Stiffness method for 2D frames

Preview:

DESCRIPTION

Stiffness method for 2D frames

Citation preview

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

1

Stiffness method for 2D frames

l  Introduction and nomenclature l  Element internal forces and displacements l  Element local stiffness matrix l  Transformation of internal forces and displacements l  Element global stiffness matrix l  Nodal equilibrium and compatibility l  Direct assembly of the global stiffness matrix l  Introduction of support/reactions l  Solution of the equilibrium equations l  Calculation of internal forces l  Analysis of beams l  Analysis of continuous beams l  Intermediate loading

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

Examples of frames in Civil Engineering

28/02/2012

Stiffness Method (I: frames)

2

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

3

Introduction

X

Y

OGlobal coordinate axes

3 Degrees Of Freedom (DOF) per node

External force 2

3

1

2 3

4

Element

Node

1

l  2D frames will be analysed (3 DOF per node).

l  Consider initially (forces and moments) to be applied at nodes

l  Divide and conquer approach:

l  Every frame member will be analysed sequentially

l  Finally, all the element information will be assembled

External moment

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

4

Basic nomenclature

2

3

1

2 3

4

1

X

Y

O Global coordinate axes 1

2

1

x

yo

Local coordinate axes

l  Define global coordinate axes

l  Define nodes (joints) ; elements (members)

l  Define arbitrarily element orientation

l  Define local coordinate axes per element

OXY

2 3

2oxy

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

l  Contrary to a truss element (which only translates along its local axis ), a frame element translates and bends due to the shear force and the bending moment

l  Notice that local displacements now involve translations and per node as well as rotation

l  These element internal forces can be arranged in a vector format

28/02/2012

Stiffness Method (I: frames)

5

Frame element kinematics

XO

Y

Initial shape

Displaced shape

aiaiaiaajajaj

uv

uv

θ

θ

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥

= ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

u

Local displacements

i

j

ax

y !i

!j

aiu

aju

aiv

ajq

ajv

aiq

ox

uq

v

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

6

Frame element internal forces

XO

Y

l  Consider a single frame element extracted from a general frame structure and establish its Free Body Diagram (FBD)

l  The frame element will be subjected to the standard internal forces: axial force, shear force and bending moment

l  Recall the classical sign convention

NN SS BMBM

Initial shape Displaced shape

i

j

ax

y!i

!j

ajBM

ajS

ajN

aiN

aiS

aiBM

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

7

Frame element kinematics analysis

XO

Y

l  The kinematics of the frame element can be split into two consecutive stages:

l  STAGE I: due to axial deformation

l  STAGE II: due to shear and bending deformation

i

j

ax

y !i

!j

aiu

ajua

iv

ajq

ajv

aiq

!!j

!!i

Initial shape

Final displaced shape

Intermediate shape STAGE I

STAGE II

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: trusses)

8

Axial deformation: constitutive law l  Similarly as it was carried out for a truss element, the following

relationship can be derived:

( )a a

a a a a a a a aj ia

E AN A E A u uL

σ ε= = = −

a aj iaa

u uL

ε−

=

a a aEσ ε=

Linear strain

Direct stress

Axial force Local displacements

Element geometric and mechanical properties

i

j

ax

XO

Y

y!i

j 'aN

aN

aiu

aju

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

l  Recall that distributed loads are not considered yet, thus:

28/02/2012

Stiffness Method (I: frames)

9

Shear and bending deformation: constitutive law (I)

XO

Y

a!i

j ¢

aiv

ajq

ajv

aiq

j ¢¢

i¢¢

xy

BM (x) = Ea (x)I a (x)R(x)

! Ea (x)I a (x)d2y(x)dx2

l  Following Euler beam theory, the following relationship can be established between the bending moment and the radius of curvature :

BMR

l  For a frame element with constant section and same material throughout,

BM (x) = EaI a d2y(x)dx2

l  From the equilibrium of a beam section, it follows:

dBM (x)dx

= S(x)

dS(x)dx

= !w(x)

dx

S S dS+

BM dBM+BM

w

w(x) = 0

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

10

Shear and bending deformation: constitutive law (II)

l  Combining the relationships previously derived, it yields:

l  This is the classical Ordinary Differential Equation (ODE) for the Euler beam theory, whose solution is the cubic polynomial:

EaI a d4y(x)dx4

= 0

3 2( ) ; , , ,y x ax bx cx d a b c d= + + + Ρ

l  Boundary Conditions (BCs) are required to calculate the unknown constants , , ,a b c d

1

11

1

Case 1 Case 3

Case 4 Case 2

l  Let us analyse the following four deformation cases:

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

11

Shear and bending deformation: constitutive law (III)

l  For the deformation case 1, the BCs are as follows:

(0) 1y =1

0

( ) 0x

dy xdx =

=

( ) 0ay L =

( ) 0ax L

dy xdx =

=

3 2( )y x ax bx cx d= + + +l  Substituting the BCs into the cubic polynomial

it yields: y(x) = 2

La( )3x3 ! 3

La( )2x2 +1

l  The internal shear force and bending moment result in:

BM (x) = EaI a d2y(x)dx2

= EaI a 12

La( )3x ! 6

La( )2"

#

$$

%

&

''

S(x) = EaI a d3y(x)dx3

= EaI a 12

La( )3!

"

##

$

%

&&

1 ( )26( )

a aa

aE IBM LL

=

( )312( )

a aa

aE IS LL

=

a

( )26(0)

a a

aE IBML

= -­‐

( )312(0)

a a

aE ISL

=

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

12

Shear and bending deformation: constitutive law (III)

l  For the deformation case 2, the BCs are as follows:

(0) 0y =

0

( ) 1x

dy xdx =

=

( ) 0ay L =

( ) 0ax L

dy xdx =

=

3 2( )y x ax bx cx d= + + +l  Substituting the BCs into the cubic polynomial

it yields: ( )

3 22

1 2( ) aay x x x xLL

= -­‐ +

l  The internal shear force and bending moment result in:

BM (x) = EaI a d2y(x)dx2

= EaI a 6

La( )2x ! 4

La

"

#

$$

%

&

''

S(x) = EaI a d3y(x)dx3

= EaI a 6

La( )2!

"

##

$

%

&&

BM (La ) = 2EaI a

La

S(La ) = 6EaI a

La( )2

a

BM (0) = ! 4EaI a

La

S(0) = 6EaI a

La( )2

1

1

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

13

Frame element local internal forces

XO

i

j

ax

Y y

Initial shape

Displaced shape

!i

!j

l  Consider a single frame element extracted from a general frame structure and establish its Free Body Diagram (FBD)

l  Element local internal forces (notice the sign convention) can be introduced representing the axial, shear and bending moment effects

l  These element internal forces can be arranged in a vector format

axif

axjf

ayif

ajM

ayjf

aiM

a axi ia ayi ia ai iaa axj ja ayj ja aj j

f Nf SM BMf Nf SM BM

⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−

= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

f

Local internal forces

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

14

Element local forces-local displacements relationship

l  We must establish a relationship between the local internal forces and the local displacements

l  This relationship will define the so called element local stiffness matrix

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )

a a a a a aii ii ii ij ij ijxx xy x xx xy x

aa a a a a axiii ii ii ij ij ijyx yy y yx yy ya

yia a a a a a

a ii ii ii ij ij ijx y x yia a a a a a axj ji ji ji jj jj jjxx xy x xx xy xayj a aa ji jiyx yyj

k k k k k kf k k k k k kf

k k k k k kMf k k k k k kf

k k kM

θ θ

θ θ

θ θ θθ θ θ θθ

θ θ

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥

=⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

aiaiaiajaja a a aaji jj jj jjy yx yy yj

a a a a a aji ji ji jj jj jjx y x y

uv

uv

k k k

k k k k k kθ θ

θ θ θθ θ θ θθ

θ

θ

⎡ ⎤⎢ ⎥

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦

⎢ ⎥⎢ ⎥⎣ ⎦

a a a=f k ua a a ai ii ij ia a a aj ji jj j

⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

f k k uf k k u

l  The same relationship can be presented in a more compact matrix notation as:

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

15

Stiffness coefficients (I)

000100

aiaiaiaajajaj

uv

uv

θ

θ

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

u

a

a a

aE AL

1

00

00

a a

a axiayiaiaa a axja ayjaj

E Af LfMf E Af LM

⎡ ⎤−⎢ ⎥⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥= =⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥⎣ ⎦

f

( )ajj xxk

a a

aE AL

l  The term represents the horizontal force at end caused by a unit displacement at end and zero displacement/rotation at the rest of the degrees of freedom

jj

( )ajj xxk

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

16

Stiffness coefficients (II)

000010

aiaiaiaajajaj

uv

uv

θ

θ

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

u

a

( )26 a a

aE IL( )3

12 a a

aE IL

( )26 a a

aE IL

( )312 a a

aE IL

1

( )

( )

( )

( )

3

2

3

2

012

6

012

6

a a

aaxi

a aayi

aaiaaxja a ayja aj

a a

a

E I

Lf

E IfLM

ff E IM L

E I

L

⎡ ⎤⎢ ⎥⎢ ⎥−⎢ ⎥⎢ ⎥⎡ ⎤⎢ ⎥⎢ ⎥−⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥⎢ ⎥= =⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥−⎢ ⎥

⎢ ⎥⎢ ⎥⎣ ⎦

f( )aij yyk

l  The term represents the vertical force at end caused by a unit displacement at end and zero displacement/rotation at the rest of the degrees of freedom

ij

( )aij yyk

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

17

Stiffness coefficients (III)

001000

aiaiaiaajajaj

uv

uv

θ

θ

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

u

( )

( )

( )

( )

2

2

06

4

06

2

a a

aaxi

a aayi

aaiaaxja a ayja aj

a a

a

E I

LfE IfLM

ff E IM L

E IL

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥

⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

f( )aji yk

θ

a

2 a a

aE IL

( )26 a a

aE IL

4 a a

aE IL

( )26 a a

aE IL

1

l  The term represents the vertical force at end caused by a unit rotation at end and zero displacement/rotation at the rest of the degrees of freedom

ji

( )aji yk

θ

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

18

Local internal forces-local displacements

3 2 3 2

2 2

3 2 3 2

2 2

0 0 0 0

12 6 12 60 0

6 4 6 20 0

0 0 0 0

12 6 12 60 0

6 2 6 40 0

a axi ia ayi iaiaxjayjaj

EA EAL L

EI EI EI EIf uL L L Lf vEI EI EI EIM L L L Lf EA EA

L LfEI EI EI EIML L L LEI EI EI EIL L L L

⎡ ⎤−⎢ ⎥⎢ ⎥⎢ ⎥−⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ − − −⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥−⎢ ⎥⎣ ⎦

aiajajaj

uv

θ

θ

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

a aa aii iji ia aa aji jjj j

⎡ ⎤⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

k kf uk kf u

a a a=f k u

Element local stiffness matrix Local

forces

Local

displacements

l  The element local stiffness matrix is a 6x6 symmetric matrix

( as ): ( )Ta ak k=

ak

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

19

Transformation of displacements l  The displacements/rotations at each joint of the member are

transformed from local to global coordinate axes

l  Analogously for node j:

00

0 0 1

a a a ai i

a a a a a a ai i i i

a ai i

u c s Uv s c Vθ θ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

u T U

a a aj j=u T U

XOi

xY

y

aiU

aiV

aiu

aaaa

ai

a ai i

ai

uvθ

⎡ ⎤⎢ ⎥

= ⎢ ⎥⎢ ⎥⎣ ⎦

u

ai

a ai i

ai

UVθ

⎡ ⎤⎢ ⎥

= ⎢ ⎥⎢ ⎥⎣ ⎦

U

From global to local displacements

From local to global displacements

l  For node i:

l  where is the so-called transformation matrix aT

sina as α=

cosa ac α=

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

20

Transformation of internal forces

( )00

0 0 1

a a a aXi xi

Ta a a a a a ai Yi yi i

a ai i

F c s fF s c fM M

⎡ ⎤ ⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

F T f

l  The local forces at each joint of the member are transformed from local to global coordinate axes

l  is the transpose of the transformation matrix

xy

axif

ayif

aiM

aY iF

aX iF

aiM

Y

X

a

a

a

( )TaT

l  Analogously for node j:

axi

a axi yi

ai

ffM

⎡ ⎤⎢ ⎥

= ⎢ ⎥⎢ ⎥⎣ ⎦

f

aXi

a ai Yi

ai

FFM

⎡ ⎤⎢ ⎥

= ⎢ ⎥⎢ ⎥⎣ ⎦

F

From global to local forces

From local to global forces

l  For node i:

( )Ta a aj j=F T f

sina as α=

cosa ac α=

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

21

From local to global element stiffness matrix

F a =Fia

Fja

!

"

##

$

%

&&=

T a( )T

03x3

03x3 T a( )T

!

"

####

$

%

&&&&

fia

f ja

!

"

##

$

%

&&

F a =T a( )

T03x3

03x3 T a( )T

!

"

####

$

%

&&&&

kiia kij

a

k jia k jj

a

!

"

###

$

%

&&&

uia

u ja

!

"

##

$

%

&&

F a =T a( )

T03x3

03x3 T a( )T

!

"

####

$

%

&&&&

kiia kij

a

k jia k jj

a

!

"

###

$

%

&&&

T a 03x303x3 T a

!

"

##

$

%

&&

Uia

U ja

!

"

##

$

%

&&

F a =T a( )

Tkiia T a( ) T a( )

Tkija T a( )

T a( )Tk jia T a( ) T a( )

Tk jja T a( )

!

"

####

$

%

&&&&

Uia

U ja

!

"

##

$

%

&&=

Kiia Kij

a

K jia K jj

a

!

"

###

$

%

&&&

Uia

U ja

!

"

##

$

%

&&

Step 1: Global forces-local forces relationship

Step 2: Global forces-local displacements relationship

Step 3: Global forces-global displacements relationship

Step 4: Element global stiffness matrix

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

22

Element global stiffness matrix

i

jaY iF

aX iF

ajq

aiM

aY jF

aX jFajM

ajV

aiq

aiV

aiU

F a = K aU a =Fia

Fja

!

"

##

$

%

&&=

Kiia Kij

a

K jia K jj

a

!

"

###

$

%

&&&

Uia

U ja

!

"

##

$

%

&&

Element Global

Stiffness Submatrices

l  and represent the element global force and displacement vector, respectively

l  The matrix is a 6x6 symmetric ( as ) matrix called the element global stiffness matrix

aK ( )Ta aΚ K=

aF aU

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

23

Nomenclature

i

j

ax

y

,a axi if u

,a axj jf u

XO

i

j

aY

,a aY j jF V

,a aX j jF U,a a

Y i iF V

,a aX i iF U

Global axes

Local axes

Member global internal forces

Member global displacements

Member local displacements

Member local internal forces

l  The Free Body Diagram (FBD) of any frame member can then be expressed both in global and in local axes:

,a ayj jf v

,a aj jM q

,a ayi if v

,a aj jM q

,a ai iM q

,a ai iM q

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

24

Element global stiffness matrix for a general frame member

K a =

EALc2 +12EI

L3s2 EA

L!12EIL3

"

#$

%

&'cs !

6EIL2s

EAL!12EIL3

"

#$

%

&'cs

EALs2 +12EI

L3c2 6EI

L2c

!6EIL2s 6EI

L2c 4EI

L

!EALc2 !12EI

L3s2 !

EAL+12EIL3

"

#$

%

&'cs !

6EIL2s

!EAL+12EIL3

"

#$

%

&'cs !

EALs2 !12EI

L3c2 6EI

L2c

6EIL2s !

6EIL2c 2EI

L

!EALc2 !12EI

L3s2 !

EAL+12EIL3

"

#$

%

&'cs

6EIL2s

!EAL+12EIL3

"

#$

%

&'cs !

EALs2 !12EI

L3c2 !

6EIL2c

!6EIL2s 6EI

L2c 2EI

L

EALc2 +12EI

L3s2 EA

L!12EIL3

"

#$

%

&'cs

6EIL2s

EAL!12EIL3

"

#$

%

&'cs

EALs2 +12EI

L3c2 !

6EIL2c

6EIL2s !

6EIL2c 4EI

L

(

)

******************

+

,

------------------

l  Step 1: Define the global axes

l  Step 2: Label nodes, members, element orientation, local axes per element

l  Step 3: Calculate the angle between the local axes and the global axes

l  Step 4: Compute transformation matrix

l  Step 5: Compute element global stiffness matrix

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

25

Element global stiffness matrix for a beam

l  A particular case of frame elements are continuous beams

l  As local and global axes coincide, the global and local stiffness matrices coincide too, thus:

3 2 3 2

2 2

3 2 3 2

2 2

0 0 0 0

12 6 12 60 0

6 4 6 20 0

0 0 0 0

12 6 12 60 0

6 2 6 40 0

a

EA EAL L

EI EI EI EIL L L LEI EI EI EIL L L L

EA EAL L

EI EI EI EIL L L LEI EI EI EIL L L L

⎡ ⎤−⎢ ⎥⎢ ⎥⎢ ⎥−⎢ ⎥⎢ ⎥⎢ ⎥−⎢ ⎥= ⎢ ⎥−⎢ ⎥⎢ ⎥⎢ ⎥

− − −⎢ ⎥⎢ ⎥⎢ ⎥−⎢ ⎥⎣ ⎦

K

1

1

2

3

45 2 3 41M 2M 3M

2YF 4YF

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

26

Nodal equilibrium and compatibility (I)

3XP

2

1

2

31 3M

11YF

11XF

11M

13YF1

3XF

13M

11YF1

1XF11M1XR

1YR

1M

1

1

3YP

RX1 = FX11

RY1 = FY11

Equilibrium

U1 = 0 =U11Compatibility

V1 = 0 = V11!1 = 0 = !11

M1 = M11

l  Each node and member of the structure must be in equilibrium

l  We analyse the FBD of frame members and joints

Node 1 FBD

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

27

Nodal equilibrium and compatibility (II)

11YF

11XF

11M

13YF1

3XF

13M1

23YF

23XF

23M

22YF2

2XF 22M

223YF

23XF 2

3M

13YF1

3XF

13M 3XP

3M

33YP

3XP

2

1

2

31 3M

3YP

PX3 = FX31 + FX32

PY 3 = FY 31 + FY 32

Equilibrium

U3 =U31 =U32Compatibility

V3 = V31 = V32!3 = !3

1 = !32

M3 = M31 +M3

2

Node 3 FBD

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

28

Nodal equilibrium and compatibility (III)

23YF2

3XF 23M

22YF2

2XF 22M

22XR2YR

2M

22YF2

2XF 22M

2

RX2 = FX22RY 2 = FY 22

Equilibrium U2 = 0 =U22

Compatibility

V2 = 0 = V22

!2 = 0 = !22M2 = M22

3YP

2

1

2

31

3XP

3M

Node 2 FBD

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

29

Assembling equilibrium equations (I)

F11

F31

!

"

##

$

%

&&=

K111 K131

K311 K331

!

"

##

$

%

&&

U1U3

!

"##

$

%&&

11YF

11XF

11M

13YF1

3XF

13M

1 23YF2

3XF 23M

22YF2

2XF 22M

2F22

F32

!

"

##

$

%

&&=

K222 K23

2

K322 K332

!

"

##

$

%

&&

U2U3

!

"##

$

%&&

R1 = F11 = K111 U1 +K131 U3

R2 = F22 = K222 U2 +K23

2 U3

P3 = F31 + F32 = K311 U1 +K331 U3 +K322 U2 +K332 U3

l  Recall the element global stiffness matrix relationships:

l  Combine above formulae with the nodal equilibrium and compatibility relationships derived previously:

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

30

Assembling equilibrium equations (II)

R1R2P3

!

"

###

$

%

&&&=

K111 0 K131

0 K222 K23

2

K311 K322 K331 +K332

!

"

####

$

%

&&&&

U1U2U3

!

"

###

$

%

&&&

ndgof ndgof x ndgof ndgof= F K U

where ndgof: No. of degrees of freedom 2

1

2

31

3XP

3M 3YP

R1 = F11 = K111 U1 +K131 U3R2 = F22 = K22

2 U2 +K232 U3

P3 = F31 + F32 = K311 U1 +K331 U3 +K322 U2 +K332 U3

l  This is the system of nodal global equilibrium equations expressed in terms of the nodal global displacements and global stiffness matrix coefficients:

l  The above expressions can be re-written in matrix format as follows:

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

31

l  Relationship between member global internal forces and member global displacements (element equilibrium and constitutive behaviour)

l  Relationship between member global displacements and nodal global displacements (compatibility equations)

l  Relationship between member global internal forces and external global forces or reactions (equilibrium equations)

Assembled global stiffness matrix (I)

ndgof ndgof x ndgof ndgof= F K U

Assembled Global Displacement Vector

Assembled Global Force

Vector

Assembled Global Stiffness Matrix

l  The matrix is a ndgofxndgof symmetric ( as ) matrix called the assembled global stiffness matrix

K TK=K

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

32

l  A close examination of the assembled equilibrium equations reveals that the assembled global stiffness matrix can be obtained directly

l  The member global stiffness submatrices must be inserted into the assembled global stiffness matrix in the appropriate joint block row and block column according to the indices and

l  This direct procedure avoids having to consider joint equilibrium and compatibility

Assembled global stiffness matrix (II)

K =

K111 03!3 K131

03!3 K222 K23

2

K311 K322 K331 +K332

"

#

$$$$

%

&

''''

aijK

i j

2

1

2

31

3XP

3M 3YP

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

33

Direct assembly of the Global Stiffness Matrix (GSM)

3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3

¥ ¥ ¥

¥ ¥ ¥

¥ ¥ ¥

È ˘Í ˙Í ˙Í ˙Í ˙Í ˙Í ˙Î ˚

0 0 00 0 00 0 0

=K

K=K111 03!3 K131

03!3 03!3 03!3K311 03!3 K331

"

#

$$$$

%

&

''''

K=K111 03!3 K131

03!3 K222 K23

2

K311 K322 K331 +K332

"

#

$$$$

%

&

''''

GSM after member 1

GSM after members 1 & 2

Initial GSM

2

1

2

31

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

Assembled GSM coefficients (I)

28/02/2012

Stiffness Method (I: frames)

34

RX1RY1M1RX2RY 2M2PX3PY3M3

!

"

##############

$

%

&&&&&&&&&&&&&&

=

K111( )XX K111( )XY K111( )X! 0 0 0 K131( )XX K131( )XY K131( )X!K111( )YX K111( )YY K111( )Y! 0 0 0 K131( )YX K131( )YY K131( )Y!K111( )!X K111( )!Y K111( )!! 0 0 0 K131( )!X K131( )!Y K131( )!!0 0 0 K222( )XX K222( )XY K222( )XX K232( )XX K232( )XY K232( )X!0 0 0 K222( )YX K222( )YY K222( )Y! K232( )YX K232( )YY K232( )Y!0 0 0 K222( )!X K222( )!Y K222( )!! K232( )!X K232( )!Y K232( )!!

K311( )XX K311( )XY K311( )X! K322( )XX K322( )XY K322( )X! K331+2( )XX K331+2( )XY K331+2( )X!K311( )YX K311( )YY K311( )Y! K322( )YX K322( )YY K322( )Y! K331+2( )YX K331+2( )YY K331+2( )Y!K311( )!X K311( )!Y K311( )!! K322( )!X K322( )!Y K322( )!! K331+2( )!X K331+2( )!Y K331+2( )!!

!

"

#################

$

%

&&&&&&&&&&&&&&&&&

000000001

!

"

###########

$

%

&&&&&&&&&&&

1

2

3

1

2

11

( )2133 XK

q+

( )2133 YK

q+ ( )21

33K qq+

l  Apply unit rotation at joint 3 and fix the other dgofs. Thus, the assembled global forces are the 9th column of : K

l  The assembled global equilibrium equations can be expanded:

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

Assembled GSM coefficients (II)

28/02/2012

Stiffness Method (I: frames)

35

RX1RY1M1RX2RY 2M2PX3PY3M3

!

"

##############

$

%

&&&&&&&&&&&&&&

=

K111( )XX K111( )XY K111( )X! 0 0 0 K131( )XX K131( )XY K131( )X!K111( )YX K111( )YY K111( )Y! 0 0 0 K131( )YX K131( )YY K131( )Y!K111( )!X K111( )!Y K111( )!! 0 0 0 K131( )!X K131( )!Y K131( )!!0 0 0 K222( )XX K222( )XY K222( )XX K232( )XX K232( )XY K232( )X!0 0 0 K222( )YX K222( )YY K222( )Y! K232( )YX K232( )YY K232( )Y!0 0 0 K222( )!X K222( )!Y K222( )!! K232( )!X K232( )!Y K232( )!!

K311( )XX K311( )XY K311( )X! K322( )XX K322( )XY K322( )X! K331+2( )XX K331+2( )XY K331+2( )X!K311( )YX K311( )YY K311( )Y! K322( )YX K322( )YY K322( )Y! K331+2( )YX K331+2( )YY K331+2( )Y!K311( )!X K311( )!Y K311( )!! K322( )!X K322( )!Y K322( )!! K331+2( )!X K331+2( )!Y K331+2( )!!

!

"

#################

$

%

&&&&&&&&&&&&&&&&&

000000100

!

"

###########

$

%

&&&&&&&&&&&

l  Apply unit OX displacement at joint 3 and fix the other dgofs. Thus, the assembled global forces are the 7th column of : K

l  The assembled global equilibrium equations can be expanded:

1

2

3

1

2

1

( )133 XX2K +

( )133 YX2K + ( )21

33 XK

q+

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

Symmetry of the GSM: Reciprocity theorem

28/02/2012

Stiffness Method (I: frames)

36

l  Consider two possible deformed configurations:

RX1RY1M1RX2RY 2M2PX3PY3M3

!

"

##############

$

%

&&&&&&&&&&&&&&

=

K111( )XX K111( )XY K111( )X! 0 0 0 K131( )XX K131( )XY K131( )X!K111( )YX K111( )YY K111( )Y! 0 0 0 K131( )YX K131( )YY K131( )Y!K111( )!X K111( )!Y K111( )!! 0 0 0 K131( )!X K131( )!Y K131( )!!0 0 0 K222( )XX K222( )XY K222( )XX K232( )XX K232( )XY K232( )X!0 0 0 K222( )YX K222( )YY K222( )Y! K232( )YX K232( )YY K232( )Y!0 0 0 K222( )!X K222( )!Y K222( )!! K232( )!X K232( )!Y K232( )!!

K311( )XX K311( )XY K311( )X! K322( )XX K322( )XY K322( )X! K331+2( )XX K331+2( )XY K331+2( )X!K311( )YX K311( )YY K311( )Y! K322( )YX K322( )YY K322( )Y! K331+2( )YX K331+2( )YY K331+2( )Y!K311( )!X K311( )!Y K311( )!! K322( )!X K322( )!Y K322( )!! K331+2( )!X K331+2( )!Y K331+2( )!!

!

"

#################

$

%

&&&&&&&&&&&&&&&&&

U1V1!1U2V2!2U3V3!3

!

"

##############

$

%

&&&&&&&&&&&&&&

1

2

3

1

2

1

( )133 XX2K +

( )133 YX2K + ( )21

33 XK

q+

1

2

3

1

2

11

( )2133 XK

q+

( )2133 YK

q+ ( )21

33K qq+

l  The force at node 3 along OX due to a rotation at node 3 is equal to the moment at node 3 due to a displacement at node 3 along OX [Maxwell’s reciprocity theorem (1864)]

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

37

Introduction of loads and support conditions

F=

FX1FY1M1

FX2FY 2M2

FX3FY3M3

!

"

##############

$

%

&&&&&&&&&&&&&&

=

RX1RY1M1

Rx2RY 2M2

PX3PY3M3

!

"

############

$

%

&&&&&&&&&&&&

U =

U1V1!1U2V2!2U3V3!3

!

"

############

$

%

&&&&&&&&&&&&

=

000000U3V3!3

!

"

###########

$

%

&&&&&&&&&&&

2

1

2

31

3XP

3M 3YP

Known values

Unknown values

Notice that known loads and known displacement cannot coincide for the same node and same degree of freedom

l  Known support conditions can be introduced into the assembled global displacement vector

l  Suppose initially zero displacement wherever there is a support (no settlement allowed)

l  Loads can be introduced into the assembled global force vector

U

F

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: trusses)

38

Internal forces calculation

U a =Uia

U ja

!

"

##

$

%

&&= Ui

a Via !i

a U ja Vj

a ! ja!

"#$%&

T

ua =uia

u ja

!

"

##

$

%

&&= ui

a via !i

a u ja v j

a ! ja!

"#$%&

T

=T a 03x303x3 T a

!

"

##

$

%

&&

Uia

U ja

!

"

##

$

%

&&

Step 1: Extract element global displacements from assembled global displacement vector

Step 2: Compute element local displacements

Step 3: Compute element internal forces

U

i

jaY iF

aX iF

ajq

aiM

aY jF

aX jFajM

ajU

ajV

aiq

aiV

aiU

f a =

f xia

f yia

Mia

f xja

f yja

M ja

!

"

##########

$

%

&&&&&&&&&&

=

'Nia

Sia

'BMia

N ja

'S ja

BM ja

!

"

##########

$

%

&&&&&&&&&&

=kiia kij

a

k jia k jj

a

!

"

###

$

%

&&&

T a 03x303x3 T a

!

"

##

$

%

&&

Uia

U ja

!

"

##

$

%

&&=

kiiaT aUi

a + kijaT aU j

a

k jiaT aUi

a + k jjaT aU j

a

!

"

###

$

%

&&&

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: trusses)

39

Step 1: Establish global axes

Step 2: Label nodes and elements

Step 3: Establish element local axes

Step 4: Calculate element geometrical and mechanical properties

Step 5: Compute element GSM

Step 6: Formulate the assembled GSM

Step 7: Assemble global force and displacement vectors

Step 8: Substitute known nodal loads and known support conditions

Step 9: Solve for unknown displacements/rotations

Step 10: Compute unknown reactions

Step 11: Verify overall translational and rotational equilibrium

Step 12: Extract element global displacements

Step 13: Compute element local displacements

Step 14: Compute element local forces

Step 15: Deduce element axial force, shear force and bending moment

The “road to non-perdition” in the stiffness method

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: trusses)

40

Prescribed support displacements l  Generally, the equilibrium equations can be partitioned by

rearranging the rows and columns:

FfR s

!

"

##

$

%

&&=

K ff K fs

Ksf Kss

!

"##

$

%&&

U f

Us

!

"##

$

%&&

s: prescribed support displacements

f: displacements free to move

Ff = K ffU f +K fsUs ! U f = K ff"1(Ff "K fsUs )

R s = KsfU f +KssUs !

R s = KsfK ff"1(Ff "K fsUs )+KssUs

l  The unknown displacements can be obtained as:

l  The unknown reactions are calculated subsequently:

l  In general, non-zero prescribed displacements can be imposed in some support as a result of possible settlement:

1

2

3

1'

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

41

l  For beam elements, the rotations and vertical displacements at the joints are the only degrees of freedom

l  The local and global axes coincide so no transformation is required

l  The global and local stiffness matrices are identical

l  The axial components of the stiffness matrix are not required

Analysis of beams: introduction

1

1

2

3

45 2 3 41M 1M 1M

2YF 4YF

1

1 23

45 2 3 4

2 Degrees Of Freedom (DOF) per node

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

42

Analysis of beams: the simplified element GSM

K a =Kiia Kij

a

K jia K jj

a

!

"

###

$

%

&&&=

12EIL3

6EIL2

'12EIL3

6EIL2

6EIL2

4EIL

'6EIL2

2EIL

'12EIL3

'6EIL2

12EIL3

'6EIL2

6EIL2

2EIL

'6EIL2

4EIL

!

"

##########

$

%

&&&&&&&&&&

K a =

EAL

0 0 !EAL

0 0

0 12EIL3

6EIL2

0 !12EIL3

6EIL2

0 6EIL2

4EIL

0 !6EIL2

2EIL

!EAL

0 0 EAL

0 0

0 !12EIL3

!6EIL2

0 12EIL3

!6EIL2

0 6EIL2

2EIL

0 !6EIL2

4EIL

"

#

$$$$$$$$$$$$$$$$

%

&

''''''''''''''''

Rotational and vertical components

1

1 23

45 2 3 4

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

43

Analysis of beams: the assembled GSM

FY1M1

FY 2M 2

FY 3M 3

!

"

#########

$

%

&&&&&&&&&

=

K111+2( )YY K11

1+2( )Y! K122( )YY K12

2( )Y! K131( )YY K13

1( )Y!K111+2( )

!YK111+2( )

!!K122( )

!YK122( )

!!K131( )

!YK131( )

!!

K212( )YY K21

2( )Y! K222( )YY K22

2( )Y! 0 0

K212( )

!YK212( )

!!K222( )

!YK222( )

!!0 0

K311( )YY K31

1( )Y! 0 0 K331( )YY K33

1( )Y!K311( )

!YK311( )

!!0 0 K33

1( )!Y

K331( )

!!

!

"

############

$

%

&&&&&&&&&&&&

0!1V2!200

!

"

########

$

%

&&&&&&&&

ndgof ndgof x ndgof ndgof= F K U

l  Select rows and columns of the assembled global stiffness matrix

l  Solve for the unknown rotations

l  Substitute computed rotations to obtain unknown moments

1

1

23 21M 1M

2YF

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

M1

FY 2M 2

!

"

####

$

%

&&&&

=

K111+2( )

!!K122( )

!YK122( )

!!

K212( )

!YK222( )YY K22

2( )Y!K212( )

!!K222( )

!YK222( )

!!

!

"

#####

$

%

&&&&&

!1V2!2

!

"

####

$

%

&&&&

28/02/2012

Stiffness Method (I: frames)

44

Analysis of beams: solving the equilibrium equations

FY1M1

FY 2M 2

FY 3M 3

!

"

#########

$

%

&&&&&&&&&

=

K111+2( )YY K11

1+2( )Y! K122( )YY K12

2( )Y! K131( )YY K13

1( )Y!K111+2( )

!YK111+2( )

!!K122( )

!YK122( )

!!K131( )

!YK131( )

!!

K212( )YY K21

2( )Y! K222( )YY K22

2( )Y! 0 0

K212( )

!YK212( )

!!K222( )

!YK222( )

!!0 0

K311( )YY K31

1( )Y! 0 0 K331( )YY K33

1( )Y!K311( )

!YK311( )

!!0 0 K33

1( )!Y

K331( )

!!

!

"

############

$

%

&&&&&&&&&&&&

0!1V2!200

!

"

########

$

%

&&&&&&&&

( ) ( ) ( )( )( )

111

1 11

3 3

2 2 212 12

1 2

13 231

0 0

0 0

YYYY

Y Y

YKF

F K V

K

K

M

Kθθ

θ

θθ

θ

θ

+⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎢ ⎥⎣ ⎦

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

45

Continuous beams (I)

l  Most structural beams will be so-called continuous beams.

l  They have multiple supports and the rotations at the joints are the only degrees of freedom (the vertical displacements at the joints are all constrained). Then, a reduced stiffness matrix can be employed.

l  Only the rotational components of the stiffness matrix are required

1 2 5

15 62

3 4

43

Rotational degrees of freedom

1 Degree Of Freedom (DOF) per node

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

46

Continuous beams (II)

K a =Kiia Kij

a

K jia K jj

a

!

"

###

$

%

&&&=

4EIL

2EIL

2EIL

4EIL

!

"

####

$

%

&&&&

K a =

EAL

0 0 !EAL

0 0

0 12EIL3

6EIL2

0 !12EIL3

6EIL2

0 6EIL2

4EIL

0 !6EIL2

2EIL

!EAL

0 0 EAL

0 0

0 !12EIL3

!6EIL2

0 12EIL3

!6EIL2

0 6EIL2

2EIL

0 !6EIL2

4EIL

"

#

$$$$$$$$$$$$$$$$

%

&

''''''''''''''''

Rotational components

1 2 5

15 62

3 4

43

1M 2M 3M 4M

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

47

Continuous beams (III)

M1

M 2

M 3

M 4

M5

M 6

!

"

#########

$

%

&&&&&&&&&

=

K111 + K11

2 K122 0 0 K15

1 0

K212 K22

2 + K223 K23

3 0 0 0

0 K323 K33

3 + K334 K34

4 0 0

0 0 K434 K44

4 + K445 0 K46

5

K511 0 0 0 K55

1 0

0 0 0 K645 0 K66

5

!

"

#########

$

%

&&&&&&&&&

!1!2!3!400

!

"

########

$

%

&&&&&&&&

Fndgof =Kndgof x ndgof Undgof

1 2 5

15 62

3 4

43

1M 2M 3M 4M

l  Select rows and columns of the assembled global stiffness matrix

l  Solve for the unknown rotations

l  Substitute computed rotations to obtain unknown moments

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

48

Continuous beams (IV)

3 322 23

3 332 3

4 433 43

4

2 211 121

2

34

43

2 212

4

1111

2

544

22

4

3

4

3

4

0 00

00 0

K K

K

K K

KK K

K KK K

M K

MK

M

M

θ

θ

θ

θ

⎡ ⎤+⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥+⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥+⎢ ⎥⎢ ⎥ ⎢ ⎥

+⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

1 2 5

15 62

3 4

43

1M 2M 3M 4M

564

15 151

6 4

00

M KM K

θ

θ

⎡ ⎤⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦

2 211

1 1111 15

2

3

4

3 322 23

3 332 33

1 15 5

1

2

3

4

1

5 544 46

5 5

122 221 2

4 433 34

5

4 443 4

6

5

6

2

4

64 6

0 0 00 0 0

0 0 0

0 0 00 0 0 0

0 00

0 00

K K

K K

K KK KK

MMM

M K

K K

KM

M

K

K

K KK K

K

θ

θ

θ

θ

⎡ ⎤+⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥+⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥+

= ⎢ ⎥⎢ ⎥ ⎢ ⎥+⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

49

l  So far we have considered that beam elements are loaded at their joints.

l  In general, apart from nodal loads and prescribed displacements at supports, a frame structure can undergo other effects

l  In a general case, point loads or distributed loads can be acting along the span

l  How can we account for these new effects?

l  Consider a general beam structure subjected to multiple loads such as the ones shown below

Intermediate loading (I)

w

P

1 21

2 3

3M

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

50

Intermediate loading (II)

P2P

8PL

2P

8PL2 32

w2wL

2

12wL

2wL

2

12wL 1 21

l  Establish a STAGE I, where every frame member is analysed independently with its ends fixed. Consider only the non-nodal loads. Compute the necessary fixed end forces

STAGE I 2

24wL

2

12wL

2wL

2wL

8PL

8PL

2P

2P

STAGE I

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

51

Intermediate loading (III)

l  Establish a STAGE II, where the overall frame structure is subjected to forces at the nodes opposite to the previously calculated fixed end forces (plus any other already applied nodal loads)

l  Notice that forces at supports can be removed

l  The solution of the problem is the addition of the results in STAGE I and STAGE II

This force is absorbed by the support: it does not affect the

frame structure

2wL

2

12wL

2wL 2

12wL

2P

8PL

2P

8PL

1 22 31

3M

EG-225

Structural Mechanics II(b)

SWANSEA UNIVERSITY!

!School of

Engineering

Dr. Antonio Martinez

28/02/2012

Stiffness Method (I: frames)

52

Intermediate loading (IV) 2

12 8wL PL-­‐ 38

PL M+

1 22 31

M1

wL2

12!PL8

PL8+M3

"

#

$$$$

%

&

''''

=

K111 K12

1 0

K211 K22

1 + K222 K23

2

0 K322 K33

2

"

#

$$$$

%

&

''''

0!2!3

"

#

$$$$

%

&

''''

M1 = K121!2

3

1 2 222 23

2 232 33

222 8 22

8 3

1wL PL

PL M

K K KK K

θ

θ

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

+

⎡ ⎤+ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

l  Recall that the shear force diagram and bending moment diagram corresponding to STAGE I must be added to obtain the final solution

STAGE II

Recommended