TeV II Particle Astrophysics

Preview:

DESCRIPTION

TeV II Particle Astrophysics. Summary comments. Outline. Introduction: Cosmic-ray spectrum Multi-messenger astronomy TeV astronomy g -ray astronomy n astronomy Gravitational-wave astronomy New detectors. Extra-galactic component ?. n F( n ) for cosmic rays. Air Showers. DIRECT. - PowerPoint PPT Presentation

Citation preview

TeV II, Particle AstrophysicsMadison, Aug 31, 2006

Tom Gaisser 1

TeV II Particle Astrophysics

Summary comments

TeV II, Particle AstrophysicsMadison, Aug 31, 2006

Tom Gaisser 2

Outline

• Introduction: Cosmic-ray spectrum

• Multi-messenger astronomy– TeV astronomy

• -ray astronomy• astronomy

– Gravitational-wave astronomy

• New detectors

TeV II, Particle AstrophysicsMadison, Aug 31, 2006

Tom Gaisser 3

F() for cosmic rays

LHC

Tevatron

DIRECT AirShowers

Extra-galactic component ?

4

1020 eV proton

16 joules energy

Kinetic energy of Yanick Noah’s second serve

But momentum of a snail

Macroscopic energy in a microscopic particle

No known astrophysicalsources “seem” able to produce such enormous energies

1/ km2/ century

3000 km2 -> 30 events / year

Simon SwordyUniversity of Chicago J. Cronin, Aug 29

5

Observations I: SpectrumKnee 2nd Knee Dip GZK?

Observations – I: Spectrum

P. Blasi, Aug 28

6

B. Peters on the knee and ankle

B. Peters, Nuovo Cimento 22 (1961) 800

Peters cyclePeters cycle: systematic increase of < A > : systematic increase of < A > approaching Eapproaching Emaxmax

<A> should begin to decrease again<A> should begin to decrease again for E > 30 x Efor E > 30 x Ekneeknee

7

30

Rigidity-dependence• Acceleration, propagation

– depend on B: rgyro = R/B– Rigidity, R = E/Ze– Ec(Z) ~ Z Rc

• rSNR ~ parsec Emax ~ Z * 1015 eV– 1 < Z < 30 (p to Fe)

• Slope change should occur within factor of 30 in energy

• With characteristic pattern of increasing A

• Problem: continuation of smooth spectrum to EeV

8

KASCADE composition at the knee

9

UHECR

J. Cronin, Aug 29

10

(de) constructing the extra-galatic spectrum

Doug Bergman et al. (HiRes), Proc 29th ICRC, 7 (2005) 315

GZK feature

recovery (depends on source density)

dip (due to pair production)

End of Galactic population (not shown)

Distant sourcesContribution depends on evolution and propagation inBextra-galactic

Nearby sources clustering, anisotropy?

11

N Busca, WG-4, Aug 29 Allard et al. astro-ph/0605327

Transition at 1019 eVTransition < 1018 eV

12

Where is transition to extragalactic CR? Original Fly’s Eye (1993): transition coincides with ankle

3 EeV

G. Archbold, P. Sokolsky, et al.,Proc. 28th ICRC, Tsukuba, 2003

HiRes new composition result: transition occurs before ankle

or 0.3 EeV ?

13

A & B galactic components + extra-galactic Hillas, J.Phys.G 31 (2005) R95-131

14

De Marco, Blasiand Olinto 2006

15 years ofOperation of Auger South

Density of sources of extra-galactic cosmic rays determines post-GZK flux

15

UHE/EHE fluxes

GZK (hard, high Emax) - Kalashev et al 2002GZK (strong evolution) - ibidGZK (standard) - Yoshida Teshima 1993TD - Sigl et al 1999Zburst – Yoshida et al 1998

16

Multi-messenger Astronomy

• Particle, Nuclear & Gravitational Wave Astrophysics in the decadal survey (2000)– Theme: multi-messenger astronomy (Barwick)

• Cosmic rays (Blasi, Cronin)

• Gamma-ray astronomy (Lorenz, Krennrich)

• Neutrino astronomy (Coyle, Hanson)

• Gravitational waves (Cornish, Weiss)

• Dark Matter

17

Future: … transition to a ‘multi-messengers’ approach

Elisa Resconi, WG-4, Aug 29

- IceCube as a ( half ) – All-Sky-Monitor in neutrino:

- Filed of view: northern sky - High duty cycle

- Idea: use neutrinos in order to trigger gamma-ray telescopes(see E. Bernardini, “The multimessenger approach..” Barcelona, 07.06)

- Critical points under discussion:- selection of the sources: the phenomenology is limited- statistical interpretation of possible coincidences: -ray flare rate, catalogue … - blindness of the data:

minimal impact with off-line analysis

- Status: TEST run between AMANDA and Magic of 3 months approved.

18

Mkn180PG1553

2006

NOT ALL SOURCES IN INNER GALACTIC PLANE SHOWN

KIFUNE PLOT

ALL SOURCES HAVE SPECTRA EXTENDING ABOVE 1 TEVRARELY SPECTRA EXTEND ABOVE 10 TEV (CRAB->80 GEVMANY AGNS HAVE A SOFT SPECTRUM

E Lorenz, Aug 28

19

Study of Galactic Sources with H.E.S.S.Study of Galactic Sources with H.E.S.S.Dieter HornsDieter Horns**

for the H.E.S.S. collaborationfor the H.E.S.S. collaborationhttp://www.mpi-hd.mpg.de/hfm/hesshttp://www.mpi-hd.mpg.de/hfm/hess*Institute for Astronomy and Astrophysics, *Institute for Astronomy and Astrophysics,

Eberhard Karls Universität TübingenEberhard Karls Universität Tübingen

WG-1, Aug 28

Madison, Aug. 29 2006TeV Particle Astrophysics II--> construct VERITAS-4 at FLWO

VERITAS-2 at basecamp of FLWO

F Krennrich

Madison, Aug. 29 2006TeV Particle Astrophysics II

VERITAS-4 at basecamp of FLWO

Construction finished by Dec. 2006, operate 2007-2009, move in 2009F Krennrich

TeV II, Particle AstrophysicsMadison, Aug 31, 2006

Tom Gaisser 22

E Lorenz, Aug 28

TeV II, Particle AstrophysicsMadison, Aug 31, 2006

Tom Gaisser 23

SCAN OF THE NORTHERN TEV SKY BY MILAGRO

RIGHT ASC.

DECL.

6

HOTSPOT ATRA 79.6, DEC 25.8CLOSE TOEGRET 3EGJ0320+25564.5

Madison - August 2006Jordan Goodman - The Milagro CollaborationMilagro

A Closer Look at the Galactic Plane

GP diffuse excess clearly visible from l=25° to l=90° Cygnus Region shows extended excess FCygnus ~ 2 x Fcrab

120 square degrees l (65,85), b (-3,3)

Sig

nifi

can

ce

Flux (> 12.5 TeV) = 1.59 ± 0.30stat ± 0.32sys x 10-11 cm-2 s-1 sr-1 (excluding new source & assuming E-2.6)

TeV II, Particle AstrophysicsMadison, Aug 31, 2006

Tom Gaisser 25

Chuck Dermer’s rule of thumb

“Best bet” Sources detection probability Gaisser, Halzen, Stanev 1995

Dermer & Atoyan NJP 2006

10)100/(1.0

,10)(

14

144

TeV

P

km-scale telescope (IceCube) has best detection probability near 100 TeV

Number of detected:

100 TeV

N

2424

14

2210

14

1010

/160

)(10)(

cmergscmergsN

ergs

cmergscmPN

at ~100 TeV

TeV II, Particle AstrophysicsMadison, Aug 31, 2006

Tom Gaisser 26

Is Cygnus region detectable in ?

• I (>12.5 TeV) = 1.6 x 10-11 (cm2 s sr)-1

nF(n) = E dN/dlnE = 10-4 erg / (cm2 yr)

if ( + 1) = 2.6 (differential spectral index)

• Problems– Diffuse source higher background– Factor 3 reduction due to oscillations

TeV II, Particle AstrophysicsMadison, Aug 31, 2006

Tom Gaisser 27

Chuck Dermer’s Summary

- Connection -ray fluence (extrapolated to 100 TeV) > 10-4 ergs cm-2 required for detection for optically thin sources

[ typically requires few years per source (TG) ]

Best bet for detectable neutrino point source with km-scale detector (IceCube): v from photohadronic processes

Blazar AGNs (FSRQs, not BL Lacs) [ few per year (TG) ]

Surrounding target radiation field; 1 PeV neutrinoGRBs Signatures of hadronic acceleration in GRBs [ few per year (TG) ]Microquasars (?) probably too weak

Best bet for detectable diffuse neutrino sources:GZK neutrinos from cosmological sources of UHECRs (GRBs)Cosmic-ray induced galactic diffuse emission

28

Effect of oscillations

29

Sensitivity to

TeV

Part

icle

Ast

rop

hys

ics

II

IceC

ub

e S

tatu

s an

d F

utu

reT

eV

Part

icle

Ast

rop

hys

ics

IIM

ad

ison

, W

I A

ug

28

-31

, 2

00

6

» 30 «

AMANDA

677 analog OMs deployed along 19 strings

10 strings 1997 (AMANDA B10) 3 strings 1998 (AMANDA B13) 6 strings 2000 (AMANDA II)

Analog PMT signals using electrical and optical transmission lines.

200 m diameter, 500 meters height; AMANDA II encompasses 20 Mton instrumented ice volume.

AMANDA will remain operational and form IceCube Inner Core Detector for low E physics (~ 100 GeV)

IceCube surrounding strings provide effective veto – lower background and can push AMANDA energy threshold down.

Conventional TDC / ADC technology for AMANDA has been entirely replaced by TWR system.

Beginning 2007 season, AMANDA / IceCube data streams will be conjoined; detector subsystems will share trigger information.

K Hanson

TeV

Part

icle

Ast

rop

hys

ics

II

IceC

ub

e S

tatu

s an

d F

utu

reT

eV

Part

icle

Ast

rop

hys

ics

IIM

ad

ison

, W

I A

ug

28

-31

, 2

00

6

» 31 «

Point Sources and Diffuse Fluxes in the IceCube Era

ave

rag

e fl

ux

up

per

lim

it [

cm-2s-1

]

sin

AMANDA-B10

AMANDA-II

IceCube 1/2 year

*

08/2006 Julia Becker, Universität Dortmund TeV particle astrophysics, Madison

Model-dependence of limit

Not always E-2 Energy range of limits change with spectral

index , E-

Higher energies for flatter spectra

E-1E-3

E-2

log(E/GeV)

log

(dN

/d

E*E

2)

TeV

Part

icle

Ast

rop

hys

ics

II

IceC

ub

e S

tatu

s an

d F

utu

reT

eV

Part

icle

Ast

rop

hys

ics

IIM

ad

ison

, W

I A

ug

28

-31

, 2

00

6

» 33 «

IceCube Events

Neutrino Candidate Joint IceTop-InIceIceTop /w/ Reco

34

Downgoing muon

M Bouwhuis WG-4, Aug 29

35

Atmospheric muon bundles

M Bouwhuis WG-4, Aug 29

TeV II, Particle AstrophysicsMadison, Aug 31, 2006

Tom Gaisser 36

GW

N Cornish, Aug 30

TeV II, Particle AstrophysicsMadison, Aug 31, 2006

Tom Gaisser 37N Cornish, Aug 30

TeV II, Particle AstrophysicsMadison, Aug 31, 2006

Tom Gaisser 38

WIMP Dark Matter

World-best limit today

CDMS II 2007

SuperCDMS Phase C 1000 kg of Ge

SuperCDMS 25kg 25 kg of Ge 2011

SuperCDMS Phase B 150 kg of Ge

ZEPLIN IEDELWEISSZEPLIN 2

XENON 10

DAMA

10-45 cm2

10-47cm2

10-46cm2

Direct searches: Cabrera, Aprile Indirect searches: Ullio

Indirect searches: from Sun

TeV II, Particle AstrophysicsMadison, Aug 31, 2006

Tom Gaisser 39

New experiments for knee to ankle

• KASCADE-Grande (e / )

• Tunka (air Cherenkov)

• TALE (hybrid)

• LOPES (radio)

• IceCube ( e / energetic )– Primary E to ~1017 eV now– to ~1018 eV when complete

FD Aperture…SD Aperture…Hybrid aperture:

Hybrid aperture is determined by FD since SD single-tank TOT trigger has low threshold.

(Observatory trigger (T3) for hybrids is initiated by the FD and tank triggers are collected)

(aperture as of October, 2004)Bellido et al. (Auger Collab) 29th ICRC HE15 (2005)

single-tank TOT

TeV II, Particle AstrophysicsMadison, Aug 31, 2006

Tom Gaisser 41

A HaungsAug 28

LOPES & KASCADE Grande

Haungs et al. 2006; Badea et al. 2005; Apel et al. (LOPES coll.), Astropart.Phys. 2006, in press

(not corrected for geomagnetic angle)

LOFAR @ AugerNext step: Radio @ AUGER

First on-site tests starting this fall!

TeV II, Particle AstrophysicsMadison, Aug 31, 2006

Tom Gaisser 44

TeV II, Particle AstrophysicsMadison, Aug 31, 2006

Tom Gaisser 45

Air Showers with IceCube

IceTop

TeV II, Particle AstrophysicsMadison, Aug 31, 2006

Tom Gaisser 46

2006 (16 stations + 9 strings): 0.5% of full IceCube

What we have now

TeV II, Particle AstrophysicsMadison, Aug 31, 2006

Tom Gaisser 47

Waveforms and lateral distribution

A

B

C

AB

C

X. Bai

TeV II, Particle AstrophysicsMadison, Aug 31, 2006

Tom Gaisser 48

Fluctuations:

1. Fluctuations in response of a tank to energy deposition is smaller than

intrinsic fluctuations in the shower front

Between 2 DOMs

Between two tanks

2. Using two nearby tanks, we can measure time & density fluctuations and assign the

weights in maximum-likelihood fittings.

X. Bai

South PoleNovember 27, 2005

Tom Gaisser 49

Muon / electron ratio reflects nuclear composition of primaries

Calculations of Ralph Engel, presented at Aspen, April, 2005KASCADE-Grande

IceCube

Astroparticle Physics:Radio Detection of Particles

Cosmic Rays in atmosphere:Geosynchrotron emission (10-100 MHz)Radio fluorescence and Bremsstrahlung (~GHz)Radar reflection signals (any?)VLF emission, process unclear (<1 MHz)

Neutrinos and cosmic rays in solids: Cherenkov emission (100 MHz - 2 GHz)polar ice cap (balloon or satellite)inclined neutrinos through earth crust (radio array)CRs and Neutrinos hitting the moon (telescope)

Acoustic (and radio) for UHE

L Thompson Aug 30

52

prel

imin

ary

53

π+π-

C.Alt et al. hep-ex/0606028

NA49: p+C @158 NA49: p+C @158 GeVGeV

TeV II, Particle AstrophysicsMadison, Aug 31, 2006

Tom Gaisser 54

T. Han prospective of LHC era

• Hadronic physcis with cosmic rays not hopeful

• Neutrinos of more interest

• Forward physics at LHC could clarify cascade physics for CR

TeV

Part

icle

Ast

rop

hys

ics

II

IceC

ub

e S

tatu

s an

d F

utu

reT

eV

Part

icle

Ast

rop

hys

ics

IIM

ad

ison

, W

I A

ug

28

-31

, 2

00

6

» 55 «

2005, 2006, 2007 Deployments

AMANDA

IceCube string and IceTop station deployed 12/05 – 01/06

IceTop station only 2006

604 DOMs deployed to date

Next year looking for ≥ 12 strings. IceTop will be backed off to remain in line with hole deployment

Want to achieve steady state of 14 strings / season.

21

3029

40

50

3938

4748

49

595857

6667

74

65

73

8079

46

56

72

IceCube string and IceTop station deployed 01/05

IceCube string and IceTop station to be deployed 12/06 – 01/07

Recommended