Stereoelectronic Requirements of Fragmentation Reactions...

Preview:

Citation preview

Stereoelectronic Requirements of Fragmentation Reactionsand Applications in Synthesis

Key W ords: Grob, Fragmentation, Marshall, W harton, Nucleofuge, Electrofuge

Grob, C.A., Angew. Chem. Int. Ed., 1967, 6, 1Grob, C.A., Angew. Chem. Int. Ed., 1969, 8, 535

A B C D X

C C

N

H2C X

A B C D X

N C C C X

Scott PetersonEvans Group Seminar, March, 2005

Types of Fragmentation Reactions

A B C D X A B C D X

Electrofugal Middle Groups Nucleofugal

A B C D X

HO CR2 CR2 CR2 Cl

Br

HOOC I

SO3R

OCOR

OH2

NR3

SR2

N2

RO CR2

R2N CR2

Me3C

R2C CR2

H2N NH

HN N

CR2 NR

CR CR

CR N

CR2 O

CO O

N N

RO BR2

1,3 diols: Wharton

enolates: Mander

Marshall

Grob

Eschenmoser

Fragmentations of Chloroamines

Grob, C.A., Angew. Chem. Int. Ed., 1969, 8, 535Hoffmann, R., Helv. Chim. Acta., 1972, 55, 893

N

H

Cl

Me

N

Me

N

Cl

H

Me

NMe

OTsN

H H

Me

Me

HN

H OTs

Me

Me

NMe

Me

NMe2H

H

N

Cl

H Me

N

H

Cl

Me

NMe

mixture of other products

Frangomeric Effect: kf : ki

For all cases studied, kf : ki > 102

Some as high as 105

Fragmentation of Amino-Tosylates

Grob, C.A., Angew. Chem. Int. Ed., 1969, 8, 535

N

TsO Me

H

N

Me

exclusively trans

N

Me

HTsO

H

N

Me

H

H exclusively cis

N

Me

H

N

Me

H

N

Me

H

OTs

H OTs

H

TsO

no fragmentation products, only elimination and substitution

Fragmentation of Aza-bicyclo-tosylates

Grob, C.A., Angew. Chem. Int. Ed., 1980, 19, 708

N

N

N

NOTs

H

NOTs

NBr

H

H

Reacts 103 times faster than carbon analogue

Reacts 104 times faster than carbon analogue

Reacts 105 times faster than carbon analogue

NH

OTs

NH

NH

OTs

Br

Substitution and

elimination

Decarboxylation Fragmentation

Eschenmoser, A., Angew. Chem. Int. Ed., 1979, 18, 634Eschenmoser, A., Angew. Chem. Int. Ed., 1979, 18, 636

O

baseMe

O

OO

H

CO2HMe

TsO

OO

H

CO2–

MeTsO

O

O

Me

TsO

H

CO2– O

O

Me

H

O

Me

O

O

TsO

CO2–

O

OCO2

O

Me Me

O

O

Me

H

H

Decarboxylation Fragmentation

Eschenmoser, A., Angew. Chem. Int. Ed., 1979, 18, 634Eschenmoser, A., Angew. Chem. Int. Ed., 1979, 18, 636

Me

base

O

TsO

O

O

O

Me Me

OO

H

MeTsO

O

TsO

O

CO2–

H

CO2–

H

CO2H

CO2–

OO

H

H

CO2–

Me

O

Me

O

SmI2 Cyclization / Grob Fragmentations

Molander, G. A., et al., J. Org. Chem., 2001, 66, 4511

O

OMs

I

2 SmI2

Sm(iii)O

OMs

CH3

Sm(iii)O

CH3OMs

CH3

O

SmI2 Cyclization / Grob Fragmentations

Molander, G. A., et al., J. Org. Chem., 2001, 66, 4511

O

I

CH3

OMs

O

MsO

H

CH3

O

MsO

H

CH3

CH3

O

Scope of SmI2 Cyclization / Grob Fragmentations

Molander, G. A., et al., J. Org. Chem., 2001, 66, 4511

OMs

O

Me

I

OMs

O

Me

I

CH3

O

Me

O

O

OMs

I

Me

O

Me

O

OMs

MeI

Me

O

69%

42%

86%

51%

O

OMs

MeCl

O

OMs

MeI

complex mixtures

Reaction Conditions:

2.5 eq SmI2 freshly prepared from Sm0 and CH2I2

2 mol% NiI2

THF, -10 °C to 0 °C for 1 hour

SmI2 Cyclization / Grob Fragmentations

Molander, G. A., et al., J. Org. Chem., 2001, 66, 4511

OMe

I

OMs

MeONa

Me

I

OMs

O

Sm(III)OH

MeMsO

NaOH

MeMsO

O

Me

Me

O

2.5 eq SmI2

2% NiI2

83%

OH

MeMsO

reflux

88%

2.5 eq SmI2

2% NiI2

92%OSm(III)

MeMsO

SmI2 Cyclization / Grob Fragmentations

Peterson, S.L., Meandering Thoughts, 2005, 2, 101

Ground statedihedral angle = 143.8°

Possible transition statedihedral angle = 175.4°

Relative energy = 6.50 kcal/mol

OMe

I

OMs

1) 2.5 eq SmI2, 2% NiI2

2) MeONa

NaO

H

MeMsO

SmI2 Cyclization / Grob Fragmentations

Peterson, S.L., Meandering Thoughts, 2005, 2, 101

dihedral angle = 72.9° dihedral angle = 173.8°

Relative energy = 1.38 kcal/mol

Me

I

OMs

O2.5 eq SmI2

2% NiI2Sm(III)O

H

MeMsO

Total Synthesis of (+)-Allocyathin

Nakada, M., et al., Org. Lett., 2004, 6, 4897Hasegawa, E., et., al., Tet. Lett., 1998, 39, 4059

Me

Me

Me

MeOH

CHO

Me

Me

Me

MeO–

CO2Me

LDA, then I2

Me

Me

Me

MeO

CO2Me71%

1) LiAlH4

2) MnO2

80%

Me

Me

Me

MeO

CO2Me

I

SmI2, HMPA

-78 °C, 10min

91%Me

Me

Me

MeO

CO2Me

Marshall Fragmentation

Marshall, J.A., JACS, 1966, 88, 4291

Me

O

MeOMs

1) B2H6

2) NaOH

Me

MeOMs

HH2B

OMs

H

H2B

O

O

MeH

H

MeOMs

H2B

H

OMe

H

Synthesis of Allohedycaryol

W ijnberg, J., J. Org. Chem., 1996, 61, 4022

Me

OMe

(+) dihydrocarvone

Me

MeMe

Me

OH

MsO

Me

OH

Me

• Regioisomer of (+)-hedycaryol• Isolated from F. communis L. (giant fennel)•!Toxic to livestock• Widespread in the Mediterranean area

Synthesis of Allohedycaryol

W ijnberg, J., J. Org. Chem., 1996, 61, 4022

Me

NMe

HMePh

1) EVK

2) H2O, HOAc

3) NaOMe

Me

Me

O

Me

1) DDQ

2) DMDOMe

Me

O

Me

O

47% from carvone71%

Me

MeMe

HO

Me

OH

1) t-BuOK

2) NaBH4

3) LiAlH4

67%

Me

MeMe

Me

OH

1) (Me2N)2P(O)Cl

2) Li, EtNH2

1) NBS, KOH

2) PhSeNa3) Ra Ni

Me

MeMe

Me

OH

OH

68%57%

MsCl

Me

MeMe

Me

OH

MsO

99%

1) BH3•THF, 0 °C

2) NaOMe, RT 12hr Me

Me

MsO

BH2OMeMe

Me

OH

H

Me

MeMe

Me

OH

H Me

OH

Me

68%

Me

OH

Me

Wharton Fragmentation of 1,3 Diols

W harton, P.S., J. Org. Chem., 1961, 26, 4781W harton, P.S., J. Org. Chem., 1963, 28, 3217W harton, P.S., J. Org. Chem., 1965, 30, 3254

OH

OTs

HO

OTs

OH

OTs

O

O

OHOTs

O

<6%, probably from ionization and elimination

Ryanodol to Anhydroryanodol

W eisner, K. Adv. Org. Chem., 1972, 8, 295Deslongchamps, P.., Can. J. Chem., 1979, 57, 3348W eisner, K., Tet. Lett., 1967, 3, 221

O

OH

MeHO

OH

Me

OH

HO

Me

Me

Me

O

O

Me

OH

Me

OH

HO

Me

Me

Me

HO

HO

HO

HO

O

HOMe

OH

Me

MeHO

HO

iPr

HO

O

HOMe

OH

Me

iPr

HO

O

Me

H+ or HO–HO

HO

OH

HO

Total Synthesis of Ryanodol

Deslongchamps, P., Can. J. Chem., 1979, 57, 3348

H

H

Me

O

Y

Me

Me

Me

OO

R

OH

H

O

H

H

Me

O Me

Me

Me

OO

R

H

O

O

Synthesis of Zaragozic Acid Core

Nagaoka, H., Tet. Lett., 1999, 40, 2777

O

OHHO 13 stepsO

O OBn

OBnBnO

OMsO

OBn

OH O

O

BnO

O

O

OBn

OBnBnO

KHMDS

100 °C5 min

NaBH4, MeOH, RT

then I2, NaHCO3

O

O

BnO

O

O

OBn

OBnBnO

I

43% over 3 steps

O

O

BnO

AcO

AcO

OBn

OBnBnO

I

1) AcOH, H2O

2) AcCl, pyr

Synthesis of Jatrophatrione

Paquette, L.A., et al., J. Org. Chem., 1999, 64, 3244Paquette, L.A., et al., JACS, 2003, 125, 1567

OH

Me

Me

Me

OH

BnO Me

Me

H

H2C

O

MeMe

Me

Me

HOH

O

O

Me

O

BnO

Me

OMe

Br

Me Me• isolated in 1976 from Jatropha microrhiza• active against P-388 lymphocytic leukemia

Synthesis of Jatrophatrione

Paquette, L.A., et al., JACS, 2003, 125, 1567

Me

O

BnO

Me

OMe

Br

Me Me

t-BuLi, CeCl3

80%Me

BnO

Me

Me

Me

OMe

HO

25 g scale

tBuOK

MeMeO

H

H

MeMe

MeO

OMe

[3,3]anionic

oxy-Cope

MeMeO

H

H

MeMe

MeO

OMe

MeI

MeMeO

H

H

MeMe

MeO

OMe

Me

Me

OMe

OMe

Me

Me

Me

BnO

H

OH

Me

Me

Me

OMe

BnO Me

Me

70%

Synthesis of Jatrophatrione

Paquette, L.A., et al., J. Org. Chem., 1999, 64, 3244Paquette, L.A., et al., J. Org. Chem., 1999, 64, 3255

OH

Me

Me

Me

OMe

BnO Me

MeOH

Me

Me

Me

OH

BnO Me

Me

H

5 steps

54%

1) MsCl

2) KOtBu

85%Me

O

MeMe

Me

Me

BnOH

Me

MeCH3SO2O

H

H

BnO

H

Me

O HMe

H2C

O

MeMe

Me

Me

HOH

O

O

5 steps8 % yield

Synthesis of Coraxeniolide-A

Leumann, C.J., J. Org. Chem., 2000, 65, 9069

O

O

Me

Me

H

Me

H

O

MeOH

Me

H

O

MeOTs

OH

MeO

MeO

O

• From the xenicane family• Isolated in 1981 from a pink coral

H

Me

H

Me

Me

caryophyllene

Synthesis of Coraxeniolide-A

Leumann, C.J., et al., J. Org. Chem., 2000, 65, 9069Grieco, P.A., J. Am. Chem. Soc., 1991, 113, 5488

MeO

O

1) NaBH4

2) TBSCl

3) LiAlH4

MeOTBS

HO

O

Hg(OAc)2

MeOTBS

O

69%80%

Mg(ClO4)2[1,3]

(supra/antara)

MeOTBS

O

H

83%

1) CH(OMe)3

2) m-CPBA3) LiCN4) KOH

45%

MeOTBS

MeO

MeO

CNOH

Synthesis of Coraxeniolide-A

Leumann, C.J., et al., J. Org. Chem., 2000, 65, 6069

MeOTBS

MeO

MeO

CNOH

1) TMSCl

2) DIBAl-H

3) NaBH4

MeOTBS

MeO

MeOOTMS

HO66%

1) K10 clay

2) TBAF3) TsCl

MeOTs

OH

OMeO77%

1) HCl

2) Ag2CO3

3) TsCl

MeOTs

OH

OO

DIBAl-H

MeOTs

OH

OHO

56%

98%

Synthesis of Coraxeniolide-A

Leumann, C.J., et al., J. Org. Chem., 2000, 65, 6069

MeOTs

OH

OMeO

MeOTs

OH

OO

MeOTs

OH

OHO

NaH, DMSO

RT, 20min O

Me

H

O

MeO

H

NaH, DMSO

RT, 20min

NaH, DMSO

RT, 10min

O

Me

H

O

O

H

O

Me

H

O

HO

H

89%

71%

88%

2.2:1 at C3

3

1.2:1 at C3

3

Synthesis of Coraxeniolide-A

Leumann, C.J., et al., J. Org. Chem., 2000, 65, 6069

MeOTs

OH

OMeO

NaH, DMSO

RT, 20min O

Me

H

O

MeO

H

89%

2.2:1 at C3

3

O

OTsH

O

Me

OMe

H O

H

O

Me

OMe

H

E-olefin is only isolated product

Synthesis of Coraxeniolide-A

Leumann, C.J., et al., J. Org. Chem., 2000, 65, 6069

O

Me

H

O

HO

H

1) TBSCl

2) Tebbe

3) TBAF

4) Ag2CO3

52%

O

Me

HO

H

LDA,

Me

MeBr

50% 1:5.7 dr

O

Me

HO

H

Me

Me

N

HN N

O

Me

HO

H

Me

Me

80% 3:1 dr

coraxeniolide-A

Progress Towards the Synthesis of CP-263,114

W ood, J. L., Org. Lett., 2001, 16, 2431W ood, J. L., Tet., 2002, 58, 6545

O

O

O

O

OH

O

O

O

OAcO

OH

O

2) K2CO3, MeOH

Fragmentation of Isotwistane

Me Me1) MsCl

95%

O

O

O

O

O

OBn

7 steps

73% O

TIPSO

TIPSO

O

O

OEt

O

N2

1) Rh2(piv)4, PhH, 50 °C

2) NaH, BrCH2CO2MeO

TIPSO

TIPSO

O

OO

OMeO

OEt

Construction of Quaternary Sterecenter

46%

Synthesis of Trisubstituted Olefins

Siddall, J.A, JACS , 1968, 90, 6224

HO

Me

MeOH

Me

1) mcpba

2) LiAlH4

3) TsCl

4) NaH, THF, RT

OH

Me

Me Me

O

Me

MeO

1) MeLi2) TsCl3) NaH, THF, RT

Me O

Me Me

O

Me

Me O

Me MeMe

O

Synthesis of (-)–Epibatidine

Evans, D.A., Org. Lett., 2001, 19, 3009

HN

TESO

O

H

N

Cl

NOO

O

Bn

1) Sm(OTf)3, MeOH

2) BOC2O, NEt3, DMAP

82%

N

TESO

O

H

N

Cl

OMeO

O

tBuO

TBAFC

N

HN

Cl

O

OH

OMe

4 steps44%

HO

BocHN

H

N

Cl3 steps

73%

92:8 diastereoselectivity

H

N

Cl

NH

Synthesis of Germacranes

Mander, L.N., J. Org. Chem., 1977, 42, 3984

OMe

O

OAc

tulipinolide

*

*

*

**

*

*

*

*

O

CO2H

OMe

OMe

ArO2SO

MeCO2

Me

H

O

O

LDAArSO2

OLiMeO

Me

O

O

MeCO2

O

O

Synthesis of Sericenine

Honan, M.C., J. Org. Chem., 1985, 50, 4326

TsO

MeO2CH

MeO 1) LDA, ZnCl2

2)

Me

O

OTHP

TsO

MeO2CH

MeO

MeOH

OTHP p-TsOH

TsO

MeO2CH

Me

O

Me18%

77%

KHMDS

43%

Me

CO2Me

O

Me

OTsO

Me

MeOOK

MeO2C

O

Me

Me

H

O

Me

Me

O –MeO

Me

O

Me

O –MeO

Me

CO2Me

O

Me

:NHTMS2

Synthesis of (E,E)-Germacranes

W ijnberg, J. B., J. Org. Chem., 1997, 62, 7336

R

R

KHMDS

TsO

MeO2CH

Me

O

Me

Me

CO2Me

O

Me

KHMDS

TsO

MeO2CH

Me

R

sericenine

TsO

R

Me

1) BH3•THF

Me

OH

Me

Me

MeMe

Me

OH

MsO

allohedycaryol

2) NaOMe

1) BH3•THF

2) NaOMe

Synthesis of (E,E)-Germacranes

W ijnberg, J. B., J. Org. Chem., 1997, 62, 7336

MsO

OHCH

Me

OH

Me

Me

MsO

OHCH

Me

OH

Me

Me

OHCOH

Me

Me Me

Me

CHO Me

O

Me

MsO

OHCH

Me

OTMS

Me

Me

MsO

OHCH

Me

OTMS

Me

Me

OHCOTMS

Me

Me

[3,3]

OHCH

Me

OTMS

Me

Me

Synthesis of (E,E)-Germacranes

W ijnberg, J. B., J. Org. Chem., 1997, 62, 7336

MsO

OHCH

Me

Me

Me

KHMDS

CHO Me

Me

Me

CHO

Me

MeHNTMS2

MsO

OHCH

Me

Me

Me

1) NaO-t-amyl

CH2OH Me

Me

2) Red-Al

MsO

OHCH

Me

Me

Me

OTES

1) NaO-t-amyl

2) Red-AlCH2OH Me

Me

OTES

TBAF

CH2OH Me

Me

OH

15-hydroxyhedycaryol

Synthesis of Imidoyl Cyanides

De Kimpe, N., et al., Tet. Lett., 2001, 42, 3921

H

NR

1) Br2

2) KCNN

R

NC

BrNaH

CN

NR

N

R

Br

BrN

R

Br

NC

KCN

N

R

Br

NC N

R

NC

Br

NaH

N

R

NCBrCN

NR

Synthesis of Imidoyl Cyanides

De Kimpe, N., et al., Tet. Lett., 2001, 42, 3921

H

N

R

1) Br2

2) KCNN

R

NC

Br

NaHCN

N

R

R Piperdine Imidoyl Cyanide

cycloHexyl 80 % 77 %

(CH2)2Ph 71 % 0 %

sec-Bu 70 % 74 %

cycloPentyl 77 % 15 %

i-Pr 78 % 82 %

t-Bu 83 % 76 %

Conclusions

•Stereoelectronic requirements for fragmentation reactionsN

H

Cl

Me

N

Me

• These types of fragmentation reactions are useful for the synthesis of medium size rings containing olefins

O

OMs

I

Me

O

Me

86%

• These types of fragmentation reactions typically occurunder very mild conditions (usually RT, with base) and

have shown utility in the synthesis of complex natural products

H2C

O

MeMe

Me

Me

HOH

O

O

O

O

BnO

AcO

AcO

OBn

OBnBnO

I

• These types of fragmentation reactions can also be used in the synthesis of other interesting functional groups

N

R

NC

BrNaH

CN

NR

Conclusions

•Stereoelectronic requirements for fragmentation reactionsN

H

Cl

Me

N

Me

• These types of fragmentation reactions are useful for the synthesis of medium size rings containing olefins

O

OMs

I

Me

O

Me

86%

• These types of fragmentation reactions typically occurunder very mild conditions (usually RT, with base) and

have shown utility in the synthesis of complex natural products

H2C

O

MeMe

Me

Me

HOH

O

O

O

O

BnO

AcO

AcO

OBn

OBnBnO

I

• These types of fragmentation reactions can also be used in the synthesis of other interesting functional groups

N

R

NC

BrNaH

CN

NR

Recommended