Superconducting Proximity Effect in Quantum-Dot Systems · 2013-10-04 · Michele Governale VU...

Preview:

Citation preview

Superconducting Proximity Effect in

Quantum-Dot Systems

Jurgen Konig

Institut fur Theoretische Physik

Universitat Duisburg-Essen

– p. 1

Transport through S-N and S-I-S Interfaces

BCS superconductivity: pair potential ∆ = g〈c−k↓ck↑〉

quasiparticles with gap |∆| in density of states

Cooper-pair condensate

subgap transport

Andreev reflection

S N

V

Cooper pair breaks/forms

Josephson current

S S

transfer of Cooper pairs

Jjos(Φ) = Jc sinΦ– p. 2

QDs Coupled to Superconductors - Exps

carbon nanotube quantum dot

Buitelaar, Nussbaumer, Schonenberger, PRL ’02; Cleziou, Wernsdorfer, Bouchiat,

Ondarcuhu, Monthioux, Nature Nanotech. ’06; Jarillo-Herrero, van Dam,

Kouwenhoven, Nature ’06; Jorgensen, Grove-Rasmussen, Novotny, Flensberg,

Lindelof, PRL ’06; Hermann, Portier, Roche, Levy Yeyati, Kontos, Strunk, PRL ’10; Pillet,

Quay, Morfin, Bena, Levy Yeyati, Joyez, Nature Phys. ’10; . . .

quantum dot in InAs nanowire

van Dam, Nazarov, Bakkers, De Franceschi, Kouwenhoven, Nature ’06; Hofstetter,

Csonka, Nygard, Schonenberger, Nature ’10; . . .

InAs quantum dot with Al electrodes

Buizert, Oiwa, Shibata, Hirakawa, Tarucha, PRL ’07; Deacon, Tanaka, Oiwa, Sakano,

Yoshida, Shibata, Hirakawa, Tarucha, PRL ’10; . . .

quantum dot in graphene

Dirks, Hughes, Lal, Uchoa, Chen, Chialvo, Goldbart, Mason, Nature Phys. ’11– p. 3

QDs Coupled to Superconductors - Thy

Andreev and multiple Andreev reflections through QDs

Levy Yeyati, Cuevas, Lopez-Davalos, Martin-Rodero, PRB ’97; Fazio,

Raimondi, PRL ’98, PRL ’99; Kang, PRB ’98; Schwab, Raimondi, PRB ’99;

Johansson, Bratus, Shumeiko, Wendin, PRB ’99; Clerk, Ambegaokar,

Hershfield, PRB ’00; Cuevas, Levy Yeyati, Martin-Rodero, PRB ’01; . . .

transport in Kondo regime

Clerk, Ambegaokar, PRB ’00; Avishai, Golub, Zaikin, PRB ’03; Choi, Lee,

Kang, Belzig, PRB ’04; Siano, Egger, PRL ’04; Sellier, Kopp, Kroha, Barash, PRB

’05; Nussinov, Shnirman, Arovas, Balatsky, Zhu, PRB ’05; Bergeret, Levy Yeyati,

Martin-Rodero, PRB ’06; Lopez, Choi, Aguado, PRB ’07; Karrasch, Oguri,

Meden, PRB ’08; Karrasch, Meden, PRB ’09; . . .

Josephson current through QD with spin-orbit coupling

Dell’Anna, Zazunov, Egger, Martin, PRB ’07; Zazunov, Egger, Jonckheere,

Martin, PRL ’09; . . .

– p. 4

Nature 442, 667 (2006)

quantum dot in InAs nanowire

– p. 5

Nature 442, 667 (2006)

Josephson coupling due to

cotunneling

Jjos ∝ Γ2

π-state for odd occupation

theory:

van Dam et al., Nature ’06

Glazman, Matveev, JETP Lett. ’89

Rozhkov, Arovas, Guinea, PRB ’01

– p. 5

How to Establish a Josephson Coupling?

higher-order tunneling (cotunneling)

Jjos ∝ Γ2

(equilibrium) proximity effect in single-level QD

finite pair amplitude: 〈d↓d↑〉 6= 0

requirement: E0 ≈ E↑↓ < E↑ = E↓ ⇒ 0 < ǫ ≈ −U/2

impossible for large charging energy, U ≫ kBT,Γ

nonequilibrium proximity effect in single-level QD

finite pair amplitude: 〈d↓d↑〉 6= 0

third, normal electrode drives dot out of equilibrium

– p. 6

Model: Anderson Hamiltonian

ΓS ΓS

J

ΓN

L JR

µ N

−Φ/2Φ/2

N

QDE = 0 ǫ ǫ 2ǫ+ U

quantum dot: HD =∑

σ ǫd†σdσ + Un↑n↓

leads: Hη =∑

kσ ǫkc†ηkσcηkσ −

k

(

∆ηc†ηk↑c

†η−k↓ +H.c.

)

superconducting leads: phase biased with ±iΦ/2

normal lead: voltage biased with µN

tunneling: Htunn,η = Vη

(

c†ηkσdσ +H.c.)

⇒ charging energy, superconductivity, and nonequilibrium– p. 7

Diagrammatic Transport Theory

Pala, Governale, J.K., NJP ’07; Governale, Pala, J.K., PRB ’08

general idea: reduced density matrix for dot

– integrate out leads: contractions 〈c†ηkσcηkσ〉 and 〈cηkσc†ηkσ〉

– expand in tunnel coupling, treat interaction exactly

ρ0

A

0 00

0

0

0 000

L R L R L

LR

L

changes due to superconductivity:

– anomalous contractions: 〈c†ηkσc†η−k−σ〉 and 〈cη−k−σcηkσ〉

– finite pair amplitude on dot: 〈d↓d↑〉 6= 0

00 0

0

– p. 8

2S-dot-N in Nonequilibrium

ΓS ΓS

J

ΓN

L JR

µ N

−Φ/2Φ/2

N

QD

Governale, Pala, J.K., PRB ’08

|∆| → ∞: all orders in ΓS

first order in ΓN

isospin representation

Ix = Re〈d↓d↑〉; Iy = Im〈d↓d↑〉; Iz =〈d†↑d↑ + d†↓d↓〉 − 1

2

kinetic equation for isospin:dI

dt= A−R · I+ I×B

how to proximize the dot:

combined S-dot-N Andreev reflection: A(1)

Andreev reflection at S-dot interface: I×B(0)

– p. 9

Andreev bound states

without SC: resonances at ǫ and ǫ+ U

with SC: Andreev bound-state energies (for ∆ → ∞):

EA,γ′,γ = γ′U

2+ γ

(ǫ+ U/2)2 + Γ2Scos2(Φ/2) with γ, γ′ = ±

-1.5 -1 -0.5 0 0.5ε / U

-1.5

-1

-0.5

0

0.5

1

1.5

ΕΑ

,γ,γ

’ / U

EA,+,+

EA,+,-

EA,-,+

EA,-,-

four resonances

avoided crossing

at δ = 2ǫ+ U = 0

with gap 2ΓS| cos(Φ/2)|

– p. 10

– p. 11

– p. 12

Andreev Bound States for Finite ∆

Futterer, Swiebodzinski, Governale, J.K., PRB ’13

resummation scheme for finite ∆

exact for ∆ → ∞

very nice agreement with NRG

Martin Rodero, Levy Yeyati, JPCM ’12

much better than Hartree Fock

– p. 13

Josephson Current JL − JR

ΓS/U = 0.1

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5

−4

−2

0

2

4

µN/U

hJjos/(2eΓN)

ǫ/U

(a)

ΓS/U = 0.5

−1.5

−1

−0.5

0

0.5

1

1.5

−20

−10

0

10

20

−1.5 −1 −0.5 0 0.5

µN/U

hJjos/(2eΓN)

ǫ/U

(a)

ΓS/U = 1

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5

−40

0

40

80

µN/U

hJjos/(2eΓN)

ǫ/U

µN/U

hJjos/(2eΓN)

ǫ/U

(a)(a)

equilibrium Josephson current suppressed by charging

nonequilibrium Josephson current for finite µN

π-transition driven by ǫ or µN

Andreev bound-state energies:

EA,γ′,γ = γ′U2 + γ√

(ǫ+ U/2)2 + Γ2Scos2(Φ/2) with γ, γ′ = ±

Governale, Pala, J.K., PRB ’08– p. 14

Andreev Current JL + JR

ΓS/U = 0.1

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5

−0.4

−0.2

0

0.2 0.4

µN/U

ǫ/U

hJand/(2eΓN) (b)

ΓS/U = 0.5

0

−0.4

−0.2

0.2

0.4

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5

µN/U

ǫ/U

hJand/(2eΓN) (b)

ΓS/U = 1

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5

−0.4

−0.2

0

0.2

0.4

µN/U

ǫ/U

hJand/(2eΓN) (b)

Andreev current probes nonequilibrium proximity effect

maximal around ε = −U/2

Andreev bound-state energies:

EA,γ′,γ = γ′U2 + γ√

(ǫ+ U/2)2 + Γ2Scos2(Φ/2) with γ, γ′ = ±

Governale, Pala, J.K., PRB ’08

– p. 15

Shot Noise Reveals Proximity Effect

Braggio, Governale, Pala, J.K., SSC ’11

ΓSΓNSN QD

off resonance (|δ| ≫ ΓS)

Cooper pair cotunneling

Poissonian transfer of 2e

Fano factor F = 2

on resonance (|δ| ≪ ΓS)

Cooper pair oscillations,

interrupted by SET

Poissonian transfer of e

Fano factor F = 1

a)

−1.5 −1 −0.5 0 0.5

−1.5

−1

−0.5

0

0.5

1.5

1

0.5

1

1.5

2

F 3

−1

0

1

F 2

ǫ/U

µ = 1.5Uµ = 0.5U

µ/U

hκ1/(eΓN )

b)

1

2

3

4

Skew

ness

Fano f

acto

r

Andreev current

– p. 16

Proximity by AC Driving

Moghaddam, Governale, J.K., PRB ’12

off resonant: |δ| ≫ ΓS ⇒ |Iz| =12

no bias voltage: µ = 0

ac driving: ΓS(t) = ΓS + δΓS cosΩt

⇒ B(t) acts on I ⇒ Rabi oscillations

DC current into N lead

resonance at Ω = δ

−4 −2 0 2 4

Ω/U

0.0

0.5

1.0

I N[(e/h)Γ

N]

δ/U = 3

δ/U = 2

δ/U = 1

– p. 17

Cooper Pair Splitter with Double Dots

double dot in InAs quantum wire

Hofstetter, Csonka, Nygard, Schonenberger, Nature ’09

Das, Ronen, Heiblum, Mahalu, Kretinin, Shtrikman, Nat. Comm. ’12

double dot in CNT

Hermann, Portier, Levy Yeyati, Kontos, Strunk, PRL ’10

→ spin-entangled electron pair in normal leads– p. 18

Nonlocal Proximity Effect in Double Dots

Eldridge, Pala, Governale, J.K., PRB ’10

ΓNL

ΓSL ΓSR

ΓNR

N RQD

S

N L QD

non-local pair amplitude:

〈dL↑dR↓ − dL↓dR↑〉 6= 0

negative bias µS < 0:

transport through singlet

Cooper pair splitter

positive bias µS > 0:

spin triplet occupied

triplet blockade

µ/U

δ/U

hIS/(eΓN )

−1.5

−1

−0.5

0

0.5

1

1.5

−2 −1 0 1 2

−1

0

0.6

– p. 19

Unconventional Superconductivity

pair amplitudes: Fiσ,i′σ′(t) = 〈Tciσ(t)ci′σ′(0)〉

symmetry: under exchange of spin/orbital/time

even-singlet: odd/even/even, BCS

even-triplet: even/odd/even, 3He, Sr2RuO4

odd-triplet: even/even/odd, FM-SC hybids

odd-singlet: odd/odd/odd, ?

even/odd - singlet/triplet pairing in double dots?

– p. 20

Unconventional SC in Double Dots

Weiss, Sothmann, Governale, J.K., in preparation

.

.

+µ −µ

Sµ = 0

QD

B

QD

B

S B

S

0

T

T

T

+

0

− ΓS

∆B

large B field: T− occupied

supercond. lead: 0 ↔ S

inhom. B field: S ↔ T 0

noncol. B field: T 0 ↔ T−

triplet pairing detectable in transport– p. 21

Superconducting Proximity Effect in . . .

quantum dot + superconductor

0-π-transitions for Josephson current

local and non-local Andreev transport

double dot + superconductor

non-local Cooper pairs

triplet blockade

double dot + superconductor + magnetic field

non-local unconventional pairing

– p. 22

Collaborators

Alessandro Braggio Uni Genova, Italy

James Eldridge VU Wellington, New Zealand

Rosario Fazio SNS Pisa, Italy

David Futterer Uni Duisburg-Essen, Germany

Michele Governale VU Wellington, New Zealand

Bastian Hiltscher Uni Duisburg-Essen, Germany

Ali Moghaddam Uni Duisburg-Essen, Germany

Marco Pala CNRS Grenoble, France

Bjorn Sothmann Uni Geneva, Switzerland

Janine Splettstoesser RWTH Aachen, Germany

Jacek Swiebodzinski Uni Duisburg-Essen, Germany

Fabio Taddei SNS Pisa, Italy

Stephan Weiß Uni Duisburg-Essen, Germany– p. 23

extra slides

– p. 24

Proximity by AC Driving

Moghaddam, Governale, J.K., PRB ’12

off resonant: |δ| ≫ ΓS ⇒ |Iz| =12

no bias voltage: µ = 0

ac driving: ΓS(t) = ΓS + δΓS cosΩt

⇒ B(t) acts on I ⇒ Rabi oscillations

ac-induced proximity

resonances at Ω = δ±ΓS

−4 −2 0 2 4

Ω/U

−0.25

0.0

0.25

∆QD

δ/U = 3

δ/U = 2

δ/U = 1

– p. 25

Proximity by AC Driving

Moghaddam, Governale, J.K., PRB ’12

off resonant: |δ| ≫ ΓS ⇒ |Iz| =12

no bias voltage: µ = 0

ac driving: ΓS(t) = ΓS + δΓS cosΩt

⇒ B(t) acts on I ⇒ Rabi oscillations

DC current into N lead

resonance at Ω = δ

−4 −2 0 2 4

Ω/U

0.0

0.5

1.0

I N[(e/h)Γ

N]

δ/U = 3

δ/U = 2

δ/U = 1

– p. 25

Quantum Dot + FM + SC

Sothmann, Futterer, Governale, J.K., PRB ’10

ΓS

ΓL ΓR

S

+µ −µ

µ = 0

.

.

S

QDF F

non-collinear fm leads

spin accumulation on QD

fm leads → exchange field

current into superconductor (symmetric in µ)

very sensitive to exchange field

indication of unconventional pairing

– p. 26

Recommended