SENSORES DE TEMPERATURA - RTDS Y TERMISTORESmtoledo/5205/F2012/RTD_Thermistors.pdf · TEMPERATURA -...

Preview:

Citation preview

SENSORES DETEMPERATURA - RTDS Y

TERMISTORES

Thursday, September 6, 12

Liquido (Mercurio) en la botella

Thursday, September 6, 12

de banda bi-metalica

�l = �l0 (T � T0)� ⇥ 10�5/⇥C

Thursday, September 6, 12

Aplicaciones:Termostatos de aire acondicionadoTermómetros de horno (sensor en forma de espiral con “dial” al final)

Thursday, September 6, 12

Basados en la transmisión de presión en un fluido

Thursday, September 6, 12

Uso directo de un sensor de presión

Thursday, September 6, 12

Measurement and Instrumentation Principles 285

Nickel

Copper

Platinum

Tungsten

200 400 600 800 1000 °C

7

6

5

4

3

2

1

RR0

Fig. 14.8 Typical resistance–temperature characteristics of metals.

14.3.2 Thermistors

Thermistors are manufactured from beads of semiconductor material prepared fromoxides of the iron group of metals such as chromium, cobalt, iron, manganese andnickel. Normally, thermistors have a negative temperature coefficient, i.e. the resistancedecreases as the temperature increases, according to:

R D R0e[ˇ!1/T!1/T0"] !14.8"

This relationship is illustrated in Figure 14.9. However, alternative forms of heavilydoped thermistors are now available (at greater cost) that have a positive temperaturecoefficient. The form of equation (14.8) is such that it is not possible to make alinear approximation to the curve over even a small temperature range, and hencethe thermistor is very definitely a non-linear sensor. However, the major advantagesof thermistors are their relatively low cost and their small size. This size advantagemeans that the time constant of thermistors operated in sheaths is small, although thesize reduction also decreases its heat dissipation capability and so makes the self-heating effect greater. In consequence, thermistors have to be operated at generally

Resistance Temperature Detectors (RTDs)

Para Platinoa1 = 0.00392/�C

Metales: resistencia aumenta con aumentos en temperatura

R = R0

�1 + �1T + �2T

2 + �3T3 + · · · + �nTn

⇥ R0 (1 + �1T )

Thursday, September 6, 12

RTD’S

• Platino

• más común

• más inerte químicamente

• respuesta aprox. lineal

• estable (no cambia con el tiempo)

• más caro que los otros

R(T ) � R0 (1 + �T )

α = coef. de temp. de R

Thursday, September 6, 12

http://archives.sensorsmag.com/articles/0101/24/index.htm

Sensing Element Materials andTemperature Limits

Material Usable Temperature Range

Platinum –450°F to 1200°F

Nickel –150°F to 600°F

Copper –100°F to 300°F

Nickel/Iron 32°F to 400°F

Thursday, September 6, 12

• Relación T versus vO

• Auto-calentamiento

• FSH : factor de auto-calentamiento

• error en T = FSH ✕ P

• P = potencia disipada en RTD

Thursday, September 6, 12

v1

R1

R(1+b)

VREF

¿Cuanto es v1 versus δ?

Thursday, September 6, 12

v1

R1

R(1+b)

VREF

¿Cuanto es v1 versus δ?

Z�:6)*

=6(�+ �)

6� + 6 + �6

=6

6 + 6�� (�+ �)(6 + 6�)

6� + 6 + �6

=6

6 + 6�� 6� + 6 + �6 + �6�

6� + 6 + �6

=6

6 + 6��

��+

�6�6� + 6 + �6

=6

6 + 6��

��+

�6�6� + (�+ �)6

Thursday, September 6, 12

v1

R1

R(1+b)

VREF

¿Podemos restar el primer término electrónicamente?

Z�:6)*

=6

6 + 6��

�� +

�6�

6� + (� + �)6

7M � = �66 << ��

Z�:6)*

=6

6 + 6��

�� +

�6�

6� + 6

=6

6 + 6�+

�66�

�66� + 6� + 6��

=6

6 + 6�+

� + 66�

+ 6�6

Thursday, September 6, 12

v1

R1

R(1+b)

VREF v2R1

R

-

+

RGvOUT

Circuito puente

Thursday, September 6, 12

v1

R1

R(1+b)

VREF v2R1

R

-

+

RGvOUT

)NIQTPS� 'SRWMHIVI�YR HIXIGXSV�HI�XIQTIVEXYVE�HI�4PEXMRS �4PEXMRYQ�VIWMWXERGI�XIQTIV�EXYVI�HIXIGXSV� S�68( GSR�YR�GSI½GMIRXI�HI�XIQTIVEXYVE � = �.�����/�' ] 6 = ����E ��'� HI�XEP�QSHS�UYI

6(8) = ���� � (� + �8)

�� 'YERXS�IW�PE�VIWMWXIRGME�E�XIQTIVEXYVE�EQFMIRXI�]�E ����'#

�� 7M :6)* = ��: ]�WI�HIWIE�PMQMXEV�PE�TSXIRGME�HMWMTEHE�IR�IP�WIRWSV�TSV�HIFENSHI �.�Q; TEVE�IZMXEV�IVVSVIW�HIFMHS�EP�EYXS�GEPIRXEQMIRXS� HMWIyI�YR�GMVGYMXSGSQS�IP�UYI�WI�QYIWXVE�TEVE�SFXIRIV�YRE�WIRWMXMZMHEH�HI �.�:/�'�

�� )WXMQI�IP�IVVSV�IR�UYI�WI� MRGYVVI�GYERHS 8 = ����' ]�WI�YXMPM^E� PE�IGYEGMzRETVS\MQEHE�TEVE�IWXMQEV�IP�ZSPXENI�HI�WEPMHE�

Thursday, September 6, 12

Ejemplo: Se desea usar un RTD de Platino para medir temperaturas entre 0 y 50℃ con un error debido a auto-calentamiento no mayor a 1℃. Seleccione VCC si

R0 = 100Ω a 0℃α=0.00392/℃ FSH=0.5℃/mW vO+ -

R

R

RT

R0

VCC

Thursday, September 6, 12

TERMISTORES• Cerámica semiconductoras como Mg, Co, Cu, Fe,

etc)

• ΔR≈kΔT; PTC (k>0) or NTC (k<0)

• Alta sensitividad

• típicamente opera a T<100℃

Thursday, September 6, 12

Ecuación de Steinhart-Hart1T

= A + B lnR + C(lnR)3

T = temperatura absolutaR = resistencia a temperatura TA, B = Coeficientes que se deben determinar mediante calibración

R(T ) = R0 exp���

�1T� 1

T0

⇥⇥

3000�K < � < 5000�K

R versus T (en °K) para un termistor:

Thursday, September 6, 12

Calibración: medir R1,R2 y R3 a temperaturas (conocidas)

T1, T2, y T3resolver las tres ecuaciones por A, B y C

Ejemplo: R(273°K) = 16.33kΩR(348°K)=740ΩR(423°K)=92.7Ω

Determine A, B, y C.

Thursday, September 6, 12

<

+ <

+

Vref

R(1+b) R

R1 R1

R2

vOUT

AO1

AO2

Otros circuitos

Thursday, September 6, 12

<

+

VREFR(1+b)

RR1

R1

Thursday, September 6, 12

< +<

+R(1+b)

VREF

R1

R

R1 R2

vOUT

Thursday, September 6, 12

Recommended