Step Functions, Impulse Functions, and the Delta Function

Preview:

Citation preview

Step Functions, Impulse Functions,and the Delta Function

Department of Mathematics and Statistics

September 7, 2012

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 1 / 9

The Unit Step Function

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 2 / 9

The Unit Step Function

Definition

The unit step function or Heaviside function is a function of the form

ua(t) =

{

0, t < a,1, t ≥ a,

where a > 0.

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 2 / 9

The Unit Step Function

Definition

The unit step function or Heaviside function is a function of the form

ua(t) =

{

0, t < a,1, t ≥ a,

where a > 0.

y

ta

1

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 2 / 9

The Laplace Transform of the Unit Step Function

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 3 / 9

The Laplace Transform of the Unit Step Function

The Laplace transform of ua is

L(ua(t)) =

a

0e−st · 0 dt +

a

e−st dt =

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 3 / 9

The Laplace Transform of the Unit Step Function

The Laplace transform of ua is

L(ua(t)) =

a

0e−st · 0 dt +

a

e−st dt =

a

e−st dt

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 3 / 9

The Laplace Transform of the Unit Step Function

The Laplace transform of ua is

L(ua(t)) =

a

0e−st · 0 dt +

a

e−st dt =

a

e−st dt

= limb→∞

−1

se−st

b

a

=

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 3 / 9

The Laplace Transform of the Unit Step Function

The Laplace transform of ua is

L(ua(t)) =

a

0e−st · 0 dt +

a

e−st dt =

a

e−st dt

= limb→∞

−1

se−st

b

a

=1

se−as .

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 3 / 9

The Difference Between Two Unit Step Functions

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 4 / 9

The Difference Between Two Unit Step Functions

u1(t) − u2(t)

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 4 / 9

The Difference Between Two Unit Step Functions

u1(t) − u2(t)

y

t

1

1 2 3

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 4 / 9

The Difference Between Two Unit Step Functions

u1(t) − u2(t)

y

t

1

1 2 3

L(u1(t) − u2(t)) = 1se−s − 1

se−2s .

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 4 / 9

The Unit Step Function Combined with Other Functions

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 5 / 9

The Unit Step Function Combined with Other Functions

Consider

g(t) =

{

0, t < a,f (t − a), t ≥ a,

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 5 / 9

The Unit Step Function Combined with Other Functions

Consider

g(t) =

{

0, t < a,f (t − a), t ≥ a,

We may write g(t) = ua(t)f (t − a).

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 5 / 9

The Unit Step Function Combined with Other Functions

Consider

g(t) =

{

0, t < a,f (t − a), t ≥ a,

We may write g(t) = ua(t)f (t − a).

t

y

1 2 3 4 5 6 7

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 5 / 9

L(g(t))

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 6 / 9

L(g(t))

L(g(t)) = L(ua(t)f (t − a)) =

0e−stua(t)f (t − a) dt

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 6 / 9

L(g(t))

L(g(t)) = L(ua(t)f (t − a)) =

0e−stua(t)f (t − a) dt

=

a

e−st f (t − a) dt.

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 6 / 9

L(g(t))

L(g(t)) = L(ua(t)f (t − a)) =

0e−stua(t)f (t − a) dt

=

a

e−st f (t − a) dt.

Substituting τ = t − a:

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 6 / 9

L(g(t))

L(g(t)) = L(ua(t)f (t − a)) =

0e−stua(t)f (t − a) dt

=

a

e−st f (t − a) dt.

Substituting τ = t − a:

0e−s(τ+a)f (τ) dτ

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 6 / 9

L(g(t))

L(g(t)) = L(ua(t)f (t − a)) =

0e−stua(t)f (t − a) dt

=

a

e−st f (t − a) dt.

Substituting τ = t − a:

0e−s(τ+a)f (τ) dτ = e−as

0e−sτ f (τ) dτ

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 6 / 9

L(g(t))

L(g(t)) = L(ua(t)f (t − a)) =

0e−stua(t)f (t − a) dt

=

a

e−st f (t − a) dt.

Substituting τ = t − a:

0e−s(τ+a)f (τ) dτ = e−as

0e−sτ f (τ) dτ = e−asL(f (t)).

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 6 / 9

The kth Unit Impulse Function

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 7 / 9

The kth Unit Impulse Function

Definition

The kth unit impulse function is

δa,k(t) =

{

k, a < t < a + 1k,

0, 0 ≤ t ≤ a or t ≥ a + 1k,

where a > 0.

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 7 / 9

The kth Unit Impulse Function

Definition

The kth unit impulse function is

δa,k(t) =

{

k, a < t < a + 1k,

0, 0 ≤ t ≤ a or t ≥ a + 1k,

where a > 0.

y

t

10

1 2 3

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 7 / 9

The Laplace Transform of the Unit Impulse Function

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 8 / 9

The Laplace Transform of the Unit Impulse Function

Note that

0δa,k(t) dt =

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 8 / 9

The Laplace Transform of the Unit Impulse Function

Note that

0δa,k(t) dt = 1, and that

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 8 / 9

The Laplace Transform of the Unit Impulse Function

Note that

0δa,k(t) dt = 1, and that

L(δa,k(t)) =

a+1k

a

k e−st dt = −k ·e−s

a+1k

− e−sa

s

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 8 / 9

The Laplace Transform of the Unit Impulse Function

Note that

0δa,k(t) dt = 1, and that

L(δa,k(t)) =

a+1k

a

k e−st dt = −k ·e−s

a+1k

− e−sa

s

= e−sa ·1 − e−s/k

s/k.

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 8 / 9

The Laplace Transform of the Unit Impulse Function

Note that

0δa,k(t) dt = 1, and that

L(δa,k(t)) =

a+1k

a

k e−st dt = −k ·e−s

a+1k

− e−sa

s

= e−sa ·1 − e−s/k

s/k.

By L’Hopital’s rule: limk→∞

L(δa,k(t)) =

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 8 / 9

The Laplace Transform of the Unit Impulse Function

Note that

0δa,k(t) dt = 1, and that

L(δa,k(t)) =

a+1k

a

k e−st dt = −k ·e−s

a+1k

− e−sa

s

= e−sa ·1 − e−s/k

s/k.

By L’Hopital’s rule: limk→∞

L(δa,k(t)) = e−sa.

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 8 / 9

The Dirac Delta Function

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 9 / 9

The Dirac Delta Function

Note that limk→∞

L(δ0,k(t)) = 1.

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 9 / 9

The Dirac Delta Function

Note that limk→∞

L(δ0,k(t)) = 1.

We let limk→∞

L(δ0,k(t)) = L(δ(t)), where δ(t) is called the Dirac delta

function or delta function.

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 9 / 9

The Dirac Delta Function

Note that limk→∞

L(δ0,k(t)) = 1.

We let limk→∞

L(δ0,k(t)) = L(δ(t)), where δ(t) is called the Dirac delta

function or delta function.

So L(δ(t)) = 1 and L−1(1) = δ(t).

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 9 / 9

Recommended