RE-ESTABLISHING NEUROMUSCLULAR CONTROL. DEFINITIONS DEFINITIONS: What is neuromuscular control? What...

Preview:

Citation preview

RE-ESTABLISHING NEUROMUSCLULAR CONTROL

DEFINITIONS

DEFINITIONS:What is neuromuscular control?What is kinesthesia?What is proprioception?What is muscle stiffness?

DEFINTIONS

Neuromuscular Control Is the integration of a number of sensations from

the periphery. These “inputs” from the periphery are combined with a coordinated muscular response as the outcome (the efferent response)

DEFINITIONS

Kinesthesia

It is the sensation or feeling of joint motion or acceleration. It is also the awareness one has of their body in space (knowing how quickly your hip, knee and ankle joints are moving when you walk)

essentially, what you feel when a joint is moving These sensations are transmitted to the CNS via

afferent pathways.

DEFINITIONS

Proprioception?

Is both the conscious and unconscious appreciation of joint position…or the ability to determine the position of a joint in space (i.e. where your foot is when you walk, in relation to your hip, knee and ankle)

These sensations are transmitted to the CNS via afferent pathways.

DEFINITIONS

Muscle stiffness?

It is the muscle’s ability to resist stretch/deformation. It is through this resistance that there is an increase in joint stability/restraint to joint displacement.

PHYSIOLOGY

Mechanoreceptors?

They are specialized nerve endings that respond to mechanical changes (deformation) of tissue. the change in the tissue causes the mechanoreceptor to “fire”.

PHYSIOLOGY

MECHANORECEPTORS:There are 2 types:

1. ArticularFound within joints (ligament, capsule, menisci,

and labrum)Function: stabilize and guide skeletal segments

while providing mechanical restraints to abnormal joint movements.

PHYSIOLOGY

MECHANORECEPTORS: 2. Tenomuscular:

Include both muscle spindles, embedded within the skeletal muscle, detect length and rate of length changes (the stretch reflex) and

GTO’s responsible for monitoring muscle tension or load, located within the tendon and tenomuscular junction, force detectors (inhibit muscle activation when excessive loading might cause damage under load)

MECHANORECEPTORS

Both respond to changes in muscle length. GTO’s also respond to changes in muscle tension.

Muscle spindles elicit a reflex contraction in the agonist muscle

GTO’s cause relaxation (protection)

Muscles

Agonist –the muscle that contracts to produce a movement

Antagonist – the muscle being stretched in response to contraction of the agontist

PHYSIOLOGY

neural pathways of peripheral afferents Either one (or both) of the mechanoreceptors

respond to a signal (i.e., deformation in joint; change in muscle length/tension).

Send signal along afferent nerve to the CNS (cerebral cortex, or directly synapses at spinal level…ie knee jerk of muscle spindles)

CNS evaluates the signal, then responds via efferent nerve to the appropriate muscle/tendon for the required response.

REESTABLISHING NM CONTROL

Why is NM control important in the rehab process?

When injured, there is an increase in the response time of the mechanoreceptors.

This leads to mechanical instability and functional instability (i.e. balance on foot)

REESTABLISHING NM CONTROL

Therefore we must retrain the Mechanoreceptors in order to increase the reaction time and decrease the chance of potential re injury due to mechanical instability.

REESTABLISHING NM CONTROL

Objectives of NM Rehabilitation Four key elements

1) Proprioceptive amd Kineshetic sensation

2) Dynamic joint stability

3) Reactive NM control

4) Functional motor patterns

REESTABLISHING NM CONTROL

What are some techniques that can be used to “train” or improve an athlete’s neuromuscular control?

REESTABLISHING NM CONTROL

Training NM Control CKC activities Balance training Reflex facilitation through reactive training Stretch shortening exercises (plyos) Biofeedback training

REESTABLISHING NM CONTROL

LOWER EXTREMITY TECHNIQUESCKCBalance training (PWB stable – PWB

unstable) ( wobble boards etc) Combine strength and balanceStretch shortening exercises (plyos)Reactive NM activities (trampoline hopping)Functional activities

REESTABLISHING NM CONTROL

UPPER EXTREMITY TECHNIQUESCKC (PU’s, slide board, circles, etc)Stable to unstable platformsPlyo ball training (for stretch

shortening/reactive training)Reactive NM activities (maintain hand

position against resistance) light trainingFunctional training , ball tosses

REESTABLISHING NM CONTROL

Important point:During rehab, it is important to progress the

athlete into “unstable” positions. By doing so, the athlete will “learn” what the position feels like, and how to prevent the position from happening/over-extending.

i.e. in shoulder dislocation, train in increasing abduction/external rotation

LIGAMENTOUS INJURY

Repetitive Injury Instability proprioceptive deficits

Functional Instability Decreased NM Control

Recommended