Pseudo-Parabolic Partial Differential...

Preview:

Citation preview

The Initial-Boundary-Value ProblemsOperators in L2

Pseudo-Parabolic Partial Differential Equations

R.E. Showalter

Department of MathematicsOregon State University

Applied Mathematics & Computation Seminar

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Outline

1 The Initial-Boundary-Value ProblemsParabolic Diffusion EquationPseudo-Parabolic EquationOrigins

2 Operators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)ODE and an Elliptic BVP

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Parabolic Diffusion EquationPseudo-Parabolic EquationOrigins

PDE are just ODE in an appropriate function space.Here we treat simple partial differential equations as evolutionequations (ordinary differential equations) in the space L2(G).

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Parabolic Diffusion EquationPseudo-Parabolic EquationOrigins

Outline

1 The Initial-Boundary-Value ProblemsParabolic Diffusion EquationPseudo-Parabolic EquationOrigins

2 Operators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)ODE and an Elliptic BVP

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Parabolic Diffusion EquationPseudo-Parabolic EquationOrigins

Parabolic equation

u = u(x , t) : Initial-Boundary-Value Problem

∂u∂t−∇·k∇u = 0, x ∈ Ω, t > 0,

u(s, t) = 0, s ∈ ∂Ω, t > 0,

u(x , 0) = u0(x), x ∈ Ω.

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Parabolic Diffusion EquationPseudo-Parabolic EquationOrigins

Outline

1 The Initial-Boundary-Value ProblemsParabolic Diffusion EquationPseudo-Parabolic EquationOrigins

2 Operators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)ODE and an Elliptic BVP

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Parabolic Diffusion EquationPseudo-Parabolic EquationOrigins

Pseudo-Parabolic Equation

∂u∂t− ε∇·k∇∂u

∂t−∇·k∇u = 0, x ∈ Ω, t > 0,

u(s, t) = 0, s ∈ ∂Ω, t > 0,

u(x , 0) = u0(x), x ∈ Ω.

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Parabolic Diffusion EquationPseudo-Parabolic EquationOrigins

Outline

1 The Initial-Boundary-Value ProblemsParabolic Diffusion EquationPseudo-Parabolic EquationOrigins

2 Operators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)ODE and an Elliptic BVP

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Parabolic Diffusion EquationPseudo-Parabolic EquationOrigins

Origins

1926 Milne ... time delay, gas diffusion

1948 Rubinstein ... heat conduction in composite medium

1960 Barenblatt ... fluid flow in fissured medium

1960 Coleman-Noll ... heat conduction

1968 Chen-Gurtin

1966 Lighthill ... fluid

1966 Peregrine ... long waves (semilinear)

1972 Benjamin-Bona-Mahoney

1979 Aifantis ... highly-diffusive paths

1980 Gilbert ... Slightly-compressible Stokes velocity

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)

ODE and an Elliptic BVP

Outline

1 The Initial-Boundary-Value ProblemsParabolic Diffusion EquationPseudo-Parabolic EquationOrigins

2 Operators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)ODE and an Elliptic BVP

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)

ODE and an Elliptic BVP

Elliptic Boundary-Value Problem

The spatial derivatives are given by the operator

Au = −∇·k∇u(·) in L2(G),

D(A) = u ∈ H2(G) : u = 0 on ∂G

Eigen-functions: vj(·) : j ≥ 1 is an ortho-normal basis forL2(G)

A(vj) = λjvj , j ≥ 1 , 0 < λj → +∞

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)

ODE and an Elliptic BVP

Outline

1 The Initial-Boundary-Value ProblemsParabolic Diffusion EquationPseudo-Parabolic EquationOrigins

2 Operators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)ODE and an Elliptic BVP

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)

ODE and an Elliptic BVP

The Parabolic Equation

u′(t) + Au(t) = 0, t > 0 ,

u(0) = u0 .

u(t) =∞∑

j=1

e−λj t(u0, vj) vj

= S(t)u0 = e−Atu0

Analytic semigroup

Regularity increasing for t > 0

Unbounded decay rate of coefficients

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)

ODE and an Elliptic BVP

The Parabolic Equation

u′(t) + Au(t) = 0, t > 0 ,

u(0) = u0 .

u(t) =∞∑

j=1

e−λj t(u0, vj) vj

= S(t)u0 = e−Atu0

Analytic semigroup

Regularity increasing for t > 0

Unbounded decay rate of coefficients

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)

ODE and an Elliptic BVP

The Parabolic Equation

u′(t) + Au(t) = 0, t > 0 ,

u(0) = u0 .

u(t) =∞∑

j=1

e−λj t(u0, vj) vj

= S(t)u0 = e−Atu0

Analytic semigroup

Regularity increasing for t > 0

Unbounded decay rate of coefficients

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)

ODE and an Elliptic BVP

The Pseudo-Parabolic Equation

u′(t) + εAu′(t) + Au(t) = 0, t > 0 ,

u(0) = u0 .

u(t) =∞∑

j=1

e−λj t

1+ελj (u 0, vj) vj

= Sε(t)u0 = e−(I+εA)−1Atu0

C0-groupRegularity preserving for −∞ < t < ∞

Decay rate bounded below by1ε

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)

ODE and an Elliptic BVP

The Pseudo-Parabolic Equation

u′(t) + εAu′(t) + Au(t) = 0, t > 0 ,

u(0) = u0 .

u(t) =∞∑

j=1

e−λj t

1+ελj (u 0, vj) vj

= Sε(t)u0 = e−(I+εA)−1Atu0

C0-groupRegularity preserving for −∞ < t < ∞

Decay rate bounded below by1ε

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)

ODE and an Elliptic BVP

The Pseudo-Parabolic Equation

u′(t) + εAu′(t) + Au(t) = 0, t > 0 ,

u(0) = u0 .

u(t) =∞∑

j=1

e−λj t

1+ελj (u 0, vj) vj

= Sε(t)u0 = e−(I+εA)−1Atu0

C0-groupRegularity preserving for −∞ < t < ∞

Decay rate bounded below by1ε

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)

ODE and an Elliptic BVP

Outline

1 The Initial-Boundary-Value ProblemsParabolic Diffusion EquationPseudo-Parabolic EquationOrigins

2 Operators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)ODE and an Elliptic BVP

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)

ODE and an Elliptic BVP

ODE in L2(G)

Aε = (I + εA)−1A = A(I + εA)−1 =1ε(I − (I + εA)−1)

is a bounded operator on L2(G).

u′(t) + Aεu(t) = 0

is an Ordinary Differential Equation in L2(G).

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)

ODE and an Elliptic BVP

... a little algebra ...

The pseudo-parabolic equation

u′(t) + εAu′(t) + Au(t) = 0, t > 0

can be written

u′(t) +1ε

u(t) =1ε(I + εA)−1u(t) ∈ D(A)

The saltus or jump along an interface, [u](t), satisfies

[u]′(t) +1ε[u](t) = 0 ,

so

[u](t) = e−tε [u0] .

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)

ODE and an Elliptic BVP

... a little algebra ...

The pseudo-parabolic equation

u′(t) + εAu′(t) + Au(t) = 0, t > 0

can be written

u′(t) +1ε

u(t) =1ε(I + εA)−1u(t) ∈ D(A)

The saltus or jump along an interface, [u](t), satisfies

[u]′(t) +1ε[u](t) = 0 ,

so

[u](t) = e−tε [u0] .

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)

ODE and an Elliptic BVP

Richard’s equation(with M. Peszynska, S.-Y.Yi)

φ∂S∂t

+∇ · (Kkw (S)∇Pc(S)) = ∇ · (Kkw (S)Gρw∇Depth(x))

Rewritten in a generic nonlinear parabolic form

∂S∂t−∇ · (D(S)∇S) = ∇ · (Λ(S))

D(S) is non-negative definite and degenerate

D(S) ≈ 0, S1 ≤ S ≤ S2

Λ(S) is monotone increasing degenerate.

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)

ODE and an Elliptic BVP

Richard’s equation with dynamic capillary pressure(with M. Peszynska, S.-Y.Yi)

Replace Pc(S) by Pc(S, ∂S∂t ) to account for dependence on time

scale of getting to capillary equilibrium [Wildenschild et al]

φ∂S∂t

+∇ · (Kkw (S)∇Pc(S,∂S∂t

)) = ∇ · (Kkw (S)Gρw∇Depth(x))

([B]) [Barenblatt] Pc(S, ∂S∂t )) := Pc(S + τ ∂S

∂t )

([HC]) [Hassanizadeh, Celia] Pc(S, ∂S∂t )) := Pc(S)− τ ∂S

∂t(also note some hysteresis models [Belyaev, Schotting, vanDuijn]Can be rewritten in a generic nonlinear pseudo–parabolic form

∂S∂t−∇ · (D(S)∇S) = ∇ · (Λ(S)) +∇ ·

(C(S)∇∂S

∂t

)where C(S) is more or less degenerate depending on themodel RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)

ODE and an Elliptic BVP

Compare solutions to linear parabolic andpseudo-parabolic equations (M. Peszynska, S.-Y.Yi)

∂S∂t−∇ · (D∇S) = ∇ · C∇(

∂S∂t

)

where C = τD.

use τ = 0 and τ = 1.

initial data: smooth (optimal convergence)

τ = 0 τ = 1RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)

ODE and an Elliptic BVP

Compare solutions to linear parabolic andpseudo-parabolic equations (M. Peszynska, S.-Y.Yi)

∂S∂t−∇ · (D∇S) = ∇ · C∇(

∂S∂t

)

where C = τD.use τ = 0 and τ = 1.initial data: nonsmooth

nonsmooth initial data, τ = 0 nonsmooth initial data, τ = 1

RES AMC Seminar 2007

The Initial-Boundary-Value ProblemsOperators in L2

Elliptic Boundary-Value ProblemEvolution Equations in L2(G)

ODE and an Elliptic BVP

RES AMC Seminar 2007

Recommended