Molec/Optical 10−10 m 1− 109?Astrophysics > 105 m ≈ ∞

Biological 10−7 − 10 m ≈ ∞Computational all scales tools

Condensed Matter 10−8 − 10−1 m ≈ ∞Chemical 10−10 − 10−7 m ¿∞

Fluid Dynamics À 10−10 m ≈ ∞Polymer À 10−10 m À 1

Laser Science all scales toolsMaterials À 10−10 m ≈ ∞

Nuclear 10−15 − 10−14 m 1−∞Beams all scales tools

Particles/Fields < 10−15 m ≈ 1Plasma À 10−10 m ≈ ∞

Atomic/Molec/Optical 10−10 m 1− 109?Astrophysics > 105 m ≈ ∞

Biological 10−7 − 10 m ≈ ∞Computational all scales tools

Condensed Matter 10−8 − 10−1 m ≈ ∞Chemical 10−10 − 10−7 m ¿∞

Fluid Dynamics À 10−10 m ≈ ∞Polymer À 10−10 m À 1

Laser Science all scales toolsMaterials À 10−10 m ≈ ∞

Nuclear 10−15 − 10−14 m 1−∞Beams all scales tools

Particles/Fields < 10−15 m ≈ 1Plasma À 10−10 m ≈ ∞

Atomic/Molec/Optical 10−10 m 1− 109?Astrophysics > 105 m ≈ ∞

Biological 10−7 − 10 m ≈ ∞Computational all scales tools

Condensed Matter 10−8 − 10−1 m ≈ ∞Chemical 10−10 − 10−7 m ¿∞

Fluid Dynamics À 10−10 m ≈ ∞Polymer À 10−10 m À 1

Laser Science all scales toolsMaterials À 10−10 m ≈ ∞

Nuclear 10−15 − 10−14 m 1−∞Beams all scales tools

Particles/Fields < 10−15 m ≈ 1Plasma À 10−10 m ≈ ∞

Atomic/Molec/Optical 10−10 m 1− 109?Astrophysics > 105 m ≈ ∞

Biological 10−7 − 10 m ≈ ∞Computational all scales tools

Condensed Matter 10−8 − 10−1 m ≈ ∞Chemical 10−10 − 10−7 m ¿∞

Fluid Dynamics À 10−10 m ≈ ∞Polymer À 10−10 m À 1

Laser Science all scales toolsMaterials À 10−10 m ≈ ∞

Nuclear 10−15 − 10−14 m 1−∞Beams all scales tools

Particles/Fields < 10−15 m ≈ 1Plasma À 10−10 m ≈ ∞

Atomic/Molec/Optical 10−10 m 1− 109?Astrophysics > 105 m ≈ ∞

Biological 10−7 − 10 m ≈ ∞Computational all scales tools

Condensed Matter 10−8 − 10−1 m ≈ ∞Chemical 10−10 − 10−7 m ¿∞

Fluid Dynamics À 10−10 m ≈ ∞Polymer À 10−10 m À 1

Laser Science all scales toolsMaterials À 10−10 m ≈ ∞

Nuclear 10−15 − 10−14 m 1−∞Beams all scales tools

Particles/Fields < 10−15 m ≈ 1Plasma À 10−10 m ≈ ∞

TOPICAL GROUPSFew Body Systems 324 0.75%

Fundamental Constants 378 0.87%Gravitation 654 1.51%

Hadronic 268 0.62%Measurement 545 1.26%

Magnetism 680 1.57%Plasma Astrophysics 258 0.6%Shock Compression 379 0.88%

Statistical/Non-Linear 789 1.82%

All science is either physics

or stamp collecting.

—Ernest Rutherford.

All science is either physics

or stamp collecting.

—Ernest Rutherford.••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

Physics is not a collection of

facts, but rather a practical

toolkit for the manipulationof the physical world.

Elementary particles and their masses

e− µ− τ−

d s b

u c t

W±Z

νs?......................................................................................... ................................................................................. ........

10−15 10−10 10−5 1

10−1510−1010−51

}leptons

{

quarks

{

charged

neutrinos

force particles (photon, gluon and graviton are massless)

Mass (GeV) −→

←− λ (cm)

very low energy - below eV - ordinary matter - no obvious internal structure

e− µ− τ−

d s b

u c t

W±Z

νs?......................................................................................... ................................................................................. ........

10−15 10−10 10−5 1

10−1510−1010−51

}leptons

{

quarks

{

charged

neutrinos

force particles (photon, gluon and graviton are massless)

Mass (GeV) −→←−

←− λ (cm)

a few eV — atomic structure visible

e− µ− τ−

d s b

u c t

W±Z

νs?......................................................................................... ................................................................................. ........

10−15 10−10 10−5 1

10−1510−1010−51

}leptons

{

quarks

{

charged

neutrinos

force particles (photon, gluon and graviton are massless)

↔Mass (GeV) −→

←− λ (cm)

few hundred MeV - structure of proton and new families

e− µ− τ−

d s b

u c t

W±Z

νs?......................................................................................... ................................................................................. ........

10−15 10−10 10−5 1

10−1510−1010−51

}leptons

{

quarks

{

charged

neutrinos

force particles (photon, gluon and graviton are massless)

↔Mass (GeV) −→

←− λ (cm)

10s of GeV - more new families - details of QCD - neutrinos

e− µ− τ−

d s b

u c t

W±Z

νs?......................................................................................... ................................................................................. ........

10−15 10−10 10−5 1

10−1510−1010−51

}leptons

{

quarks

{

charged

neutrinos

force particles (photon, gluon and graviton are massless)

↔Mass (GeV) −→

←− λ (cm)

100s of GeV - standard model

e− µ− τ−

d s b

u c t

W±Z

νs?......................................................................................... ................................................................................. ........

10−15 10−10 10−5 1

10−1510−1010−51

}leptons

{

quarks

{

charged

neutrinos

force particles (photon, gluon and graviton are massless)

↔Mass (GeV) −→

←− λ (cm)

Symmetry and GUTsa introduction of the standard model and its possibleextensions - one kind of electric charge - but threecolors of quarks with two kinds of “color charge”

at “low”

energies

below

100 GeV

charge particle

electric photon

color×2 gluons×8

2 gluons for charges - 2D space of color triangle

6 gluons for transitions between colors - SU(3)

••

.................................... ....................................................

......................................................................................

......................................................................................

an indication that there is some connection betweencolor and electric charge -

e+

d−1/3R

d−1/3G

d−1/3B

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................

..............................................................

..............................................................

..............................................................

..............................................................

..

..................................................................................................................................

electric and color charges add to zero — but otherparticles don’t fit

at “high”

energies

À 100 GeV

charge particle

electric photon′

electroweak W+, W−, Z ′

color×2 gluons×8

•• .................................... ....................................................

W+

W−

W± for transitions between flavors - SU(2)

(νe, e−), (u, d), · · · - symmetry in doublets at short

distances when masses are unimportant - weak forceat longer distances

W± and Z were understood long before they wereseen experimentally by studying “weak interactions”they produce such as neutron decay

n[udd] → p[uud] + e−

or neutrino production in the sun

p + p → D + e+ + ν

and neutral current neutrino scattering

ν + p → ν + p

at very

high

energies

???????

charge particle

electric photon′

electroweak W+, W−, Z ′

color×2 gluons×8

Xs× 12

Xs for transitions between antiquarks and leptons orbetween quarks and antiquarks - SU(5)

e+

νd−1/3R

d−1/3G

d−1/3B

.........................................................

...........................................................

...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

...............................................................................................................................................................................................

..............................................................

..............................................................

..............................................................

..............................................................

..

..................................................................................................................................

Antineutrino at the center, but displaced in the 4thdimension.

4-simplex - 4-d analog of a tetrahedron - SU(5)

at very

high

energies

???????

charge particle

electric photon′

electroweak W+, W−, Z ′

color×2 gluons×8

Xs× 12

Xs for transitions between antiquarks and leptons orbetween quarks and antiquarks - SU(5)

couplings may unify at ≈ 1015 GeV

if this is right, Xs should produce proton decay

i.e. p → e+π0 not seen yet

States of the vacuumcompletely confused about where the specific valuesof these particle masses come from

existence of all masses depends on the peculiar stateof the vacuum

vacuum is nothing - how can nothing affect us?

“we live in the vacuum as a fish swims in the sea”

“nothing” refers only to what we can control — ifyou are a fish, you are stuck with the properties ofthe sea - temperature, viscosity, oxygen content, etc.

fish scientists can study the symmetries of their oceanexperiment locally with different phases of water

beware of Ice IX

“we live in the vacuum as a fish swims in the sea”

forces are more symmetrical at short distances

vacuum state screens charges and gives mass to forceparticles

but at short distances below the atomic scale, thephoton is still massless

analog - inside a superconductor - electromagneticforce is screened - “photon” has a mass

different phases can have very different physicalproperties

Recommended