Prepared by Dr. Ulkuhan Guler GT-Bionics Lab Georgia...

Preview:

Citation preview

Prepared by

Dr. Ulkuhan Guler

GT-Bionics Lab

Georgia Institute of Technology

Understanding Fabrication Imperfections

Layout of MOS Transistor

Matching Theory and Mismatches

Device Matching, Interdigitation and Common Centroid Layouts

Interconnections, Noise and Shielding

System Layout, Floor planning, Clock Design

OUTLINE

Digital and Analog Transistors

Digital

• Speed• Load Driving Capability

• Area Optimization

Analog

• Accurate Aspect Ratio

• Matching• Noise• Minimize Stray and Gate Resistances

W

W1

S

S1

Layout and Real Chip is Different

Mask Production / Misalignment

Lateral Diffusion

Over‐Etching / Undercut

Boundary Conditions

Non‐Uniformity

3 D Effects

Possible Problems Related with Fabrication

Mask Misalignment

Mask Misalignment

Lateral Diffusion

Over Etching / Undercut EffectBoundary Dependent Etching

Etching Variations due to Different Contact Resistance

3 Dimensional Effects

Difference between drawn and physical values

OutlineUnderstanding Fabrication Imperfections

Layout of MOS Transistor

Matching Theory and Mismatches

Device Matching, Interdigitation and Common Centroid Layouts

Interconnections, Noise and Shielding

System Layout, Floor planning, Clock Design

Forming NMOS and PMOS Transistors

Ptap and Ntap is necessary to isolate transistors

Shallow Trench Isolation (STI) 

Proper NTAP and PTAP Connection

Proper NTAP and PTAP Connection

Source Drain Connection

Multiple or Single Contact 

Spiking

Transistor Folding (Parallelization)

Analog Devices may have large W/L ratio

Drain and source 

resistance are reduced with 

contacts

Gate resistance is still high

Drain‐Bulk and Source‐Bulk capacitance is 

still high

Gate capacitance is 

still high

Parasitic Capacitances 

Parasitic Resistances

Transistor Folding (Parallelization)

Transistor Folding (Parallelization)

Gate Resistance

Drain‐Bulk &Drain‐Source

Capacitance

OutlineUnderstanding Fabrication Imperfections

Layout of MOS Transistor

Matching Theory and Mismatches

Device Matching, Interdigitation and Common Centroid Layouts

Interconnections, Noise and Shielding

System Layout, Floor planning, Clock Design

Mismatch

Electrical properties of two devices are generally not same even they have the same layouts

This is called as Mismatch

Matching two devices is very important for some analog circuits such as, differential pair devices like opamp, and etc.

Some kind of mismatches can not be modeled with simulation tools

Designer should be aware of this during layout design

Effects of Mismatch on Performance

• Eg. Current mirrors, Analog Digital Converter

Basic operation of some circuits directly depends on matching

• In differential pairsCommon‐mode rejection is limited

• In fully differential circuitsSupply noise rejection is limited

• Eg.  band‐gap, LDOAmplifier offset and/or load mismatch degrade the performance of some circuits which contain amplifier

• Clock and signal skew and memory cell matchings

In digital circuits

Mismatch

M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, "Matching properties of MOS transistors," IEEE Journal of Solid‐ State Circuits, vol. 24, pp. 1433 ‐ 1439, October 1989.

Suppose two matched devices have parameters P1 and P2

Mismatched between these two devices is ΔP

Mismatch has a Gaussian distribution, which has mean and standard deviation

Mismatch

Systematic Mismatch

Mean µ(ΔP)

Due to process variation

Can not be eliminated totally but can be reduce significantly

Random Mismatch

Standard deviation σ(ΔP)

Due to imperfect balancing in circuit 

and gradients

Can be minimized or even completely 

eliminated

Systematic Mismatch / Gradients

Certain physical parameters such as temperature, process biases, mechanical stress, oxide thickness, poly‐silicon etch etc.  may vary  gradually across an IC.

Since these variations can be computed mathematically, they are called as gradients.

These variations can cause to systematic mismatches. Another reason of systematic mismatch is inadequate layout. 

Systematic mismatch can be very large and dominant.

In some  cases ,a good way of testing systematic mismatch is power supply rejection simulation on the post layout netlist

Random Mismatch/Dopant Fluctuations 

Potential distribution of  dopants in a 35nm MOSFETB.Cheng et al., “The impact of random doping effects on  CMOS SRAM cell,” Proc. ESSCIRC, 2004, p219‐222 

B. Hoeneisen and C. A. Mead, “Current‐voltage characteristics  of small size MOS transistors,” IEEE Trans. Electron Devices, vol. ED‐19, pp. 382‐383, 1972

Random Mismatch/Pelgrom’s Rule 

∆ : : : : :

1‐ Place two devices closely2‐ Apply “Area Rule”,  increase WL1‐ Place two devices closely2‐ Apply “Area Rule”,  increase WL

Random Mismatch / Some Analysis

Big Transistors match betterJose Pineda de Gyvez and Hans P, Tuinhout, "Threshold Voltage Mismatchand Intra‐Die Leakage Current in Digital CMOS Circuits", JSSC, Vol. 39, no. I, pp157‐168, Jan. 2004

Area RuleBrad Minch, 1999

Random Mismatch / Some Analysis

Why Matching?

Orientation

Si and transistors are not perfectly isotropic

Keep direction of current flow same 

Exercise; Which layout?

Exercise; Which layout?

Exercise; Which layout?

Dummy Device is added

Distance Effect

Remember “Pelgrom’s Theorem”,Place matched devices in close proximity

Over‐Etching/ Under‐cut Effect / Boundary Effect

Use large W and L to reduce the effect of under‐cut

Use dummy devices to provide same environment 

Stress Effect

There is also stress caused by metallization. Therefore do not route metal across active area, if routing is unavoidable add 

dummy metals so that each device sees same amount of metal

Oxide Thickness

Devices with thinner oxide usually exhibit better matching

Use minimum tox devices for best matching if the process offers a choice

Contacts

Contacts in active gate region may cause variation in Vt. Gate contacts must be outside the active region to reduce dopant effects, stress,  work function etc.

Because of reliability issues use multiple contacts with exactly same number in the matched devices

One contact resistance is around several ohms. Use multiple contacts reduce resistance.

Temperature effect

Temperature gradients affect accuracyDevices need to be placed symmetrical with respect to 

power devices 

Bias Effect

Mismatch in the drain currents is bias dependent

Vt mismatch has a larger effect at low bias levels. High Vgs –Vt is good for current matching.  Try to keep Vds same.

β mismatch dominates at high current

M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, "Matching properties of MOS transistors," IEEE Journal of Solid‐ State Circuits, vol. 24, pp. 1433 ‐ 1439, October 1989. 2.5um CMOS technology

Current Matching

∆ ∆ //

∆/2

• Mismatch in the (W/L) values  increase W/L• Mismatch in the threshold values  increase overdrive 

voltage 

Voltage Matching

• Threshold voltage mismatch can be reduced by careful layout

• Second component scaled with overdrive voltage, mismatch in the load and W/L

• Reduce overdrive voltage• Increase W/L and RL

∆ 2 ∆ ∆ /

/

Current and Voltage Matching

MOS transistors can be optimized either for voltage matching or for current matching, but not for both !

For current matching keep overdrive voltage large (Current mirrors)

For voltage matching keep overdrive voltage smaller (Differential pair devices)

Route current a long way, not voltages. IR drops can cause big mismatches

Check List for Matching

Place the transistors in close proximity

Orient transistors in the same direction

Place transistor’s segments in the area of low stress gradients

Place transistors away from the power devices

Make current or voltage matching 

Use dummy devices if necessary

Use multiple contacts

Keep the layout of transistor compact

Use Common Centroid layouts for critical devices

Corner Simulation

Some of the manufacturing limitations (some systematic mismatches) are captured in the spice transistor models

For example, two of the main parameters are DL and DW which show the differences between drawn and effective length and width of transistor, respectively.

Manufacturing process tolerances of these parameters are emulated in the corner case simulations 

Narrower L and wider W  Fast corner Wider L and smaller W  Slow corner

Corner Simulation

Some companies also provide models with fast NMOS and slow PMOS  FS or with slow NMOS and fast PMOS  SF

Some companies want that the circuit work within 3 sigma spread is applied to typical corners FF3, SS3.

0.13um and smaller technologies requires models for leakage.  Faster process, maximum supply voltage and maximum temperature ML Maximum Leakage Typical process, typical supply voltage and typical temperature  TL Typical Leakage

Monte Carlo Simulation can be run “to center the design”.

TradeoffsIncreased channel length

Increased circuit area

Increased power dissipation

Reduced speed

Determine required level of matching

Minimal : 3σ 10mV, 3σ∆ 2%

Unit elements, matched orientation, compact layout

Moderate : 3σ 2mV, 3σ∆ 0.1%

Apply most of layout rules

Precise : Self calibration

ReferencesA. Hastings, The Art of Analog Layout, 2nd Ed. Prentice‐Hall, 2006.

Lee Eng Han, et. Al., CMOS Transistor Layout Kung Fu, 2005. www.eda‐utilities.com

B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw‐Hill, 2001.

M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, "Matching properties of MOS transistors," IEEE Journal of Solid‐ State Circuits, vol. 24, pp. 1433 ‐ 1439, October 1989. 

B.Cheng et al., “The impact of random doping effects on CMOS SRAM cel1,” Proc. ESSCIRC, 2004, p219‐222 

B. Hoeneisen and C. A. Mead, “Current‐voltage characteristics  of small size MOS transistors,” IEEE Trans. Electron Devices,  vol. ED‐19, pp. 382‐383, 1972

Jose Pineda de Gyvez and Hans P, Tuinhout, "Threshold Voltage Mismatch and Intra‐Die Leakage Current in Digital CMOS Circuits",  JSSC, Vol. 39, no. I, pp157‐168, Jan. 2004

M. F. Lan et. al. , “Current Mirror Layout Strategies for Enhancing Matching Performance”, Kluwer AICSP, July 2001.

D. Clein, CMOS IC Layout ‐ Concepts, Methodologies, and Tools, Boston, 1999.D. Clein, CMOS IC Layout ‐ Concepts, Methodologies, and Tools, Boston, 1999.J. Franca and Y. Tsividis, editors, Design of Analog‐Digital VLSI Circuits For Telecommunications and Signal Processing, 2nd Ed., Prentice‐Hall, 1994.

ReferencesM. Ismail and T. Fiez editors, Analog VLSI ‐ Signal and Information Processing, McGraw‐Hill, 1994.M. F. Lan et. al. , “Current Mirror Layout Strategies for Enhancing Matching Performance”, Kluwer AICSP, July 2001.F. Maloberti, “Analog Design for CMOS VLSI Systems”, Springer US

S. Palermo, “Analog VLSI Circuit Design Course Slides”

S. Hu, “Clock Network Synthesis Course Slides”

Delbruck, Indiveri, Liu, “Transistor Mismatch and Layout Techniques”

Mai, alon, Labonte, “Analog Layout”

H. Luong, “Analog Layout Techniques”

B. Boser, “Device Matching Mechanisms”

F. Yuan, “Analog CMOS Integrated Circuits Course, MOS Device Layout Techniques Slides”

J. Ghosh, “Advanced VLSI Design Lab, Layout of Analog Circuits Slides”

H. Aboushady, “CMOS Process Technology Course Slides”

G. Wang, “Layout for Analog Circuits”