Precision Measurements a nd Tevatron Legacy

Preview:

DESCRIPTION

Precision Measurements a nd Tevatron Legacy. M.V. Chizhov Sofia University and JINR. Standard Model (SM). SU(3) C. SU(2) L. U(1) Y. Gauge group of the SM. Spontaneous Symmetry Breaking. I.Khriplovich’68. …contains one more independent parameter: the Higgs mass. . - PowerPoint PPT Presentation

Citation preview

Precision Measurementsand Tevatron Legacy

M.V. ChizhovSofia University and JINR

Standard Model (SM)

2

2 22 2

30

3

3

11 1 1

2 22

10

0 0

1 13 1

G G G

G G G

G G G

WH H

BH

W

WGH

SU(3)C SU(2)L U(1)Y

Z 00Im ReH H

RеL

eL

Rее

v

3

3 33

R RL

L

du

ud

22 2

2R R

L

L

du

ud

11 1

1R R

L

L

du

ud

R RL

L

v

3

3 33

R RL

L

sc

cs

22 2

2R R

L

L

sc

cs

11 1

1R R

L

L

sc

cs

R RL

L

v

3

3 33

R RL

L

bt

tb

22 2

2R R

L

L

bt

tb

11 1

1R R

L

L

bt

tb

3

Gauge group of the SM

C L Y SU(3) SU(2) ) U(1

3 si

g g ge e

n cosW W

3s

2 2

e

4 4

g

I.Khriplovich’68

2 222 sin cos 1ZW W

FGrM

Spontaneous Symmetry Breaking

QCD

…contains one more independent parameter: the Higgs mass Hr M

11/06/2012

11/06/2012 4

11/06/2012 5

The electron anomalous magnetic momentand the fine-structure constant measurements

exp 22 [ ] 0.001159 6521800.28 p 73p (28) [0.24 ppb]t

2e

gg a

D. Hanneke, S. Fogwell and G. Gabrielse, Phys. Rev. Lett. 100 (2008) 120801;D. Hanneke, S. Fogwell Hoogerheide and G. Gabrielse, Phys. Rev. A 83 (2011) 052122

1(Rb) 137.035 999 037(91) [0.66 ppb] R. Bouchendira, P. Clade, S. Guellati-Khelifa, F. Nez and F. Biraben, Phys. Rev. Lett. 106 (2011) 080801

10.001161

2

Rb10

11/06/2012 6

Fine-structure constant determinationarXiv:1205.5368v1 [hep-ph] 24 May 2012

11/06/2012 7

GF

11/06/2012 8

MuLanFAST

PDG

1 ppm

11/06/2012 9

Fermi constant determination

2 2

1 22 2

2 2 3 4 2

22 2 3

2 51

3

/ 2 21

ˆ ˆ( ) ( )31 1 ,

5

where and 1 8

8 12 ln 0.999813,

259 4 12ln 16 1.8

8

192

2

F

W

e

m m mF H H

m m F

G

H

m

M

O

2 4 2 22

1 PDG 5 21

079,

156815 518 895 67 53 5(3) ln 2 6.7,

5184 81 36 720 6 4

1ˆ( ) ln 135.9 . 1.166 364 (5) 10 GeV [4.3 pp

3]

m

FG

H

m

O

5

PDG

2

1.166 378 8 (7) 10 GeV [0.6 pp

0.97425(

m

2

]

0.97422) 3(2 ) 2ud

F

ud

G

VV

R. K. Behrends, R. J. Finkelstein, & A. Sirlin, Phys. Rev. 101 (1955) 866;T. Kinoshita & A. Sirlin, Phys. Rev. 113 (1959) 1652

T. van Ritbergen & R.G. Stuart, Phys. Rev. Lett. 82 (1999) 488 A. Pak & A. Czarnecki, Phys. Rev. Lett. 100 (2008) 241807

Theoretical uncertainty in the determination of GF is less than 0.3 ppm

11/06/2012 10

TWISTTRIUMF Weak Interaction Symmetry Test

2

IS AS

d~ ( , , ) ( , , ) cos

d dcos

ee

F E P F EE

L. Michel, Proc. Phys. Soc. A63, 514 (1950).

11/06/2012 11

0.009 0.0005TRRg

Phys. Rev. D 85 (2012) 092013

Phys. Rev. D 84 (2011) 032005

0.00156

0.000 711.00179 1P

TWIST final results

5 21.1663788(7)(

0.0036 0.006

781) 10 GeV

9

FG

C. A. Gagliardi, R. E. Tribble, and N. J. WilliamsPhys. Rev. D 84 (2011) 032005

M.V. Chizhov, Mod. Phys. Lett. A9 (1994) 2979

Choosing the third constant

2 eff

91.1876 0.0021 GeV

Journa

l of Physics

23 p

PDG 2010:

s

G 37, 075021 (2010)

in 0.23146 0.00012 518 p

pm

pmW

ZM

2

0.00025 ppm 0.6 ppm 46 ppmF ZG M

5 2

1 137.035 999 166 (34) 0.25 ppb

1.166 378 8 (7) 10 GeV 0.6 ppm

91.1876 (21) GeV 23 ppmF

Z

G

M

ˆ ( ) 1 127.916 (15) 117 ppm1 ( )Z

Z

MM

11/06/2012 12

For scales above a few hundred MeV extra uncertainty due to the low energy hadronic contribution to vacuum polarization is introduced.

Electroweak Quantum corrections (MW, mt and MH)

All coupling constants are functions of a scale (by the way, definition of the mass is also scale dependent). Therefore, different definitions of the sin2 qW, which are equivalent in the Born (tree) approximation, depend on the renormalization prescription. There are a number of popular schemes leading to values which differ by small factors depending on mt and MH.

2tm dependence?

2

W 2

0

2

0

22

2 2 sin :

2 1 (1 )

, where 1 / ( ) 0.06655(11)

On-shell s 1

chemeF Z

WW

WZ

Ht

W

Z

G M r

r r r

Ms

MM

M

r r M

2 2W

2

23 0.00231

8 2 tan

173.2 GeV

0.03617 0.00034 0.000

0.03269

t

F tt

t

H

m

G mr

m

r

r

( )11 ; 0.006

Z tWM M m

M. Awramik, M. Czakon, A. Freitas, and G. Weiglein, Phys. Rev. D 69 (2004) 053006

11/06/2012 13

What about Appelquist−Carazzone decoupling theorem?T. Appelquist & J. Carazzone, Phys. Rev. D 11 (1975) 2856

14

In QED and QCD the vacuum polarization contribution of a heavy fermion pair is suppressed by inverse powers of the fermion mass. At low energies, the information on the heavy fermions is then lost. This ‘decoupling’ of the heavy fields happens in theories with only vector couplings and an exact gauge symmetry, where the effects generated by the heavy particles can always be reabsorbed into a redefinition of the low-energy parameters.

The SM involves, however, a broken chiral gauge symmetry. Therefore, the electroweak quantum corrections offer the possibility to be sensitive to heavy particles, which cannot be kinematically accessed, through their virtual loop effect. The vacuum polarization contributions induced by a heavy top generate corrections to the W± and Z propagators, which increase quadratically with the top mass [M. Veltman, Nucl. Phys. B 123 (1977) 89]. Therefore, a heavy top does not decouple. For instance, with mt = 173 GeV, the leading quadratic correction to amounts to a sizeable 3% effect. The quadratic mass contribution originates in the strong breaking of weak isospin generated by the top and bottom quark masses, i.e., the effect is actually proportional to .

Owing to an accidental SO(3)C symmetry of the scalar sector (the so-called custodial symmetry), the virtual production of Higgs particles does not generate any quadratic dependence on the Higgs mass at one loop [M. Veltman]. The dependence on MH is only logarithmic. The numerical size of the corresponding correction to varies from a 0.1% to a 1% effect for MH in the range from 100 to 1000 GeV.

2 2btm m

2WM

2WM

11/06/2012 15

SM prediction versus data (PDG)

11/06/2012 16

Tevatron: mt = 173.18 ± 0.94 GeVarXiv:1107.5255

CDF 8.7 fb-1 !Conf Note 10761

ATLAS 1.04 fb-1 !arXiv:1203.5755

172.85 ± 0.71 ± 0.84

11/06/2012 17

SM prediction versus data & new mt

11/06/2012 18

Tevatron: MW = 80.387 ± 0.016 GeVarXiv:1204.0042

11/06/2012 19

SM prediction vs new Tevatron data

Higgs?

11/06/2012 20

SM, Tevatron and LHC

11/06/2012 21

11/06/2012 22Victor E. Bazterra

11/06/2012 23Victor E. Bazterra

11/06/2012 24

Lpeak=4.3 x 1032 cm-2 s-1

11/06/2012 25

11/06/2012 27

11/06/2012 28

11/06/2012 29

11/06/2012 30

11/06/2012 31

Single Top Production

CDF: 0.96 0.09(stat+syst) 0.05(theory)

0.78 at 95% C.L.

D0:

0.79 at 95% C.L

tb

tb

tb

V

V

V

.

11/06/2012 32

Higgs Search at the Tevatron

My guess(unpublished):MH ~ /2 123 GeV

11/06/2012 33

Tevatron Exclusion

11/06/2012 34

Tevatron Exclusion with LHC results

11/06/2012 35

Project X The Tevatron is shutting down, and a new project is on the horizon: Project X.

11/06/2012 36

Project X will open a path to discovery in neutrino science and in precision experiments with charged leptons and quarks.

Neutrino Physics

11/06/2012 37

>c

CERN23.11.2011

Mixing matrices

3

2

3 2

1

1

1

ud us ub

CKM cd cs cb

td ts tb

d s b

u V V V

V c V V V

t V V V

Cabibbo-Kobayashi-Maskawa

Pontecorvo-Maki-Nakagawa-Sakata

'

'

'CKM

d d

s V s

b b

1

2

3

e

PMNSU

1 2 3

1 2 3

1 2 3

1 2 3

2 1 3 3 2

1 1 2 1

6 3 21 1 2 1

6 3 2

e e e

PMNS

e U U U

U U UU

U U U

Wolfenstein parameterization

11/06/2012 38P. F. Harrison, D. H. Perkins and W. G. Scott, Phys. Lett. B 530 (2002) 167

11/06/2012 39

Oscillations

The two necessary conditions for neutrino oscillations:

UPMNS is non-identity matrix: the flavour states are different from the mass states m1 m2 m3: non-degeneracy of the mass states

22 2 2 31

3 3( ) 4 sin4e e

m LP U U

E

2 2 2 5 221 2 1

2 5 231

7.54(20) 10 eV

2.43(8) 10 eV

m m m

m

Oscillations!

11/06/2012 40

First indications of non-zero Ue3

T2KPhys.Rev.Lett. 107 (2011) 041801

arXiv:1106.2822 [hep-ex]

MINOSPhys.Rev.Lett. 107 (2011) 181802

arXiv:1108.0015 [hep-ex]

→ e

Appearance!

11/06/2012 41

Ue3 = sin 13 e-i

13

2 22 2 4 2 231 21

12131 sin 2 sin cos sin 2 sin4 4ee

m L m LP

E E

11/06/2012 42

11/06/2012 43

11/06/2012 44

Double Choozanti- νe disappearancesin2 213 < 0.15 at 90% C.L.Eur. Phys. J. C 27, 331 (2003)

Phys.Rev.Lett. 108 (2012) 131801e-Print: arXiv:1112.6353 [hep-ex]

sin2 213 = 0.086 ± 0.041(stat) ± 0.030(syst)sin2 213 = 0 is excluded at the 94.6% C.L.

NEUTRINO 2012 (June 4, 2012)

sin2 213 = 0.109 ± 0.030(stat) ± 0.025(syst)sin2 213 = 0 is excluded at the 99.9% C.L. (3.1)

11/06/2012 45

11/06/2012 46

11/06/2012 47

Daya Bay R=Far/Near

Phys.Rev.Lett.108 (2012) 171803e-Print: arXiv: 1203.1669 [hep-ex]

NEUTRINO 2012 (June 4, 2012)

R = 0.940 ± 0.011(stat) ± 0.004(syst) R = 0.944 ± 0.007(stat) ± 0.003(syst)

11/06/2012 48

Daya Bay sin2 213 fit

Phys.Rev.Lett.108 (2012) 171803e-Print: arXiv: 1203.1669 [hep-ex]

NEUTRINO 2012 (June 4, 2012)

sin2 213 = 0.092 ± 0.016(stat) ± 0.005(syst)sin2 213 = 0 is excluded at 5.2

sin2 213 = 0.089 ± 0.010(stat) ± 0.005(syst)sin2 213 = 0 is excluded at 8 !!!

Installation of final pair antineutrino detectors this year.

11/06/2012 49

RENOarXiv:1003.1391v1

11/06/2012 50

RENOPhys.Rev.Lett.108 (2012) 191802e-Print: arXiv: 1204.0626 [hep-ex]

R = 0.920 ± 0.009(stat) ± 0.014(syst)

sin2 213 = 0.113 ± 0.013(stat) ± 0.019(syst)

No new RENO results on NEUTRINO 2012

11/06/2012 51

Mixing angles

G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, A.M. RotunnoarXiv:1205.5254 [hep-ph] 25 May 2012

after Neutrino 2012 (beginning of June)

sin212 sin213 sin223

5.4% 10% 13%

11/06/2012 52

MEG + → e + Phys. Rev. Lett. 107 (2011) 171801; arXiv:1107.5547v4

[hep-ex]

BR(+ → e+ ) < 2.4 10-12

22*

2

* 2 * 22 2 21 3 3 314

55

3BR( )

32

3

32

(2.4 3.7) 10

i

i eii W

e eW

me U U

M

U U m U U mM

.

11/06/2012 53

L. Calibbi, A. Faccia, A. Masiero, and S. K. Vempati,Phys. Rev. D74 (2006) 116002, arXiv:hep-ph/0605139.

11/06/2012 54

IceCube CollaborationNature 484 (2012) 351; arXiv:1204.4219 [astro-ph.HE]

GRBs (γ-ray bursts) have been proposed as possible candidate sources for veryhigh energy (1018 eV) cosmic rays.

; e

p n

e

An upper limit on the flux of energetic ’sassociated with GRBs is at least a factor of 3.7 below the predictions!

11/06/2012 55

Thank you for your attention!

11/06/2012 56

Backup slides

2s 3

1 1 3s s 3

The strong coupling constant 4 :

11 2ln , where ,

2 3 3

3 is number of colors,

is number of quarks with 2.

Z C qZ

C

q q

g

b QQ M b N N

M

N

N m Q

11/06/2012

Running coupling “constants”

The Standard Model is based on the gauge group SU(3)C x SU(2)W x SU(1)Y with the corresponding

coupling constants g3, g2 = g and g’.

All further evaluations will be done in one-loop leadingorder radiative correction approximation.

57

11/06/2012

1 , 2 , 32 2

1 3222Evolution of the coupling constants , , ,

which correspond to proper normalization of the generators, can been found, for example

cos si

,

in D

n

. Kazakov, hep-ph/0012288

5

4 3 4

:

5

3

W Ws

g g

1 1

1

2 Hi

1 1

g

12

gs

3

1

ln , 2

0 1 102

where = = 22 3 + 1 6 .3

11 0

It is clear, that we can get evolutions of and5

3

ii i Z

Z

i f

bM

M

b

b b N N

b

2

2

1

53

si1

, an s well.1

W

1/1

1/2

1/3

58

2 ˆsin ( )W

[GeV]

msmcmb

MW

11/06/2012 59

Evolution of the mixing angle

11/06/2012

PDG plot

[TeV]

Electroweak coupling constants

2

2

sin (10TeV)1.088

sin (100GeV)W

W

Instead of g and g’, PYTHIA is using em and sin2W .

“The coupling structure within the electroweak sector is usually (re)expressed in terms of gauge boson masses, em and sin2W…Having done that, em is allowed to run [Kle89], and is evaluated at the s scale. … Currently sin2W is not allowed to run.”

sin2W is fixed. It is nonsense in TeV region!!!

60

11/06/2012

Fine structure constant em evolution

em-1

[GeV]

W± t

2mt2mW

Was not included in PYTHIA

PYTHIA6(on-shell)

ZFITTER (thanks to A. Arbuzov)PYTHIA8(MS)

61

11/06/2012

Evolution of SU(2)W weak coupling constant 2

[GeV]

PYTHIA

1/2 running 2

The PYTHIA result versus my calculations with properly running coupling constant

62

11/06/2012

Z’SSM total width

Rela

tive w

idth

/

MZ

MZ’ [GeV]

PYTHIA

The PYTHIA result versus my calculations with properly running coupling constants

63

Recommended