Shale Gas – The Energy-Water Nexus · Shale gas represents a large potential resource for...

Preview:

Citation preview

Shale Gas – The Energy-Water Nexus

Christopher HartoArgonne National Laboratory

2011 AWRA Spring Specialty Conference Baltimore, MD April 18‐20, 2011

2

Acknowledgments

DOE‐ Office of Fossil Energy DOE – Office of Policy and International Affairs NETL‐ Strategic Center for Natural Gas and Oil RPSEA (Research Partnership to Secure Energy for America)

– Environmentally Friendly Drilling Program

John Veil – ANL (retired), Veil Environmental

Intro to Shale Gas

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

3

Source: EIA

Shale Gas Plays The most active U.S. shale plays 

to date are:– the Barnett Shale in Texas,– the Fayetteville Shale in 

Arkansas, – the Antrim Shale in Michigan, – the Haynesville Shale in 

Louisiana, – the Marcellus Shale in 

Pennsylvania, New York, and West Virginia, and

– the Woodford Shale in Oklahoma

Two important Canadian shale plays:– the Horn River Shale in British 

Columbia, and– the Montney Shale in British 

Columbia and Alberta Source:  DOE/EIA website

Supply Projections

Source:  DOE/EIA Annual Energy Outlook 2011

Steps in the Shale Gas Process

Gaining Access to the Gas (Leasing)

Searching for Natural Gas

Preparing a SiteDrilling the WellPreparing a Well for Production (Hydraulic Fracturing)

Gas Production and Water ManagementMoving Natural Gas to Market

Well Closure and Reclamation

Steps involving water are shaded

Source:  Fayetteville Shale Information website

http://lingo.cast.uark.edu/LINGOPUBLIC/index.htm

7

Water Issues in Site Preparation

Need to consider stormwater runoff from all land areas disturbed during construction– Follow proper sediment control practices– Stabilize exposed surfaces

Different operators follow different degrees of storm water management practices

Water Issues in Drilling

Water is needed to make up drilling fluids– Ranges from 1 MG in the Haynesville 

Shale to 60,000 gallons in the Fayetteville Shale

– Depends on the types of drilling fluids used and the depth and horizontal extent of the wells  

Drilling waste is sent to lined pits or into a closed‐loop system employing tanks

Proper drilling practices required when drilling through the drinking water zones

Proper well construction and cementing to prevent migration of fluids around the well bore

Water Needed for Hydraulic Fracturing A single well may require 1 to 5 million gallons

– Individual volume is not critical, but collectively can be important within a region

– Depends on, formation properties,  number of stages, length of lateral

Source of water:– Stream, river, or lake– Well– Impoundment created by producer– Public water supply

Piped to site vs. delivery in tank trucks

Frac Job Pumps Large Volume of Water, Sand, and Chemical Additives into the Well in Stages

Controversy over Frac Chemicals

Hydraulic fracturing exempt from EPA regulation under Safe Drinking Water Act Companies do not have to disclose the chemical additives in their frac fluids

– Some states now requiring disclosure and others considering it (WY the first)– Some companies voluntarily providing the information (Range Resources)

Legislation has been introduced in congress to remove exemption and require chemical disclosure

EPA embarking on a multi‐year study to evaluate the potential impacts of hydraulic fracturing on water resources

No known incidents of frac chemicals migrating into drinking water underground Multiple incidents involving surface water contamination due to spills Multiple events of natural gas migration into groundwater due to poorly 

cemented wells (NOT due to hydraulic fracturing)– State of PA has updated well construction standards in response

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

11

Management of Frac Flowback Water (1) Large volume of flowback returns to the surface in first few hours to  few days

– Typically collect in lined pits/ponds

Management of Frac Flowback Water (2)

Some larger sites collect flowback in brine tanks Filtered and reused  in 

frac fluid for future well

Over time, smaller volume of produced water flows to surface– Collected in onsite tanks

Management of Frac Flowback Water (3) Collected water must be removed from site Typically is collected by tank trucks and hauled 

offsite to:– Commercial UIC injection wells– Wastewater treatment plants– Evaporation ponds– Treatment and reuse  facilities (orange tanks on 

previous slide)

Producers may install their own injection wells or reuse the flowback water for future frac jobs– Recycling increasingly popular due to high cost 

of water management

Potential Water Demand In Marcellus Shale Region

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

15

State Hypothetical Maximum Number of Wells Drilled in a Year

Annual Volume under  Scenario 1:  1 MGa of water needed per well

Annual Volume under  Scenario 2:  2.8 MG of water needed per well

Annual Volume under  Scenario 3:  3.9 MG of water needed per well

Annual Volume under  Scenario 4:  5 MG of water needed per well

PA 1,669  1,669 MG 4,673 MG 6,509 MG 8,345 MGWV 293  293 MG 820 MG 1,142 MG 1,465 MGNY 293  293 MG 820 MG 1,142 MG 1,465 MGTotal 2,255 2,255 MG 6,314 MG 8,795 MG 11,275 MG

a MG = million gallons

Volume (Million gallons per day)

Water Required for Shale Gas Production Compared to Total Withdrawal (%)

Water needed for shale gas

6.2 ‐ 31 ‐

Total water withdrawal 24,577 0.03 – 0.13

Comparison of Water Needed for Shale Gas / Total Existing Water Withdrawals

Cumulative Regional Estimate of Water Needs under Hypothetical Maximum Drilling and Different Volume Scenarios

A word on greenhouse gas emissions

Many groups are pushing natural gas as a cleaner bridge fuel to displace coal– Emissions from combustion ~500 g/kWh vs. over 1000 g/kWh for coal

Growing controversy over lifecycle GHG emissions of natural gas due to fugitive methane emissions– Methane 21 to 25 times as potent as CO2 

EPA Report ‐ http://www.epa.gov/climatechange/emissions/downloads10/Subpart‐W_TSD.pdf

– Previous work underestimated fugitive methane emissions– Emissions from shale gas higher than conventional gas

Cornell Study ‐ http://www.eeb.cornell.edu/howarth/Howarth%20et%20al%20%202011.pdf

– When fugitive emissions included, natural gas may be worse than coal– Based on limited data– The way data presented may skew conclusions, but fugitives still likely to add 

significantly to natural gas GHG footprint 

Conclusions– More study needed, better hard data– Engineering solutions available to reduce emissions with proper incentives

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

16

Final Thoughts

Shale gas represents a large potential resource for domestic natural gas It must however be produced in a manner that protects both the environment and 

human health Production of shale gas is more challenging than conventional gas

– Requires more Fresh water– Produces more waste water

All risks from hydraulic fracturing are not fully understood– Analysis to date appears to show that risks are manageable– Most incidents to date have been preventable 

Industry has a responsibility to continue to actively engage stakeholders and work to improve their environmental performance.  

Go to ”Insert (View) | Header and Footer" to add your organization, sponsor, meeting name here; then, click "Apply to All"

17

Recommended