Plants and Fungi Used to Treat Infectious Disease

Preview:

Citation preview

Plants and Fungi Used to Treat Infectious Disease

Infectious Disease

• World wide, infectious disease is the number one cause of death accounting for approximately one-half of all deaths in tropical countries

• Infectious disease mortality rates are actually increasing in developed countries, such as US

• Infectious disease underlying cause of death in 8% of deaths occurring in US

מונחים• Antimicrobial = a substance which destroys or

inhibits the growth of microorganisms • Antiseptic = a substance that checks the growth or

action of microorganisms especially in or on living tissue

• Antibiotic = a substance produced by or derived from a microorganism and able to inhibit or kill another microorganism

פניצילין

זני • של לוואי .מסויימים Penicilliumתוצר•. חיוביים גרם חיידקים של גידול מעכביםשל • הביוסינתזה את מונעים

תא למות גורמים ולכן הפפטידוגליקן. " ליזיס י ע החיידק

הפניצילין גילוי

• - ה במיני 19במאה צפו הבאים החוקריםPenicillium spp: חיידקים גידול שמנעו

– Roberts - 1874– Tyndall – 1881– Others

• Flemming - 1928

Sir Alexander Fleming

פלמינג של הפטרי צלחתהפטריה את Penicillium notatumקורי הרגו

חיידקי של Staphylococcus aureusהתרבית

העיכוב איזור

הפטריה • מושבת סביבאין שבו איזור ישנו

. חיידקים גידול

נובע – • העיכוב איזורחומר של מדיפוזיה

תכונות בעלאנטיביוטיות

מהפטריה.

Principles and Definitions

• Antibiotic susceptibility testing (in vitro)– Minimum inhibitory concentration (MIC)

• Lowest concentration that results in inhibition of visible growth

– Minimum bactericidal concentration (MBC)• Lowest concentration that kills 99.9% of the original

inoculum

Antibiotic Susceptibility Testing

8 4 02 1 Tetracycline (g/ml)

MIC = 2 g/ml

Determination of MIC

Chl Amp

Ery

Str

Tet

Disk Diffusion Test

Zone diameter (mm) Approx. MIC( g/ml) for:Antimicrobial agent

(amt. per disk)and organism R I MS S R S

Ampicillin (10 g)

Enerobacteriacae 11 12-13 14 32 8

Haemophilus spp. 19 20 4 2

Enterococci 16 17 16

Tetracycline (30 g) 14 15-18 19 16 4

Zone Diameter Standards for Disk Diffusion Tests

sites of antiobiotic action

אנטיביוטיקה המעכבת סינתזת חלבון

Review of Initiation of Protein Synthesis

30S1 32 GTP

1 2 3 GTP

Initiation Factors

mRNA

3

1

2 GTP

30S Initiation Complex

f-met-tRNA

Spectinomycin

Aminoglycosides

12

GDP + Pi 50S

70S Initiation Complex

AP

Review of Elongation of Protein Synthesis

GTP

AP

Tu GTP Tu GDP

Ts

TsTu

+

GDPTs

Pi

P ATetracycline

AP

Erythromycin

Fusidic Acid

Chloramphenicol

G GTPG GDP + Pi

G

GDP

AP

+GTP

Protein Synthesis

Microbe Library -American Society for Microbiology

www.microbelibrary.org

Protein Synthesis Inhibitorsעיכוב סינתזת חלבון

• Mostly bacteriostatic

• Selectivity due to differences in prokaryotic and eukaryotic ribosomes

• Some toxicity - eukaryotic 70S ribosomes

Antimicrobials that Bind to the 30S Ribosomal Subunit

Aminoglycosides (bactericidal)streptomycin, kanamycin, gentamicin, tobramycin,

amikacin, netilmicin, neomycin (topical)

• Mode of action - The aminoglycosides irreversibly bind to the 16S ribosomal RNA and freeze the 30S initiation complex (30S-mRNA-tRNA) so that no further initiation can occur. They also slow down protein synthesis that has already initiated and induce misreading of the mRNA. By binding to the 16 S r-RNA the aminoglycosides increase the affinity of the A site for t-RNA regardless of the anticodon specificity. May also destabilize bacterial membranes.

Microbe Library

American Society for Microbiology

www.microbelibrary.org

Aminoglycosides (bactericidal)streptomycin, kanamycin, gentamicin, tobramycin,

amikacin, netilmicin, neomycin (topical)

• Spectrum of Activity -Many gram-negative and some gram-positive bacteria; Not useful for anaerobic (oxygen required for uptake of antibiotic) or intracellular bacteria.

• Resistance - Common

• Synergy - The aminoglycosides synergize with -lactam antibiotics. The -lactams inhibit cell wall synthesis and thereby increase the permeability of the aminoglycosides.

Tetracyclines (bacteriostatic)tetracycline, minocycline and doxycycline

• Mode of action - The tetracyclines reversibly bind to the 30S ribosome and inhibit binding of aminoacyl-t-RNA to the acceptor site on the 70S ribosome.

• Spectrum of activity - Broad spectrum; Useful against intracellular bacteria

• Resistance - Common

• Adverse effects - Destruction of normal intestinal flora resulting in increased secondary infections; staining and impairment of the structure of bone and teeth.

Spectinomycin (bacteriostatic)

• Mode of action - Spectinomycin reversibly interferes with m-RNA interaction with the 30S ribosome. It is structurally similar to the aminoglycosides but does not cause misreading of mRNA.

• Spectrum of activity - Used in the treatment of penicillin-resistant Neisseria gonorrhoeae

• Resistance - Rare in Neisseria gonorrhoeae

Antimicrobials that Bind to the 50S Ribosomal Subunit

Chloramphenicol, Lincomycin, Clindamycin (bacteriostatic)

• Mode of action - These antimicrobials bind to the 50S ribosome and inhibit peptidyl transferase activity.

• Spectrum of activity - Chloramphenicol - Broad range;Lincomycin and clindamycin -

Restricted range

• Resistance - Common

• Adverse effects - Chloramphenicol is toxic (bone marrow suppression) but is used in the treatment of bacterial meningitis.

Macrolides (bacteriostatic)erythromycin, clarithromycin, azithromycin, spiramycin

• Mode of action - The macrolides inhibit translocation.

• Spectrum of activity - Gram-positive bacteria, Mycoplasma, Legionella

• Resistance - Common

Microbe Library

American Society for Microbiology

www.microbelibrary.org

Antimicrobials that Interfere with Elongation Factors

Selectivity due to differences in prokaryotic and eukaryotic elongation factors

Fusidic acid (bacteriostatic)

• Mode of action - Fusidic acid binds to elongation factor G (EF-G) and inhibits release of EF-G from the EF-G/GDP complex.

• Spectrum of activity - Gram-positive cocci

Inhibitors of Nucleic Acid Synthesis

Inhibitors of RNA Synthesis

Selectivity due to differences between prokaryotic and eukaryotic

RNA polymerase

Rifampin, Rifamycin, Rifampicin, Rifabutin (bactericidal)

• Mode of action - These antimicrobials bind to DNA-dependent RNA polymerase and inhibit initiation of mRNA synthesis.

• Spectrum of activity - Broad spectrum but is used most commonly in the treatment of tuberculosis

• Resistance - Common

• Combination therapy - Since resistance is common, rifampin is usually used in combination therapy.

Inhibitors of DNA Synthesis

Selectivity due to differences between prokaryotic and eukaryotic enzymes

Quinolones (bactericidal)nalidixic acid, ciprofloxacin, ofloxacin, norfloxacin,

levofloxacin, lomefloxacin, sparfloxacin

• Mode of action - These antimicrobials bind to the A subunit of DNA gyrase (topoisomerase) and prevent supercoiling of DNA, thereby inhibiting DNA synthesis.

• Spectrum of activity - Gram-positive cocci and urinary tract infections

• Resistance - Common for nalidixic acid; developing for ciprofloxacin

Antimetabolite Antimicrobials

Inhibitors of Folic Acid Synthesis

• Basis of Selectivity

• Review of Folic Acid Metabolism

p-aminobenzoic acid + Pteridine

Dihydropteroic acid

Dihydrofolic acid

Tetrahydrofolic acid

Pteridine synthetase

Dihydrofolate synthetase

Dihydrofolate reductase

ThymidinePurines

Methionine

Trimethoprim

Sulfonamides

Sulfonamides, Sulfones (bacteriostatic)

• Mode of action - These antimicrobials are analogues of para-aminobenzoic acid and competitively inhibit formation of dihydropteroic acid.

• Spectrum of activity - Broad range activity against gram-positive and gram-negative bacteria; used primarily in urinary tract and Nocardia infections.

• Resistance - Common

• Combination therapy - The sulfonamides are used in combination with trimethoprim; this combination blocks two distinct steps in folic acid metabolism and prevents the emergence of resistant strains.

Trimethoprim, Methotrexate, Pyrimethamine (bacteriostatic)

• Mode of action - These antimicrobials binds to dihydrofolate reductase and inhibit formation of tetrahydrofolic acid.

• Spectrum of activity - Broad range activity against gram-positive and gram-negative bacteria; used primarily in urinary tract and Nocardia infections.

• Resistance - Common

• Combination therapy - These antimicrobials are used in combination with the sulfonamides; this combination blocks two distinct steps in folic acid metabolism and prevents the emergence of resistant strains.

Anti-Mycobacterial Antibiotics

Para-aminosalicylic acid (PSA) (bacteriostatic)

• Mode of action - Similar to sulfonamides

• Spectrum of activity - Specific for Mycobacterium tuberculosis

Dapsone (bacteriostatic)

• Mode of action - Similar to sulfonamides

• Spectrum of activity - Used in treatment of leprosy (Mycobacterium leprae)

Antimicrobial Drug ResistancePrinciples and Definitions

• Clinical resistance vs actual resistance

• Resistance can arise by mutation or by gene transfer (e.g. acquisition of a plasmid)

• Resistance provides a selective advantage

• Resistance can result from single or multiple steps

• Cross resistance vs multiple resistance– Cross resistance -- Single mechanism-- closely related

antibiotics– Multiple resistance -- Multiple mechanisms -- unrelated

antibiotics

Antimicrobial Drug ResistanceMechanisms

• Altered permeability– Altered influx

• Gram negative bacteria

Microbe Library

American Society for Microbiology

www.microbelibrary.org

Antimicrobial Drug ResistanceMechanisms

• Altered permeability– Altered efflux

• tetracycline

Microbe Library

American Society for Microbiology

www.microbelibrary.org

Antimicrobial Drug ResistanceMechanisms

• Inactivation -lactamase

– Chloramphenicol acetyl transferase

Microbe Library

American Society for Microbiology

www.microbelibrary.org

Antimicrobial Drug ResistanceMechanisms

• Altered target site– Penicillin binding

proteins (penicillins)

– RNA polymerase (rifampin)

– 30S ribosome (streptomycin)

Microbe Library

American Society for Microbiology

www.microbelibrary.org

Antimicrobial Drug ResistanceMechanisms

• Replacement of a sensitive pathway– Acquisition of a resistant

enzyme (sulfonamides, trimethoprim)

Beta-Lactam Structure

Lactam Basic Structure

Penicillin-G

Penicillin-V

phenoxy methyl penicillin

Semi-Synthetic Penicillins

• A strain of Penicillium chrysogenum found that produced large amounts of 6-amino penicillanic acid (6-APA)

• 6-APA lacked antibiotic activity but it could be used to add a variety of side chains and create semi-synthetic penicillins– methicillin and ampicillin

• Semi-synthetics have made penicillins a more versatile group of antibiotics

6-APA

Ampicillin

Methycillin

R=H

Resistance due to -Lactamase

Cephalosporin

Clinically Important Antibiotics

Cephalosporium acremonium Broad spectrum Wall synthesis

Penicillium griseofulvum Dermatophytic fungi Microtubules

Bacillus subtilis Gram-positive bacteria Wall synthesis

Bacillus polymyxa Gram-negative bacteria Cell membrane

Streptomyces nodosus Fungi Cell membrane

Streptomyces erythreus Gram-positive bacteria Protein synthesis

Streptomyces fradiae Broad spectrum Protein synthesis

Streptomyces griseus Gram-negative bacteria Protein synthesis

Streptomyces rimosus Broad spectrum Protein synthesis

Streptomyces orientalis Gram-positive bacteria Protein synthesis

Micromonospora purpurea Broad spectrum Protein synthesis

Streptomyces mediterranei Tuberculosis Protein synthesis

Antibiotic Producer organism ActivitySite or mode of action

Penicillin Penicillium chrysogenum Gram-positive bacteria Wall synthesis

Cephalosporin

Griseofulvin

Bacitracin

Polymyxin B

Amphotericin B

Erythromycin

Neomycin

Streptomycin

Tetracycline

Vancomycin

Gentamicin

Rifamycin

Recommended