Semantic Security in the Presence of Active...

Preview:

Citation preview

Semantic Security in the Presence of

Active Adversaries

Ziv GoldfeldJoint work with Paul Cuff and Haim Permuter

Ben Gurion University

Advanced Communications Center Annual Workshop

February 22nd, 2016

Motivation

Information Theoretic Security over Noisy Channels

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 2

Motivation

Information Theoretic Security over Noisy Channels

Pros:

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 2

Motivation

Information Theoretic Security over Noisy Channels

Pros:

1 Security versus computationally unlimited eavesdropper.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 2

Motivation

Information Theoretic Security over Noisy Channels

Pros:

1 Security versus computationally unlimited eavesdropper.

2 No shared key - Use intrinsic randomness of a noisy channel.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 2

Motivation

Information Theoretic Security over Noisy Channels

Pros:

1 Security versus computationally unlimited eavesdropper.

2 No shared key - Use intrinsic randomness of a noisy channel.

Cons:

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 2

Motivation

Information Theoretic Security over Noisy Channels

Pros:

1 Security versus computationally unlimited eavesdropper.

2 No shared key - Use intrinsic randomness of a noisy channel.

Cons:

1 Eve’s channel assumed to be fully known & constant in time.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 2

Motivation

Information Theoretic Security over Noisy Channels

Pros:

1 Security versus computationally unlimited eavesdropper.

2 No shared key - Use intrinsic randomness of a noisy channel.

Cons:

1 Eve’s channel assumed to be fully known & constant in time.

2 Security metrics insufficient for (some) applications.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 2

Motivation

Information Theoretic Security over Noisy Channels

Pros:

1 Security versus computationally unlimited eavesdropper.

2 No shared key - Use intrinsic randomness of a noisy channel.

Cons:

1 Eve’s channel assumed to be fully known & constant in time.

2 Security metrics insufficient for (some) applications.

Our Goal: Stronger metric and remove “known channel” assumption.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 2

Wiretap Channels - Security Metrics

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 3

Wiretap Channels and Security MetricsDegraded [Wyner 1975], General [Csiszar-Korner 1978]

U[

1 : 2nR]

∼MEnc

XnQY,Z|X

Y n

Zn

Dec

Eve

M

M

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 4

Wiretap Channels and Security MetricsDegraded [Wyner 1975], General [Csiszar-Korner 1978]

U[

1 : 2nR]

∼MEnc

XnQY,Z|X

Y n

Zn

Dec

Eve

M

M

{

Cn

}

n∈N- a sequence of (n, R)-codes

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 4

Wiretap Channels and Security MetricsDegraded [Wyner 1975], General [Csiszar-Korner 1978]

U[

1 : 2nR]

∼MEnc

XnQY,Z|X

Y n

Zn

Dec

Eve

M

M

{

Cn

}

n∈N- a sequence of (n, R)-codes

Weak-Secrecy: 1n

ICn(M ; Zn) −−−→

n→∞0.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 4

Wiretap Channels and Security MetricsDegraded [Wyner 1975], General [Csiszar-Korner 1978]

U[

1 : 2nR]

∼MEnc

XnQY,Z|X

Y n

Zn

Dec

Eve

M

M

{

Cn

}

n∈N- a sequence of (n, R)-codes

Weak-Secrecy: 1n

ICn(M ; Zn) −−−→

n→∞0. Only leakage rate vanishes

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 4

Wiretap Channels and Security MetricsDegraded [Wyner 1975], General [Csiszar-Korner 1978]

U[

1 : 2nR]

∼MEnc

XnQY,Z|X

Y n

Zn

Dec

Eve

M

M

{

Cn

}

n∈N- a sequence of (n, R)-codes

Weak-Secrecy:✭✭

✭✭✭

✭✭✭✭

✭✭1n

ICn(M ; Zn) −−−→

n→∞0 .

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 4

Wiretap Channels and Security MetricsDegraded [Wyner 1975], General [Csiszar-Korner 1978]

U[

1 : 2nR]

∼MEnc

XnQY,Z|X

Y n

Zn

Dec

Eve

M

M

{

Cn

}

n∈N- a sequence of (n, R)-codes

Weak-Secrecy:✭✭

✭✭✭

✭✭✭✭

✭✭1n

ICn(M ; Zn) −−−→

n→∞0 .

Strong-Secrecy: ICn(M ; Zn) −−−→

n→∞0.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 4

Wiretap Channels and Security MetricsDegraded [Wyner 1975], General [Csiszar-Korner 1978]

U[

1 : 2nR]

∼MEnc

XnQY,Z|X

Y n

Zn

Dec

Eve

M

M

{

Cn

}

n∈N- a sequence of (n, R)-codes

Weak-Secrecy:✭✭

✭✭✭

✭✭✭✭

✭✭1n

ICn(M ; Zn) −−−→

n→∞0 .

Strong-Secrecy: ICn(M ; Zn) −−−→

n→∞0. Security only on average

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 4

Wiretap Channels and Security MetricsDegraded [Wyner 1975], General [Csiszar-Korner 1978]

U[

1 : 2nR]

∼MEnc

XnQY,Z|X

Y n

Zn

Dec

Eve

M

M

{

Cn

}

n∈N- a sequence of (n, R)-codes

Weak-Secrecy:✭✭

✭✭✭

✭✭✭✭

✭✭1n

ICn(M ; Zn) −−−→

n→∞0 .

Strong-Secrecy:✭

✭✭✭✭

✭✭✭

✭✭

ICn(M ; Zn) −−−→

n→∞0 .

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 4

Wiretap Channels and Security MetricsDegraded [Wyner 1975], General [Csiszar-Korner 1978]

U[

1 : 2nR]

∼MEnc

XnQY,Z|X

Y n

Zn

Dec

Eve

M

M

{

Cn

}

n∈N- a sequence of (n, R)-codes

Weak-Secrecy:✭✭

✭✭✭

✭✭✭✭

✭✭1n

ICn(M ; Zn) −−−→

n→∞0 .

Strong-Secrecy:✭

✭✭✭✭

✭✭✭

✭✭

ICn(M ; Zn) −−−→

n→∞0 .

Semantic Security:

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 4

Wiretap Channels and Security MetricsDegraded [Wyner 1975], General [Csiszar-Korner 1978]

U[

1 : 2nR]

∼MEnc

XnQY,Z|X

Y n

Zn

Dec

Eve

M

M

{

Cn

}

n∈N- a sequence of (n, R)-codes

Weak-Secrecy:✭✭

✭✭✭

✭✭✭✭

✭✭1n

ICn(M ; Zn) −−−→

n→∞0 .

Strong-Secrecy:✭

✭✭✭✭

✭✭✭

✭✭

ICn(M ; Zn) −−−→

n→∞0 .

Semantic Security: [Bellare-Tessaro-Vardy 2012]

max

PM

ICn(M ;Zn) −−−→

n→∞0.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 4

Wiretap Channels and Security MetricsDegraded [Wyner 1975], General [Csiszar-Korner 1978]

U[

1 : 2nR]

∼MEnc

XnQY,Z|X

Y n

Zn

Dec

Eve

M

M

{

Cn

}

n∈N- a sequence of (n, R)-codes

Weak-Secrecy:✭✭

✭✭✭

✭✭✭✭

✭✭1n

ICn(M ; Zn) −−−→

n→∞0 .

Strong-Secrecy:✭

✭✭✭✭

✭✭✭

✭✭

ICn(M ; Zn) −−−→

n→∞0 .

Semantic Security: [Bellare-Tessaro-Vardy 2012]

max

PM

ICn(M ;Zn) −−−→

n→∞0.

⋆ A single code must work well for all message PMFs ⋆

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 4

A Stronger Soft-Covering Lemma

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 5

Soft-Covering - Setup

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 6

WCodebook

Un

QV |UV n

Unif[

1 : 2nR]

Soft-Covering - Setup

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 6

WCodebook

Un

QV |UV n ← Resemble i.i.d.

Unif[

1 : 2nR]

Soft-Covering - Setup

Random Codebook: Cn ={

Un(w)}

w

iid∼ Qn

U .

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 6

WCodebook

Un

QV |UV n ← Resemble i.i.d.

Unif[

1 : 2nR]

Soft-Covering - Setup

Random Codebook: Cn ={

Un(w)}

w

iid∼ Qn

U .

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 6

WCode Cn

Un

QV |UV n ← Resemble i.i.d.

Unif[

1 : 2nR]

Soft-Covering - Setup

Random Codebook: Cn ={

Un(w)}

w

iid∼ Qn

U .

Induced Output Distribution: Codebook Cn =⇒ V n ∼ P(Cn)V n .

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 6

WCode Cn

Un

QV |UV n ∼ P

(Cn)V n

Unif[

1 : 2nR]

Soft-Covering - Setup

Random Codebook: Cn ={

Un(w)}

w

iid∼ Qn

U .

Induced Output Distribution: Codebook Cn =⇒ V n ∼ P(Cn)V n .

Target IID Distribution: QnV marginal of Qn

U QnV |U .

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 6

WCode Cn

Un

QV |UV n ∼ P

(Cn)V n

Unif[

1 : 2nR]

Soft-Covering - Setup

Random Codebook: Cn ={

Un(w)}

w

iid∼ Qn

U .

Induced Output Distribution: Codebook Cn =⇒ V n ∼ P(Cn)V n .

Target IID Distribution: QnV marginal of Qn

U QnV |U .

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 6

WCode Cn

Un

QV |UV n ∼ P

(Cn)V n ≈ Qn

V

Unif[

1 : 2nR]

Soft-Covering - Setup

Random Codebook: Cn ={

Un(w)}

w

iid∼ Qn

U .

Induced Output Distribution: Codebook Cn =⇒ V n ∼ P(Cn)V n .

Target IID Distribution: QnV marginal of Qn

U QnV |U .

⋆ Goal: Choose R (codebook size) s.t. P(Cn)V n ≈ Qn

V ⋆

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 6

WCode Cn

Un

QV |UV n ∼ P

(Cn)V n ≈ Qn

V

Unif[

1 : 2nR]

Soft-Covering - Results

R > IQ(U ;V ) =⇒ P(Cn)V n ≈ Qn

V

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 7

WCode Cn

Un

QV |UV n ∼ P

(Cn)V n ≈ Qn

V

Unif[

1 : 2nR]

Soft-Covering - Results

R > IQ(U ;V ) =⇒ P(Cn)V n ≈ Qn

V

Wyner 1975: ECn

1n

D(

P(Cn)V n

∣QnV

)

−−−→n→∞

0.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 7

WCode Cn

Un

QV |UV n ∼ P

(Cn)V n ≈ Qn

V

Unif[

1 : 2nR]

Soft-Covering - Results

R > IQ(U ;V ) =⇒ P(Cn)V n ≈ Qn

V

Wyner 1975: ECn

1n

D(

P(Cn)V n

∣QnV

)

−−−→n→∞

0.

Han-Verdu 1993: ECn

∣P(Cn)V n −Qn

V

TV−−−→n→∞

0.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 7

WCode Cn

Un

QV |UV n ∼ P

(Cn)V n ≈ Qn

V

Unif[

1 : 2nR]

Soft-Covering - Results

R > IQ(U ;V ) =⇒ P(Cn)V n ≈ Qn

V

Wyner 1975: ECn

1n

D(

P(Cn)V n

∣QnV

)

−−−→n→∞

0.

Han-Verdu 1993: ECn

∣P(Cn)V n −Qn

V

TV−−−→n→∞

0.

◮ Also provided converse.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 7

WCode Cn

Un

QV |UV n ∼ P

(Cn)V n ≈ Qn

V

Unif[

1 : 2nR]

Soft-Covering - Results

R > IQ(U ;V ) =⇒ P(Cn)V n ≈ Qn

V

Wyner 1975: ECn

1n

D(

P(Cn)V n

∣QnV

)

−−−→n→∞

0.

Han-Verdu 1993: ECn

∣P(Cn)V n −Qn

V

TV−−−→n→∞

0.

◮ Also provided converse.

Hou-Kramer 2014: ECnD

(

P(Cn)V n

∣QnV

)

−−−→n→∞

0.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 7

WCode Cn

Un

QV |UV n ∼ P

(Cn)V n ≈ Qn

V

Unif[

1 : 2nR]

A Stronger Soft-Covering Lemma

Theorem

If R > IQ(U ;V ) and |V| < ∞, then there exists γ1, γ2 > 0 s.t.

PCn

(

D(

P(Cn)V n

∣QnV

)

> e−nγ1

)

≤ e−enγ2

for n sufficiently large.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 8

WCode Cn

Un

QV |UV n ∼ P

(Cn)V n ≈ Qn

V

Unif[

1 : 2nR]

Wiretap Channels of Type II

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 9

Wiretap Channels of Type II - Definition[Ozarow-Wyner 1984]

mEnc

S ⊆ [1 :n], |S|= µ

Zi =

{

Xi , i ∈ S

?, i /∈ S

Xn

QY |XY n

Zn

Dec

Eve

m

m

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 10

Wiretap Channels of Type II - Definition[Ozarow-Wyner 1984]

mEnc

S ⊆ [1 :n], |S|= µ

Zi =

{

Xi , i ∈ S

?, i /∈ S

Xn

QY |XY n

Zn

Dec

Eve

m

m

Eavesdropper: Can observe a subset S ⊆ [1 : n] of size µ = ⌊αn⌋,α ∈ [0,1], of transmitted symbols.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 10

Wiretap Channels of Type II - Definition[Ozarow-Wyner 1984]

mEnc

S ⊆ [1 :n], |S|= µ

Zi =

{

Xi , i ∈ S

?, i /∈ S

Xn

QY |XY n

Zn

Dec

Eve

m

m

Eavesdropper: Can observe a subset S ⊆ [1 : n] of size µ = ⌊αn⌋,α ∈ [0,1], of transmitted symbols.

Transmitted:

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 10

0 0 1 0 1 1 1 0 1 0 n = 10 α = 0.63

Wiretap Channels of Type II - Definition[Ozarow-Wyner 1984]

mEnc

S ⊆ [1 :n], |S|= µ

Zi =

{

Xi , i ∈ S

?, i /∈ S

Xn

QY |XY n

Zn

Dec

Eve

m

m

Eavesdropper: Can observe a subset S ⊆ [1 : n] of size µ = ⌊αn⌋,α ∈ [0,1], of transmitted symbols.

Transmitted:

Observed:

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 10

0 0 1 0 1 1 1 0 1 0

? ? ? 1 1 ? 1 00 1

n = 10 α = 0.63

Wiretap Channels of Type II - Definition[Ozarow-Wyner 1984]

mEnc

S ⊆ [1 :n], |S|= µ

Zi =

{

Xi , i ∈ S

?, i /∈ S

Xn

QY |XY n

Zn

Dec

Eve

m

m

Eavesdropper: Can observe a subset S ⊆ [1 : n] of size µ = ⌊αn⌋,α ∈ [0,1], of transmitted symbols.

Transmitted:

Observed:

⋆ Ensure security versus all possible choices of S ⋆

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 10

0 0 1 0 1 1 1 0 1 0

? ? ? 1 1 ? 1 00 1

n = 10 α = 0.63

Wiretap Channels of Type II - Past Results[Ozarow-Wyner 1984]

mEnc

S ⊆ [1 :n], |S|= µ

Zi =

{

Xi , i ∈ S

?, i /∈ S

Xn

QY |XY n

Zn

Dec

Eve

m

m

Ozarow-Wyner 1984: Noiseless main channel

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 11

Wiretap Channels of Type II - Past Results[Ozarow-Wyner 1984]

mEnc

S ⊆ [1 :n], |S|= µ

Zi =

{

Xi , i ∈ S

?, i /∈ S

Xn

QY |XY n

Zn

Dec

Eve

m

m

Ozarow-Wyner 1984: Noiseless main channel◮ Rate equivocation region.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 11

Wiretap Channels of Type II - Past Results[Ozarow-Wyner 1984]

mEnc

S ⊆ [1 :n], |S|= µ

Zi =

{

Xi , i ∈ S

?, i /∈ S

Xn

QY |XY n

Zn

Dec

Eve

m

m

Ozarow-Wyner 1984: Noiseless main channel◮ Rate equivocation region.◮ Coset coding.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 11

Wiretap Channels of Type II - Past Results[Ozarow-Wyner 1984]

mEnc

S ⊆ [1 :n], |S|= µ

Zi =

{

Xi , i ∈ S

?, i /∈ S

Xn

QY |XY n

Zn

Dec

Eve

m

m

Ozarow-Wyner 1984: Noiseless main channel◮ Rate equivocation region.◮ Coset coding.

Nafea-Yener 2015: Noisy main channel

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 11

Wiretap Channels of Type II - Past Results[Ozarow-Wyner 1984]

mEnc

S ⊆ [1 :n], |S|= µ

Zi =

{

Xi , i ∈ S

?, i /∈ S

Xn

QY |XY n

Zn

Dec

Eve

m

m

Ozarow-Wyner 1984: Noiseless main channel◮ Rate equivocation region.◮ Coset coding.

Nafea-Yener 2015: Noisy main channel◮ Built on coset code construction.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 11

Wiretap Channels of Type II - Past Results[Ozarow-Wyner 1984]

mEnc

S ⊆ [1 :n], |S|= µ

Zi =

{

Xi , i ∈ S

?, i /∈ S

Xn

QY |XY n

Zn

Dec

Eve

m

m

Ozarow-Wyner 1984: Noiseless main channel◮ Rate equivocation region.◮ Coset coding.

Nafea-Yener 2015: Noisy main channel◮ Built on coset code construction.◮ Lower & upper bounds - Not match in general.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 11

Wiretap Channels of Type II - SS-Capacity

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 12

Semantic Security:

Wiretap Channels of Type II - SS-Capacity

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 12

Semantic Security: maxPM ,S:|S|=µ

ICn(M ; Zn) −−−→

n→∞0.

Wiretap Channels of Type II - SS-Capacity

Theorem

For any α ∈ [0, 1]

C(II)Semantic(α) = C

(II)Weak(α) = max

QU,X

[

I(U ; Y )− αI(U ; X)]

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 12

Semantic Security: maxPM ,S:|S|=µ

ICn(M ; Zn) −−−→

n→∞0.

Wiretap Channels of Type II - SS-Capacity

Theorem

For any α ∈ [0, 1]

C(II)Semantic(α) = C

(II)Weak(α) = max

QU,X

[

I(U ;Y )−αI(U ;X)]

RHS is the secrecy-capacity of WTC I with erasure DMC to Eve.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 12

Semantic Security: maxPM ,S:|S|=µ

ICn(M ; Zn) −−−→

n→∞0.

Wiretap Channels of Type II - SS-Capacity

Theorem

For any α ∈ [0, 1]

C(II)Semantic(α) = C

(II)Weak(α) = max

QU,X

[

I(U ; Y )− αI(U ; X)]

RHS is the secrecy-capacity of WTC I with erasure DMC to Eve.

Standard (erasure) wiretap code & Stronger tools for analysis.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 12

Semantic Security: maxPM ,S:|S|=µ

ICn(M ; Zn) −−−→

n→∞0.

Wiretap Channels of Type II - SS-Capacity

Theorem

For any α ∈ [0, 1]

C(II)Semantic(α) = C

(II)Weak(α) = max

QU,X

[

I(U ; Y )− αI(U ; X)]

RHS is the secrecy-capacity of WTC I with erasure DMC to Eve.

Standard (erasure) wiretap code & Stronger tools for analysis.

Practical implementations of binary erasure wiretap codes exist.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 12

Semantic Security: maxPM ,S:|S|=µ

ICn(M ; Zn) −−−→

n→∞0.

WTC II SS-Capacity - Achievability for U=X

1 Wiretap Code:

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 13

WTC II SS-Capacity - Achievability for U=X

1 Wiretap Code:

◮ W ∼ Unif[

1 : 2nR]

.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 13

WTC II SS-Capacity - Achievability for U=X

1 Wiretap Code:

◮ W ∼ Unif[

1 : 2nR]

.

◮ Cn ={

Xn(m, w)}

m,w

iid∼ Qn

X

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 13

m = 1 m = 2 m = 2nR

. . .

w = 1

w = 2nR

......

...

...

n

WTC II SS-Capacity - Achievability for U=X

1 Wiretap Code:

◮ W ∼ Unif[

1 : 2nR]

.

◮ Cn ={

Xn(m, w)}

m,w

iid∼ Qn

X

2 Preliminary Step: maxPM ,S:|S|=µ

ICn(M ; Zn) ≤ max

m,S:|S|=µ

D(

P(Cn,S)Zµ|M=m

∣QµZ

)

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 13

m = 1 m = 2 m = 2nR

. . .

w = 1

w = 2nR

......

...

...

n

WTC II SS-Capacity - Achievability for U=X

1 Wiretap Code:

◮ W ∼ Unif[

1 : 2nR]

.

◮ Cn ={

Xn(m, w)}

m,w

iid∼ Qn

X

2 Preliminary Step: maxPM ,S:|S|=µ

ICn(M ; Zn) ≤ max

m,S:|S|=µ

D(

P(Cn,S)Zµ|M=m

∣QµZ

)

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 13

m = 1 m = 2 m = 2nR

. . .

w = 1

w = 2nR

......

...

...

n

WTC II SS-Capacity - Achievability for U=X

1 Wiretap Code:

◮ W ∼ Unif[

1 : 2nR]

.

◮ Cn ={

Xn(m, w)}

m,w

iid∼ Qn

X

2 Preliminary Step: maxPM ,S:|S|=µ

ICn(M ; Zn) ≤ max

m,S:|S|=µ

D(

P(Cn,S)Zµ|M=m

∣QµZ

)

3 Union Bound & Stronger SCL:

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 13

m = 1 m = 2 m = 2nR

. . .

w = 1

w = 2nR

......

...

...

n

WTC II SS-Capacity - Achievability for U=X

1 Wiretap Code:

◮ W ∼ Unif[

1 : 2nR]

.

◮ Cn ={

Xn(m, w)}

m,w

iid∼ Qn

X

2 Preliminary Step: maxPM ,S:|S|=µ

ICn(M ; Zn) ≤ max

m,S:|S|=µ

D(

P(Cn,S)Zµ|M=m

∣QµZ

)

3 Union Bound & Stronger SCL:

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 13

m = 1 m = 2 m = 2nR

. . .

w = 1

w = 2nR

......

...

...

n

P

(

{

maxPM ,S

ICn(M ; Zn) ≤ e−nγ1

}c)

WTC II SS-Capacity - Achievability for U=X

1 Wiretap Code:

◮ W ∼ Unif[

1 : 2nR]

.

◮ Cn ={

Xn(m, w)}

m,w

iid∼ Qn

X

2 Preliminary Step: maxPM ,S:|S|=µ

ICn(M ; Zn) ≤ max

m,S:|S|=µ

D(

P(Cn,S)Zµ|M=m

∣QµZ

)

3 Union Bound & Stronger SCL:

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 13

m = 1 m = 2 m = 2nR

. . .

w = 1

w = 2nR

......

...

...

n

P

(

{

maxPM ,S

ICn(M ; Zn) ≤ e−nγ1

}c)

≤P

(

maxm,S

D(

P(Cn,S)Zµ|M=m

∣QµZ

)

> e−nγ1

)

WTC II SS-Capacity - Achievability for U=X

1 Wiretap Code:

◮ W ∼ Unif[

1 : 2nR]

.

◮ Cn ={

Xn(m, w)}

m,w

iid∼ Qn

X

2 Preliminary Step: maxPM ,S:|S|=µ

ICn(M ; Zn) ≤ max

m,S:|S|=µ

D(

P(Cn,S)Zµ|M=m

∣QµZ

)

3 Union Bound & Stronger SCL:

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 13

m = 1 m = 2 m = 2nR

. . .

w = 1

w = 2nR

......

...

...

n

P

(

{

maxPM ,S

ICn(M ; Zn) ≤ e−nγ1

}c)

≤P

(

maxm,S

D(

P(Cn,S)Zµ|M=m

∣QµZ

)

> e−nγ1

)

≤∑

m,S

P

(

D(

P(Cn,S)Zµ|M=m

∣QµZ

)

> e−nγ1

)

WTC II SS-Capacity - Achievability for U=X

1 Wiretap Code:

◮ W ∼ Unif[

1 : 2nR]

.

◮ Cn ={

Xn(m, w)}

m,w

iid∼ Qn

X

2 Preliminary Step: maxPM ,S:|S|=µ

ICn(M ; Zn) ≤ max

m,S:|S|=µ

D(

P(Cn,S)Zµ|M=m

∣QµZ

)

3 Union Bound & Stronger SCL:

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 13

m = 1 m = 2 m = 2nR

. . .

w = 1

w = 2nR

......

...

...

n

P

(

{

maxPM ,S

ICn(M ; Zn) ≤ e−nγ1

}c)

≤P

(

maxm,S

D(

P(Cn,S)Zµ|M=m

∣QµZ

)

> e−nγ1

)

≤∑

m,S

P

(

D(

P(Cn,S)Zµ|M=m

∣QµZ

)

>e−nγ1

)

WTC II SS-Capacity - Achievability for U=X

1 Wiretap Code:

◮ W ∼ Unif[

1 : 2nR]

.

◮ Cn ={

Xn(m, w)}

m,w

iid∼ Qn

X

2 Preliminary Step: maxPM ,S:|S|=µ

ICn(M ; Zn) ≤ max

m,S:|S|=µ

D(

P(Cn,S)Zµ|M=m

∣QµZ

)

3 Union Bound & Stronger SCL:

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 13

m = 1 m = 2 m = 2nR

. . .

w = 1

w = 2nR

......

...

...

n

P

(

{

maxPM ,S

ICn(M ; Zn) ≤ e−nγ1

}c)

≤P

(

maxm,S

D(

P(Cn,S)Zµ|M=m

∣QµZ

)

> e−nγ1

)

≤∑

m,S

P

(

D(

P(Cn,S)Zµ|M=m

∣QµZ

)

>e−nγ1

)

Taking R > αH(X) =⇒

WTC II SS-Capacity - Achievability for U=X

1 Wiretap Code:

◮ W ∼ Unif[

1 : 2nR]

.

◮ Cn ={

Xn(m, w)}

m,w

iid∼ Qn

X

2 Preliminary Step: maxPM ,S:|S|=µ

ICn(M ; Zn) ≤ max

m,S:|S|=µ

D(

P(Cn,S)Zµ|M=m

∣QµZ

)

3 Union Bound & Stronger SCL:

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 13

m = 1 m = 2 m = 2nR

. . .

w = 1

w = 2nR

......

...

...

n

P

(

{

maxPM ,S

ICn(M ; Zn) ≤ e−nγ1

}c)

≤P

(

maxm,S

D(

P(Cn,S)Zµ|M=m

∣QµZ

)

> e−nγ1

)

≤∑

m,S

P

(

D(

P(Cn,S)Zµ|M=m

∣QµZ

)

>e−nγ1

)

≤ 2n2nRe−enγ2Taking R > αH(X) =⇒

WTC II SS-Capacity - Achievability for U=X

1 Wiretap Code:

◮ W ∼ Unif[

1 : 2nR]

.

◮ Cn ={

Xn(m, w)}

m,w

iid∼ Qn

X

2 Preliminary Step: maxPM ,S:|S|=µ

ICn(M ; Zn) ≤ max

m,S:|S|=µ

D(

P(Cn,S)Zµ|M=m

∣QµZ

)

3 Union Bound & Stronger SCL:

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 13

m = 1 m = 2 m = 2nR

. . .

w = 1

w = 2nR

......

...

...

n

P

(

{

maxPM ,S

ICn(M ; Zn) ≤ e−nγ1

}c)

≤P

(

maxm,S

D(

P(Cn,S)Zµ|M=m

∣QµZ

)

> e−nγ1

)

≤∑

m,S

P

(

D(

P(Cn,S)Zµ|M=m

∣QµZ

)

>e−nγ1

)

≤ 2n2nRe−enγ2

−−−→n→∞

0Taking R > αH(X) =⇒

WTC II SS-Capacity - Converse

SS-capacity WTC II ≤ Weak-secrecy-capacity WTC I

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 14

WTC II SS-Capacity - Converse

SS-capacity WTC II ≤ Weak-secrecy-capacity WTC I

◮ WTC I with erasure DMC to Eve - Transition probability α.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 14

WTC II SS-Capacity - Converse

SS-capacity WTC II ≤ Weak-secrecy-capacity WTC I

◮ WTC I with erasure DMC to Eve - Transition probability α.

Difficulty: Eve might observe more Xi-s in WTC I than in WTC II.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 14

WTC II SS-Capacity - Converse

SS-capacity WTC II ≤ Weak-secrecy-capacity WTC I

◮ WTC I with erasure DMC to Eve - Transition probability α.

Difficulty: Eve might observe more Xi-s in WTC I than in WTC II.

Solution: Sanov’s theorem & Continuity of mutual information.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 14

Summary

Semantic Security: [Bellare-Tessaro-Vardy 2012]

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 15

Summary

Semantic Security: [Bellare-Tessaro-Vardy 2012]

◮ Gold standard in cryptography - relevant for applications.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 15

Summary

Semantic Security: [Bellare-Tessaro-Vardy 2012]

◮ Gold standard in cryptography - relevant for applications.

◮ Equivalent to vanishing inf. leakage for all PM .

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 15

Summary

Semantic Security: [Bellare-Tessaro-Vardy 2012]

◮ Gold standard in cryptography - relevant for applications.

◮ Equivalent to vanishing inf. leakage for all PM .

Stronger Soft-Covering Lemma:

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 15

Summary

Semantic Security: [Bellare-Tessaro-Vardy 2012]

◮ Gold standard in cryptography - relevant for applications.

◮ Equivalent to vanishing inf. leakage for all PM .

Stronger Soft-Covering Lemma:

◮ Double-exponential decay of prob. of soft-covering not happening.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 15

Summary

Semantic Security: [Bellare-Tessaro-Vardy 2012]

◮ Gold standard in cryptography - relevant for applications.

◮ Equivalent to vanishing inf. leakage for all PM .

Stronger Soft-Covering Lemma:

◮ Double-exponential decay of prob. of soft-covering not happening.

◮ Satisfy exponentially many soft-covering constraints.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 15

Summary

Semantic Security: [Bellare-Tessaro-Vardy 2012]

◮ Gold standard in cryptography - relevant for applications.

◮ Equivalent to vanishing inf. leakage for all PM .

Stronger Soft-Covering Lemma:

◮ Double-exponential decay of prob. of soft-covering not happening.

◮ Satisfy exponentially many soft-covering constraints.

Wiretap Channel II: Noisy Main Channel

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 15

Summary

Semantic Security: [Bellare-Tessaro-Vardy 2012]

◮ Gold standard in cryptography - relevant for applications.

◮ Equivalent to vanishing inf. leakage for all PM .

Stronger Soft-Covering Lemma:

◮ Double-exponential decay of prob. of soft-covering not happening.

◮ Satisfy exponentially many soft-covering constraints.

Wiretap Channel II: Noisy Main Channel

◮ Derivation of SS-capacity & Equality to weak-secrecy-capacity.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 15

Summary

Semantic Security: [Bellare-Tessaro-Vardy 2012]

◮ Gold standard in cryptography - relevant for applications.

◮ Equivalent to vanishing inf. leakage for all PM .

Stronger Soft-Covering Lemma:

◮ Double-exponential decay of prob. of soft-covering not happening.

◮ Satisfy exponentially many soft-covering constraints.

Wiretap Channel II: Noisy Main Channel

◮ Derivation of SS-capacity & Equality to weak-secrecy-capacity.

◮ Classic erasure wiretap codes achieve SS-capacity.

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 15

Summary

Semantic Security: [Bellare-Tessaro-Vardy 2012]

◮ Gold standard in cryptography - relevant for applications.

◮ Equivalent to vanishing inf. leakage for all PM .

Stronger Soft-Covering Lemma:

◮ Double-exponential decay of prob. of soft-covering not happening.

◮ Satisfy exponentially many soft-covering constraints.

Wiretap Channel II: Noisy Main Channel

◮ Derivation of SS-capacity & Equality to weak-secrecy-capacity.

◮ Classic erasure wiretap codes achieve SS-capacity.

Thank You!

Ziv Goldfeld Ben Gurion University

Semantic Security vs. Active Adversaries 15

Recommended