Quantum mechanics - Vrije Universiteit...

Preview:

Citation preview

1

Quantum mechanicsQuantum mechanicsEffects on the equations of motionEffects on the equations of motion

of the fractal structures of the geodesics of a of the fractal structures of the geodesics of anondifferentiable spacenondifferentiable space

http ://luth.obspm.fr/~luthier/nottale/

Laurent NottaleCNRS

LUTH, Paris-Meudon Observatory

2

ReferencesReferencesNottale, L., 1993, Fractal Space-Time and Microphysics : Towards a Theory of ScaleRelativity, World Scientific (Book, 347 pp.)Chapter 5.6 : http ://luth.obspm.fr/~luthier/nottale/LIWOS5-6cor.pdf

Nottale, L., 1996, Chaos, Solitons & Fractals, 7, 877-938. “Scale Relativity and FractalSpace-Time : Application to Quantum Physics, Cosmo- logy and Chaotic systems”.http ://luth.obspm.fr/~luthier/nottale/arRevFST.pdf

Nottale, L., 1997, Astron. Astrophys. 327, 867. “Scale relativity and Quantization of theUniverse. I. Theoretical framework.” http://luth.obspm.fr/~luthier/nottale/arA&A327.pdf

Célérier Nottale 2004 J. Phys. A 37, 931(arXiv : quant- ph/0609161)“Quantum-classical transition in scale relativity”.http ://luth.obspm.fr/~luthier/nottale/ardirac.pdf

Nottale L. & C élérier M.N., 2007, J. Phys. A : Math. Theor. 40, 14471-14498 (arXiv :0711.2418 [quant-ph]).“Derivation of the postulates of quantum mechanics form the first principles of scalerelativity”.

3

Fractality Discrete symmetry breaking (dt)

Infinity ofgeodesics

Fractalfluctuations

Two-valuedness (+,-)

Fluid-likedescription

Second order termin differential equations

Complex numbers

Complex covariant derivative

NON-DIFFERENTIABILITYNON-DIFFERENTIABILITY

4

Dilatation operator (Gell-Mann-Lévy method):

First order scale differential equation:First order scale differential equation:

Taylor expansion:

Solution: fractal of constant dimension + transition:

5

ln L

ln ε

trans

ition

fractal

scale -independent

ln ε

trans

ition

fractal

delta

variation of the length variation of the scale dimension"scale inertia"

scale -independent

Case of « scale-inertial » laws (which are solutions of a first order scaledifferential equation in scale space).

Dependence on scale of the length (=fractal coordinate)Dependence on scale of the length (=fractal coordinate) and of the effective fractal dimension and of the effective fractal dimension

= DF - DT

6

Asymptotic behavior:

Scale transformation:

Law of composition of dilatations:

Result: mathematical structure of a Galileo group ––>

Galileo scale transformation groupGalileo scale transformation group

-comes under the principle of relativity (of scales)-

7

Road toward SchrRoad toward Schröödinger (1):dinger (1):infinity of geodesicsinfinity of geodesics

––> generalized « fluid » approach:

Differentiable Non-differentiable

8

Road toward SchrRoad toward Schröödinger (2):dinger (2):‘‘differentiable partdifferentiable part’’ and and ‘‘fractal partfractal part’’

Minimal scale law (in terms of the space resolution):

Differential version (in terms of the time resolution):

Case of the critical fractal dimension DF = 2:

Stochastic variable:

9

Road toward SchrRoad toward Schröödinger (3):dinger (3):non-differentiability non-differentiability ––––> complex numbers> complex numbers

Standard definition of derivative

DOES NOT EXIST ANY LONGER ––> new definition

TWO definitions instead of one: they transform one inanother by the reflection (dt <––> -dt )

f(t,dt) = fractal fonction (equivalence class, cf LN93)Explicit fonction of dt = scale variable (generalized « resolution »)

10

Covariant derivative operatorCovariant derivative operatorClassical(differentiable)part

11

Improvement of Improvement of « « quantumquantum » »covariancecovariance

Ref.: Nottale L., 2004, American Institute of Physics Conference Proceedings 718, 68-95 “The Theory of Scale Relativity : Non-Differentiable Geometry and Fractal Space- Time”.http ://luth.obspm.fr/~luthier/nottale/arcasys03.pdf

Introduce complex velocity operator:

New form of covariant derivative:

satisfies first order Leibniz rule for partial derivative and law ofcomposition (see also Pissondes’s work on this point)

12

Covariant derivative operator

Fundamental equation of dynamics

Change of variables (S = complex action) and integration

Generalized Schrödinger equation

FRACTAL SPACE-TIMEFRACTAL SPACE-TIME––>QUANTUM MECHANICS>QUANTUM MECHANICS

Ref: LN, 93-04, Célérier & LN 04,07. See also works by: Ord,Hermann, Pissondes, Dubois, Jumarie, Cresson, Ben Adda, Agop, …

13

Hamiltonian: covariant formHamiltonian: covariant form

––>

Additional energy term specific of quantum mechanics: explainedhere as manifestation of nondifferentiability and strong covariance

14

Newton

Schrödinger

15

Newton

Schrödinger

16

Origin of complex numbers inOrigin of complex numbers inquantum mechanics. 1.quantum mechanics. 1.

Two valuedness of the velocity field ––> need to define a newproduct: algebra doubling A––>A2

General form of a bilinear product :

i,j,k = 1,2 ––> new product defined by the 8 numbers

Recover the classical limit ––> A subalgebra of A2

Then (a,0)=a. We define (0,1)=α and therefore only 2 coefficients areneeded:

17

Complex numbers. Origin. 2.Complex numbers. Origin. 2.Define the new velocity doublet, including the divergent (explicitlyscale-dependent) part:

Full Lagrange function (Newtonian case):

Infinite term in the Lagrangian ?

Since and

––> Infinite term suppressed in the Lagrangian provided:

QED

18

SOLUTIONSSOLUTIONSVisualizations, simulationsVisualizations, simulations

19

Geodesics stochastic diferential equationsGeodesics stochastic diferential equations

20

Young hole experiment: one slitYoung hole experiment: one slit

Simulation of

geodesics

21

Young hole experiment: one slitYoung hole experiment: one slit

Scale dependent simulation: quantum-classical transition

22

Young hole experiment: two-slitYoung hole experiment: two-slit

23

3D isotropic harmonic oscillator3D isotropic harmonic oscillator

Examples of geodesics

simulation of process dxk = vk+ dt + dξk

+

n=0 n=1

24

3D isotropic harmonic oscillator3D isotropic harmonic oscillatorpotentialpotential

Animation

Firts excited level : simulation of the process dx = v+ dt + dξ+

25

3D isotropic harmonic oscillator3D isotropic harmonic oscillatorpotentialpotential

First excited level: simulation of process dx = v+ dt + dξ+

Comparaison simulation - QM prediction: 10000 pts, 2 geodesics

Den

sity

of p

roba

bilit

y

Coordinate x

26

n=0 n=1

n=2(2,0,0)

n=2(1,1,0)

E = (3+2n) mDω

Hermite polynomials

Solutions: 3D harmonic oscillator potential 3D (constant density)Solutions: 3D harmonic oscillator potential 3D (constant density)

27

n=0 n=1

n=2 n=2(2,0,0) (1,1,0)

Solutions: 3D harmonic oscillator potentialSolutions: 3D harmonic oscillator potential

28

Simulation of geodesicsSimulation of geodesicsKepler central potential GM/rState n = 3, l = m = n-1

Process:

29

n=3

Solutions: Kepler potentialSolutions: Kepler potential

Generalized Laguerre polynomials

30

Hydrogen atomHydrogen atom

Distribution obtained from one geodesical line, compared totheoretical distribution solution of Schrödinger equation

Recommended