The bubble bursting acoustic signature · 2 Introduction Vidal et al.[1] [1] V. Vidal et al.,...

Preview:

Citation preview

1

AdrienBussonnière1,2A.Antkowiak1,M.Baudouin2,F.Ollivier1,R.Wunenburger1

E.Blanc&V.Bertin

1- InstitutJeanLeRondd’Alembert– UniversitéPierreetMarieCurie– Paris6- UPMC-CNRS– UMR71902- Institutd’Electronique,deMicroélectroniqueetdeNanotechnologie,UMR8520CNRS- UniversitéLille1/EcoleCentraledeLille

Thebubbleburstingacousticsignature

2

Introduction

Vidaletal. [1]

[1]V.Vidaletal.,Dynamicsofsoapbubbleburstinganditsimplicationstovolcanoacoustics,Geophys.Res.Lett.,2010,37[2]V.Vidaletal.,Acousticwaveformofcontinuousbubblinginanon-Newtonianfluid,PRE,2009,80[3]G.Deane,Determiningthebubblecapfilmthicknessofburstingbubblesfromtheiracousticemissions,JASA,2013,133[4]D.Spiel,AcousticalMeasurementsofAirBubblesBurstingataWaterSurface:BurstingBubblesasHelmholtzResonators,J.Geophys.Res.,

1992,97

p (P

a)p

(Pa)

Vidaletal. [2]

Deane[3]

Spiel[4]

Helmholtzresonator

?

3

Experimentalsetup

Syringe-pump

VbubbleSDSatCMC

High-speedcamera

Oscilloscope

4

Characteristic timescales

Acoustic Aeroacoustic Hydrodynamic

p+

p-

p+

p-

p+

p-

VTC

AirjetAcousticwaves

Openingtime

5

20 1 0,05

Characteristic timescales

6

Characteristic timescales

Noairjet

Openingtime<Airjettime

7

t (ms)0 1 2 3 4 5 6 7

p (P

a)-0.2

-0.1

0

0.1

0.2

t (ms)0 1 2 3 4 5 6 7

p (P

a)-0.2

-0.1

0

0.1

0.2

t (ms)0 1 2 3 4 5 6 7

p (P

a)-0.2

-0.1

0

0.1

0.2

t (ms)0 1 2 3 4 5 6 7

p (P

a)-0.2

-0.1

0

0.1

0.2

t (ms)0 1 2 3 4 5 6 7

p (P

a)-0.2

-0.1

0

0.1

0.2

t (ms)0 1 2 3 4 5 6 7

p (P

a)-0.2

-0.1

0

0.1

0.2

t (ms)0 1 2 3 4 5 6 7

p (P

a)

-0.2

-0.1

0

0.1

0.2

t (ms)0 1 2 3 4 5 6 7

p (P

a)-0.2

-0.1

0

0.1

0.2

SounddirectivityMicrophonearray

Axisymmetrichypothesis

Dipolesource

8

Simplemodel

ü DipolesourceÞ Forceappliedtotheairü Signalperiod≈Openingtime

p0+pb

p0

Forceappliedbytheliquidtotheairduring thebursting

DuringtheburstingInitialstate

p0+pb

p0

9

SimplemodelRadiationoftheforcesource

Farfield Near field

t (ms)0 0.5 1 1.5 2 2.5 3 3.5 4

p (P

a)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

V=2mLr=30mmVTC =Cste

• Agreementontheamplitude• Waveformindisagreement

10

FilmthicknessForcedbursting

nm

Taylor-Culick velocityintermofposition

11

Filmthickness

t (ms)0 0.5 1 1.5 2 2.5 3 3.5 4

p (P

a)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

• Betteragreement inthewaveform• Non-symmetricsignals

Forcedbursting

t (ms)0 1 2 3 4 5

p (P

a)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Spontaneousbursting

12

Fouriertransform

Projection

Reconstruction

InverseFouriertransform

Nous ne

Nous ne

Nous ne pouvons pas afficher cette image pour l’instant.

Spherical harmonic decomposition

Axisymmetricassumption

13

Nous ne pouvons pas afficher cette image pour l’instant.

Z=- 6mm

Nous ne pouvons pas afficher cette image pour l’instant.

Spherical harmonic decomposition

SignalMonopoleDipoleQuadripole

Z=0mm

Z=+6mm

14

t (s) ×10-32 2.5 3 3.5 4

p (P

a)

-0.05

0

0.05

0.1

0.15

0.2

t (s) ×10-32 2.5 3 3.5 4

p (P

a)

-0.05

0

0.05

0.1

0.15

0.2

t (s) ×10-32 2.5 3 3.5 4

p (P

a)

-0.05

0

0.05

0.1

0.15

0.2

Quadrupole criteria Instantaneousacousticcenteraltitude

Spherical harmonic decompositionTestcase:movingdipole

• Quadripole vanishes Þ Dipole =Signal

Z=- 6mm Z=0mm Z=+6mm

SignalMonopoleDipoleQuadripole Þ

15

t (s) ×10-30 0.5 1 1.5 2

Z ac (m

)

×10-3

-6

-4

-2

0

2

4

6

t (s) ×10-30 0.5 1 1.5 2 2.5 3 3.5

Z ac (m

)

×10-3

-4

-2

0

2

4

6

8

Experiment

• Mobile dipole source• Sourceposition≈liquid rim position

Acoustic centertracking

Temps

Testcase

Camerameasurement

16

Finite sizesourcemodel

Simplemodel:

Integrationoftheforceovertime

Radiationoftheforce

Radiationofinfinitesimal forces

Integrationofradiationsovertime

Finitesizesourcemodel:

17

Finite sizesourcemodel

Forcedbursting Spontaneousbursting

t (ms)0 1 2 3 4 5

p (P

a)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

t (ms)0 0.5 1 1.5 2 2.5 3 3.5 4

p (P

a)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

• Excellentagreementonthetopsignal• Stillsomediscrepanciesonthebottomsignal

18

Conclusion

• Understandingandmodelingofthe“blast-type”wave

Discrepancyontherimdynamic

19

Perspectives

• Measurement ofhydrodynamicquantities

• Extensionofthismeasurementstrategytootherphenomenon• Bubblecoalescence• Foamageing

• Amplitude=>bubbleradiusandsurfacetension• Phase=>VTC =>Thicknessprofile

20

Thanks foryour attention

Recommended