Primes in Apollonian Circle Packings. Primitive curvatures For any generating curvatures (sum is as...

Preview:

Citation preview

Primes in Apollonian Circle Packings

Primitive curvatures

• For any generating curvatures (sum is as small as possible under Si ) a,b,c,d then gcd(a,b,c,d)=1

• If not there will be no primes beyond the first generation (i.e. these are not interesting to our project so we ignore them)

Parity of Mutually Tangent Circles

• All groups of four mutually tangent circles in primitive curvatures have two even and two odd curvatures.

Question : What is the ratio of prime curvatures to total curvatures?

• We wrote a program that plots the number of curvatures versus the number of prime curvatures in each generation.

• We compared the graphs of these plots up to the ninth generation for different root quadruples

Curvatures vs Prime Curvatures: (-1,2,2,3) x/log(x)

0 2000 4000 6000 8000 10000 12000 140000

200

400

600

800

1000

1200

1400

1600

Curvatures vs Prime Curvatures : (0, 0, 1, 1)

x/log(x)

0 0.5 1 1.5 2 2.5 3 3.5

x 104

0

500

1000

1500

2000

2500

3000

3500

Curvatures vs Prime Curvatures : Or (-12,25,25,28)

x/log(x)

0 2000 4000 6000 8000 10000 12000 140000

200

400

600

800

1000

1200

1400

Curvatures vs Prime Curvatures : (-6,10,15,19)

x/log(x)

0 2000 4000 6000 8000 10000 12000 140000

200

400

600

800

1000

1200

1400

Curvatures vs Prime Curvatures : (-4, 8, 9, 9)

x/log(x)

0 2000 4000 6000 8000 10000 12000 140000

200

400

600

800

1000

1200

1400

For Integers vs Prime Integersx/log(x)

0 2000 4000 6000 8000 10000 12000 140000

200

400

600

800

1000

1200

1400

1600

1800

WHY?

• (Rough idea): If all integers can be written as the sum of four squares then all integers should show up in some circle packings

• If there is no “bias” in Apollonian circle packings, all packings should get roughly the same ratio of primes as all other packings and as the integers.

Modula n

• Which numbers mod n appear in the curvatures of a given generation?

• We wrote a program to look at which mods occur for each set of different curvatures. We also looked at “bad primes” and what made them “bad primes”.

Curvatures: (-1,2,2,3)Mod 2

0 10

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2x 10

4

mod n

how

man

y cu

rvat

ures

for

eac

h m

od

Curvatures (-1,2,2,3)Mod 3

0 1 20

0.5

1

1.5

2

2.5x 10

4

Curvatures: (-1,2,2,3)Mod 24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230

1000

2000

3000

4000

5000

6000

7000

Curvatures (-1,2,2,3)Mod 7

0 1 2 3 4 5 60

1000

2000

3000

4000

5000

6000

7000

Curvatures (-1,2,2,3)Mod 13

0 1 2 3 4 5 6 7 8 9 10 11 120

500

1000

1500

2000

2500

3000

3500

Curvatures (0,0,1,1)Mod 2

0 10

2000

4000

6000

8000

10000

12000

14000

16000

18000

Curvatures (0,0,1,1)Mod 3

0 1 20

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2x 10

4

Curvatures (0,0,1,1)Mod 24

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 230

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Curvatures (0,0,1,1)Mod 7

0 1 2 3 4 5 60

1000

2000

3000

4000

5000

6000

Curvatures (0,0,1,1)Mod 13

0 1 2 3 4 5 6 7 8 9 10 11 120

500

1000

1500

2000

2500

3000

Does every m Mod n occur?

• We wrote a program to plot a histogram of those numbers of the form n mod m that do not occur versus those that occur.

• For 6 mod 24 with the packing (-1,2,2,3) and looking at numbers up to 10,000 we got…

Zeros are numbers that do occur.In generation 2, we have…

0 10

200

400

600

800

1000

1200

1400

1600

1800

In generation 6

0 10

200

400

600

800

1000

1200

1400

1600

1800

In Generation 10

0 10

100

200

300

400

500

600

700

800

900

WHY?

• (Rough idea): Local to global principles suggest that if some m mod n occurs somewhere in the packing then after local barriers are removed, all m mod n should occur.

Recommended