Plan: 2.Converse bounds 3.Achievability bounds 4.Channel ...people.lids.mit.edu › yp › homepage...

Preview:

Citation preview

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Channel coding: finite blocklength results

Plan:

1. Overview on the example of BSC

2. Converse bounds

3. Achievability bounds

4. Channel dispersion

5. Applications: performance of real-world codesExtensions: codes with feedback

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Abstract communication problem

Noisy channel

Goal: Decrease corruption of data caused by noise

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Channel coding: principles

Noisy channel

Data bits Redundancy

Goal: Decrease corruption of data caused by noise

Solution: Code to diminish probability of error Pe .

Key metrics: Rate and Pe

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Channel coding: principles

Possible

Impossible

Data bits Redundancy

Pe Reliability−Rate tradeoff

Rate

Noisy channel

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Channel coding: principles

Data bits Redundancy

Pe Reliability−Rate tradeoff

Rate

Noisy channelDecreasing Pe further:

1. More redundancyBad: loses rate

2. Increase blocklength!

n = 10

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Channel coding: principles

Data bits Redundancy

Pe Reliability−Rate tradeoff

Rate

Noisy channelDecreasing Pe further:

1. More redundancyBad: loses rate

2. Increase blocklength!

n = 100

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Channel coding: principles

Noisy channel

Data bits Redundancy

Pe Reliability−Rate tradeoff

Rate

Decreasing Pe further:

1. More redundancyBad: loses rate

2. Increase blocklength!

n = 1000

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Channel coding: principles

Noisy channel

Data bits Redundancy

Pe Reliability−Rate tradeoff

Rate

Decreasing Pe further:

1. More redundancyBad: loses rate

2. Increase blocklength!

n = 106

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Channel coding: Shannon capacity

Noisy channel

Data bits Redundancy

Pe Reliability−Rate tradeoff

C

Channel capacity

Rate

Shannon: Fix R < CPe ↘ 0 as n→∞

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Channel coding: Shannon capacity

Noisy channel

Data bits Redundancy

Pe Reliability−Rate tradeoff

C Rate

Channel capacity

Shannon: Fix R < CPe ↘ 0 as n→∞

Question:For what n will Pe < 10−3?

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Channel coding: Gaussian approximation

Noisy channel

Data bits Redundancy

Pe Reliability−Rate tradeoff

C Rate

Channel capacity

Channel dispersion

Shannon: Fix R < CPe ↘ 0 as n→∞

Question:For what n will Pe < 10−3?

Answer:

n & const · V

C 2

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Channel coding: Gaussian approximation

Noisy channel

Data bits Redundancy

Pe Reliability−Rate tradeoff

C Rate

Channel capacity

Channel dispersion

Shannon: Fix R < CPe ↘ 0 as n→∞

Question:For what n will Pe < 10−3?

Answer:

n & const · V

C 2

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

How to describe evolution of the boundary?

Pe Reliability−Rate tradeoff

C Rate

Classical results:

I Vertical asymptotics: fixed rate, reliability functionElias, Dobrushin, Fano, Shannon-Gallager-Berlekamp

I Horizontal asymptotics: fixed ε, strong converse,√

n termsWolfowitz, Weiss, Dobrushin, Strassen, Kemperman

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

How to describe evolution of the boundary?

Pe Reliability−Rate tradeoff

C Rate

XXI century:

I Tight non-asymptotic bounds

I Remarkable precision of normal approximation

I Extended results on horizontal asymptoticsAWGN, O(log n), cost constraints, feedback, etc.

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Finite blocklength fundamental limit

Pe Reliability−Rate tradeoff

C Rate

Definition

R∗(n, ε) = max

{1

nlog M : ∃(n,M, ε)-code

}

(max. achievable rate for blocklength n and prob. of error ε)

Note: Exact value unknown (search is doubly exponential in n).

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Minimal delay and error-exponents

Fix R < C . What is the smallest blocklength n∗ neededto achieve

R∗(n, ε) ≥ R ?

Classical answer: Approximation via reliability function[Shannon-Gallager-Berlekamp’67]:

n∗ ≈ 1

E (R)log

1

ε

E.g., take BSC (0.11) and R = 0.9C , prob. of error ε = 10−3:

n∗ ≈ 5000 (channel uses)

Difficulty: How to verify accuracy of this estimate?

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Minimal delay and error-exponents

Fix R < C . What is the smallest blocklength n∗ neededto achieve

R∗(n, ε) ≥ R ?

Classical answer: Approximation via reliability function[Shannon-Gallager-Berlekamp’67]:

n∗ ≈ 1

E (R)log

1

ε

E.g., take BSC (0.11) and R = 0.9C , prob. of error ε = 10−3:

n∗ ≈ 5000 (channel uses)

Difficulty: How to verify accuracy of this estimate?

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Bounds

I Bounds are implicit in Shannon’s theorem

limn→∞

R∗(n, ε) = C ⇐⇒{

R∗(n, ε) ≤ C + o(1) ,R∗(n, ε) ≥ C + o(1) .

(Feinstein’54, Shannon’57, Wolfowitz’57, Fano)

I Reliability function: even better bounds(Elias’55, Shannon’59, Gallager’65, SGB’67)

I Problems: derived for asymptotics (need “de-asymptotization”)unexpected sensitivity:

ε ≤ e−nEr (R) [Gallager’65]

ε ≤ e−nEr (R−o(1))+O(log n) [Csiszar-Korner’81]

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Bounds

I Bounds are implicit in Shannon’s theorem

limn→∞

R∗(n, ε) = C ⇐⇒{

R∗(n, ε) ≤ C + o(1) ,R∗(n, ε) ≥ C + o(1) .

(Feinstein’54, Shannon’57, Wolfowitz’57, Fano)

I Reliability function: even better bounds(Elias’55, Shannon’59, Gallager’65, SGB’67)

I Problems: derived for asymptotics (need “de-asymptotization”)unexpected sensitivity:

ε ≤ e−nEr (R) [Gallager’65]

ε ≤ e−nEr (R−o(1))+O(log n) [Csiszar-Korner’81]

For BSC(n = 103, 0.11): o(1) ≈ 0.1, eO(log n) ≈ 1024 (!)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Bounds

I Bounds are implicit in Shannon’s theorem

limn→∞

R∗(n, ε) = C ⇐⇒{

R∗(n, ε) ≤ C + o(1) ,R∗(n, ε) ≥ C + o(1) .

(Feinstein’54, Shannon’57, Wolfowitz’57, Fano)

I Reliability function: even better bounds(Elias’55, Shannon’59, Gallager’65, SGB’67)

I Problems: derived for asymptotics (need “de-asymptotization”)unexpected sensitivity:

Strassen’62: Take n > 19600ε16 . . . (!)

I Solution: Derive bounds from scratch.

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

New achievability bound

0 s -ZZZZZ~

1− δ s01 s -�

����>

1− δs1δ

BSC

Theorem (RCU)

For a BSC (δ) there exists a code with rate R, blocklength n and

ε ≤n∑

t=0

(n

t

)δt(1− δ)n−t min

{1,

t∑

k=0

(n

k

)2−n+nR

}.

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Proof of RCU bound for the BSC

Hamming Space Fn2

I Input space: A = {0, 1}n

I Let c1, . . . , cM ∼ Bern( 12 )n

(random codebook)

I Transmit c1

I Noise displaces c1→Y

Y = c1 + Z , Z ∼ Bern(δ)n

I Decoder: find closest codeword to Y

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Proof of RCU bound for the BSC

Hamming Space Fn2

c1

c2

cMc5

c3

c4

I Input space: A = {0, 1}n

I Let c1, . . . , cM ∼ Bern( 12 )n

(random codebook)

I Transmit c1

I Noise displaces c1→Y

Y = c1 + Z , Z ∼ Bern(δ)n

I Decoder: find closest codeword to Y

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Proof of RCU bound for the BSC

Hamming Space Fn2

c1

c2

cMc5

c3

c4

I Input space: A = {0, 1}n

I Let c1, . . . , cM ∼ Bern( 12 )n

(random codebook)

I Transmit c1

I Noise displaces c1→Y

Y = c1 + Z , Z ∼ Bern(δ)n

I Decoder: find closest codeword to Y

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Proof of RCU bound for the BSC

Hamming Space Fn2

c1

c2

cMc5

Y

c3

c4

I Input space: A = {0, 1}n

I Let c1, . . . , cM ∼ Bern( 12 )n

(random codebook)

I Transmit c1

I Noise displaces c1→Y

Y = c1 + Z , Z ∼ Bern(δ)n

I Decoder: find closest codeword to Y

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Proof of RCU bound for the BSC

Hamming Space Fn2

c1

c2

cMc5

Y

c3

c4

I Input space: A = {0, 1}n

I Let c1, . . . , cM ∼ Bern( 12 )n

(random codebook)

I Transmit c1

I Noise displaces c1→Y

Y = c1 + Z , Z ∼ Bern(δ)n

I Decoder: find closest codeword to Y

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Proof of RCU bound for the BSC

Hamming Space Fn2

c1

c2

cMc5

Y

c3

c4Success!

I Input space: A = {0, 1}n

I Let c1, . . . , cM ∼ Bern( 12 )n

(random codebook)

I Transmit c1

I Noise displaces c1→Y

Y = c1 + Z , Z ∼ Bern(δ)n

I Decoder: find closest codeword to Y

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Proof of RCU bound for the BSC

Hamming Space Fn2

c1

c2

cMc5

c3

c4

I Input space: A = {0, 1}n

I Let c1, . . . , cM ∼ Bern( 12 )n

(random codebook)

I Transmit c1

I Noise displaces c1→Y

Y = c1 + Z , Z ∼ Bern(δ)n

I Decoder: find closest codeword to YI Probability of error analysis:

P[error|Y ,wt(Z ) = t] = P[∃j > 1 : cj ∈ Ball(Y , t)]

≤∑M

j=2P[cj ∈ Ball(Y , t)]

≤ 2nR∑t

k=0

(n

k

)2−n

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Proof of RCU bound for the BSC

Hamming Space Fn2

c1

c2

cMc5

Y

c3

c4

I Input space: A = {0, 1}n

I Let c1, . . . , cM ∼ Bern( 12 )n

(random codebook)

I Transmit c1

I Noise displaces c1→Y

Y = c1 + Z , Z ∼ Bern(δ)n

I Decoder: find closest codeword to YI Probability of error analysis:

P[error|Y ,wt(Z ) = t] = P[∃j > 1 : cj ∈ Ball(Y , t)]

≤∑M

j=2P[cj ∈ Ball(Y , t)]

≤ 2nR∑t

k=0

(n

k

)2−n

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Proof of RCU bound for the BSC

Hamming Space Fn2

c1

c2

cMc5

Y

c3

c4

I Input space: A = {0, 1}n

I Let c1, . . . , cM ∼ Bern( 12 )n

(random codebook)

I Transmit c1

I Noise displaces c1→Y

Y = c1 + Z , Z ∼ Bern(δ)n

I Decoder: find closest codeword to Y

I Probability of error analysis:

P[error|Y ,wt(Z ) = t] = P[∃j > 1 : cj ∈ Ball(Y , t)]

≤∑M

j=2P[cj ∈ Ball(Y , t)]

≤ 2nR∑t

k=0

(n

k

)2−n

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Proof of RCU bound for the BSC

Hamming Space Fn2

c1

c2

cMc5

Y

c3

c4

Error!I Input space: A = {0, 1}n

I Let c1, . . . , cM ∼ Bern( 12 )n

(random codebook)

I Transmit c1

I Noise displaces c1→Y

Y = c1 + Z , Z ∼ Bern(δ)n

I Decoder: find closest codeword to Y

I Probability of error analysis:

P[error|Y ,wt(Z ) = t] = P[∃j > 1 : cj ∈ Ball(Y , t)]

≤∑M

j=2P[cj ∈ Ball(Y , t)]

≤ 2nR∑t

k=0

(n

k

)2−n

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Proof of RCU bound for the BSC

Hamming Space Fn2

c1

c2

cMc5

Y

c3

c4

Error!I Input space: A = {0, 1}n

I Let c1, . . . , cM ∼ Bern( 12 )n

(random codebook)

I Transmit c1

I Noise displaces c1→Y

Y = c1 + Z , Z ∼ Bern(δ)n

I Decoder: find closest codeword to YI Probability of error analysis:

P[error|Y ,wt(Z ) = t] = P[∃j > 1 : cj ∈ Ball(Y , t)]

≤∑M

j=2P[cj ∈ Ball(Y , t)]

≤ 2nR∑t

k=0

(n

k

)2−n

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

. . . cont’d . . .

I Conditional probability of error:

P[error|Y ,wt(Z ) = t] ≤t∑

k=0

(n

k

)2−n+nR

I Key observation: For large noise t RHS is > 1. Tighten:

P[error|Y ,wt(Z ) = t] ≤ min

{1,

t∑

k=0

(n

k

)2−n+nR

}(∗)

I Average wt(Z ) ∼ Binomial(n, δ) =⇒ Q.E.D.

Note: Step (∗) tightens Gallager’s ρ-trick:

P

j

Aj

j

P[Aj ]

ρ

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Sphere-packing converse (BSC variation)

Theorem (Elias’55)

For any (n,M, ε) code over the BSC (δ):

ε ≥ f

(2n

M

),

where f (·) is a piecewise-linear decreasing convex function:

f

t∑

j=0

(n

j

) =

n∑

j=t+1

(n

j

)δj(1− δ)n−j t = 0, . . . , n

Note: Convexity of f follows from general properties of βα (below)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Sphere-packing converse (BSC variation)

Hamming Space Fn2

D1D2

DM

Dj

Proof:I Denote decoding regions Dj :∐

Dj = {0, 1}n

I Probability of error is:

ε = 1M

∑j P[cj + Z 6∈ Dj ]

≥ 1M

∑j P[Z 6∈ Bj ]

I Bj = ball centered at 0 s.t. Vol(Bj) = Vol(Dj)

I Simple calculation:

P[Z 6∈ Bj ] = f (Vol(Bj))

I f – convex, apply Jensen:

ε ≥ f

1

M

M∑

j=1

Vol(Dj)

= f

(2n

M

)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Sphere-packing converse (BSC variation)

Hamming Space Fn2

D1D2

DM

Dj

Bj

Proof:I Denote decoding regions Dj :∐

Dj = {0, 1}n

I Probability of error is:

ε = 1M

∑j P[cj + Z 6∈ Dj ]

≥ 1M

∑j P[Z 6∈ Bj ]

I Bj = ball centered at 0 s.t. Vol(Bj) = Vol(Dj)

I Simple calculation:

P[Z 6∈ Bj ] = f (Vol(Bj))

I f – convex, apply Jensen:

ε ≥ f

1

M

M∑

j=1

Vol(Dj)

= f

(2n

M

)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Sphere-packing converse (BSC variation)

Hamming Space Fn2

D1D2

DM

Dj

Bj

Proof:I Denote decoding regions Dj :∐

Dj = {0, 1}n

I Probability of error is:

ε = 1M

∑j P[cj + Z 6∈ Dj ]

≥ 1M

∑j P[Z 6∈ Bj ]

I Bj = ball centered at 0 s.t. Vol(Bj) = Vol(Dj)

I Simple calculation:

P[Z 6∈ Bj ] = f (Vol(Bj))

I f – convex, apply Jensen:

ε ≥ f

1

M

M∑

j=1

Vol(Dj)

= f

(2n

M

)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Bounds: example BSC (0.11), ε = 10−3

0 500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

Blocklength, n

Rat

e, b

it/ch

.use

Feinstein−Shannon

Gallager

RCU

Converse

Capacity

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Bounds: example BSC (0.11), ε = 10−3

0 500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

Blocklength, n

Rat

e, b

it/ch

.use

RCU

Converse

Capacity

Delay required to achieve 90% of C :

2985 ≤ n∗ ≤ 3106

Error-exponent: n∗ ≈ 5000

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Bounds: example BSC (0.11), ε = 10−3

0 500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

Blocklength, n

Rat

e, b

it/ch

.use

RCU

Converse

Capacity

Delay required to achieve 90% of C :

2985 ≤ n∗ ≤ 3106

Error-exponent: n∗ ≈ 5000

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Normal approximation

Theorem

For the BSC (δ) and 0 < ε < 1,

R∗(n, ε) = C −√

V

nQ−1(ε) +

1

2

log n

n+ O

(1

n

)

where

C (δ) = log 2 + δ log δ + (1− δ) log(1− δ)

V = δ(1− δ) log2 1− δδ

Q(x) =

∫ ∞

x

1√2π

e−y2

2 dy

Proof: Bounds + Stirling’s formulaNote: Now we see the explicit dependence on ε!

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Normal approximation: BSC (0.11); ε = 10−3

0 500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

Blocklength, n

Rat

e, b

it/ch

.use

Capacity

Non−asymptotic bounds

Normal approximationC −

√Vn Q−1(ε) + 1

2log nn

To achieve 90% of C :

n∗ ≈ 3150

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Normal approximation: BSC (0.11); ε = 10−3

0 500 1000 1500 20000

0.1

0.2

0.3

0.4

0.5

Blocklength, n

Rat

e, b

it/ch

.use

Capacity

Non−asymptotic bounds

Normal approximationC −

√Vn Q−1(ε) + 1

2log nn

To achieve 90% of C :

n∗ ≈ 3150

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Dispersion and minimal required delay

Delay needed to achieve R = ηC :

n∗ &(

Q−1(ε)

1− η

)2

· V

C 2

Note: VC2 is “coding horizon”.

Behavior of VC2 (BSC)

0 0.1 0.2 0.3 0.4 0.5

100

102

104

106

δ

−−−−−−−−−−−−−−−−−−−→Less noise More noise

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

BSC summary

Delay required to achieve 90 % of capacity:

I Error-exponents:n∗ ≈ 5000

I True value:2985 ≤ n∗ ≤ 3106

I Channel dispersion:n∗ ≈ 3150

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Converse Bounds

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Notation

I Take a random transformation APY |X−→ B

(think A = An, B = Bn, PY |X = PY n|X n)

I Input distribution PX induces PY = PY |X ◦ PX

PXY = PXPY |XI Fix code:

Wencoder−→ X → Y

decoder−→ W

W ∼ Unif [M] and M = # of codewordsInput distribution PX associated to a code:

PX [·] 4= # of codewords ∈ (·)M

.

I Goal: Upper bounds on log M in terms of ε4= P[error ]

As by-product: R∗(n, ε) . C −√

Vn Q−1(ε)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Fano’s inequality

Theorem (Fano)

For any code

encoder decoder

W WYX

PY |X

with W ∼ Unif{1, . . . ,M}:

log M ≤ supPXI (X ; Y ) + h(ε)

1− ε , ε = P[W 6= W ]

Implies weak converse:

R∗(n, ε) ≤ C

1− ε + o(1) .

Proof: ε-small =⇒ H(W |W )-small =⇒ I (X ; Y ) ≈ H(W )= log M

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

A (very long) proof of Fano via channel substitution

Consider two distributions on (W ,X ,Y , W ):

P : PWXYW = PW × PX |W × PY |X ×PW |YDAG: W → X → Y → W

Q : QWXYW = PW × PX |W × QY ×PW |YDAG: W → X Y → W

Under Q the channel is useless:

Q[W = W ] =M∑

m=1

PW (m)QW (m) =1

M

M∑

m=1

QW (m) =1

M

Next step: data-processing for relative entropy D(·||·)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Data-processing for D(·||·)

TransformationPB|A

PA

Input distribution Output distribution

QA

PB

QB

(Random)

D(PA‖QA) ≥ D(PB‖QB)

Apply to transform: (W ,X ,Y , W ) 7→ 1{W 6= W }:

D(PWXYW ‖QWXYW ) ≥ d(P[W = W ] ‖Q[W = W ] )

= d(1− ε|| 1M )

where d(x ||y) = x log xy + (1− x) log 1−x

1−y .

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Data-processing for D(·||·)

TransformationPB|A

PA

Input distribution Output distribution

QA

PB

QB

(Random)

D(PA‖QA) ≥ D(PB‖QB)

Apply to transform: (W ,X ,Y , W ) 7→ 1{W 6= W }:

D(PWXYW ‖QWXYW ) ≥ d(P[W = W ] ‖Q[W = W ] )

= d(1− ε|| 1M )

where d(x ||y) = x log xy + (1− x) log 1−x

1−y .

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

A proof of Fano via channel substitution

So far:D(PWXYW ‖QWXYW ) ≥ d(1− ε|| 1

M )

Lower-bound RHS:

d(1− ε‖ 1M ) ≥ (1− ε) log M − h(ε)

Analyze LHS:

D(PWXYW ‖QWXYW ) = D(PXY ‖QXY )

= D(PXPY |X‖PXQY )

= D(PY |X‖QY |PX )

(Recall: D(PY |X‖QY |PX ) = E x∼PX[D(PY |X=x‖QY )])

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

A proof of Fano via channel substitution: last step

Putting it all together:

(1− ε) log M ≤ D(PY |X ||QY |PX ) + h(ε) ∀QY ∀code

Two methods:

1. Compute supPXinfQY

and recall

infQY

D(PY |X‖QY |PX ) = I (X ; Y )

2. Take QY = P∗Y = the caod (capacity achieving output dist.)and recall

D(PY |X‖P∗Y |PX ) ≤ supPX

I (X ; Y ) ∀PX

Conclude:(1− ε) log M ≤ sup

PX

I (X ; Y ) + h(ε)

Important: Second method is particularly useful for FBL!

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Tightening: from D(·||·) to βα(·, ·)Question: How about replacing D(·||·) with other divergences?

Answer:

D(·||·) relative entropy(KL divergence) weak converse

Dλ(·||·) Renyi divergence strong converse

βα(·, ·) Neyman-PearsonROC curve

FBL bounds

Next: What is βα?

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Neyman-Pearson’s βα

Definition

For every pair of measures P,Q

βα(P,Q)4= inf

E :P[E ]≥αQ[E ] .

iterate overall “sets” E

plot pairs (P[E ],Q[E ])=⇒

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β=

Q[E

]

α = P [E]

βα(P,Q)

Important: Like relative entropy βα satisfies data-processing.

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

βα = binary hypothesis testing

Tester?

PY

QY

Y1, Y2 , . . .

Two types of errors:

P[Tester says “QY ”] ≤ ε

Q[Tester says “PY ”] → min

Hence: Solve binary HT ⇐⇒ compute βα(PnY ,Q

nY )

Stein’s Lemma: For many i.i.d. observations

log β1−ε(PnY ,Q

nY ) = −nD(PY ||QY ) + o(n) .

But in fact log βα(PnY ,Q

nY ) can also be computed exactly!

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

How to compute βα?

Theorem (Neyman-Pearson)

βα is given parametrically by −∞ ≤ γ ≤ +∞:

P[

logP(X )

Q(X )≥ γ

]= α

Q[

logP(X )

Q(X )≥ γ

]= βα(P,Q)

For product measures log Pn(X )Qn(X ) = sum of i.i.d. =⇒ from CLT:

log βα(Pn,Qn) = −nD(P||Q) +√

nV (P||Q)Q−1(α) + o(√

n) ,

where

V (P||Q) = VarP

[log

P(X )

Q(X )

]

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Back to proving converse

Recall two measures:

P : PWXYW = PW × PX |W × PY |X ×PW |YDAG: W → X → Y → W

P[W = W ] = 1−ε

Q : QWXYW = PW × PX |W × QY ×PW |YDAG: W → X Y → W

Q[W = W ] = 1M

Then by definition of βα:

β1−ε(PWXYW ,QWXYW ) ≤ 1

M

But logPWXYWQWXYW

= logPXPY |XPXQY

=⇒

log M ≤ − log β1−ε(PXPY |X ,PXQY ) ∀QY ∀code

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Meta-converse: minimax version

Theorem

Every (M, ε)-code for channel PY |X satisfies

log M ≤ − log

{infPX

supQY

β1−ε(PXPY |X ,PXQY )

}.

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Meta-converse: minimax version

Theorem

Every (M, ε)-code for channel PY |X satisfies

log M ≤ − log

{infPX

supQY

β1−ε(PXPY |X ,PXQY )

}.

I Finding good QY for every PX is not needed:

infPX

supQY

β1−ε(PXPY |X ,PXQY ) = supQY

infPX

β1−ε(PXPY |X ,PXQY ) (∗)

I Saddle-point property of βα is similar to D(·||·):

infPX

supQY

D(PXPY |X‖PXQY ) = supQY

infPX

D(PXPY |X‖PXQY ) = C

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Meta-converse: minimax version

Theorem

Every (M, ε)-code for channel PY |X satisfies

log M ≤ − log

{infPX

supQY

β1−ε(PXPY |X ,PXQY )

}.

Bound is tight in two senses:

I There exist non-signalling assisted (NSA) codes attaining theupper-bound. [Matthews, Trans. IT’2012]

I ISIT’2013: For any (M, ε)-code with ML decoder

log M = − log

{supQY

β1−ε(PXPY |X ,PXQY )

}

Vazquez-Vilar et al [WeB4]

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Meta-converse: minimax version

Theorem

Every (M, ε)-code for channel PY |X satisfies

log M ≤ − log

{infPX

supQY

β1−ε(PXPY |X ,PXQY )

}.

In practice: evaluate with a luckily guessed (suboptimal) QY .How to guess good QY ?

I Try caod P∗YI Analyze channel symmetries

I Use geometric intuition. −→good QY ≈ “center” of PY |X

I Exercise: Redo BSC.

Space of distributions on Y

PY |X=a1

PY |X=aj

QY

PY |X=a2

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Example: Converse for AWGN

The AWGN Channel

Z∼ N (0, σ2)↓

X −→ ⊕ −→ Y

Codewords X n ∈ Rn satisfy power-constraint:

n∑

j=1

|Xj |2 ≤ nP

Goal: Upper-bound # of codewords decodable with Pe ≤ ε.

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Example: Converse for AWGN

I Given {c1, . . . , cM} ∈ Rn with P[W 6= W ] ≤ ε on AWGN(1).I Yaglom-map trick: replacing n→ n + 1 equalize powers:

‖cj‖2 = nP ∀j ∈ {1, . . . ,M}

I Take QY n = N (0, 1 + P)n (the caod!)I Optimal test “PX nY n vs. PX nQY n” (Neyman-Pearson):

logPY n|X n

QY n= nC +

log e

2·(‖Y n‖2

1 + P− ‖Y n − X n‖2

)

where C = 12 log(1 + P).

I Under P: Y n = X n +N (0, In)=⇒ distribution of LLR (CLT approx.)

≈ nC +√

nV Z , Z ∼ N (0, 1)

Simple algebra: V = log2 e2

(1− 1

(1+P)2

)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Example: Converse for AWGN

I Given {c1, . . . , cM} ∈ Rn with P[W 6= W ] ≤ ε on AWGN(1).I Yaglom-map trick: replacing n→ n + 1 equalize powers:

‖cj‖2 = nP ∀j ∈ {1, . . . ,M}

I Take QY n = N (0, 1 + P)n (the caod!)I Optimal test “PX nY n vs. PX nQY n” (Neyman-Pearson):

logPY n|X n

QY n= nC +

log e

2·(‖Y n‖2

1 + P− ‖Y n − X n‖2

)

where C = 12 log(1 + P).

I Under P: Y n = X n +N (0, In)=⇒ distribution of LLR (CLT approx.)

≈ nC +√

nV Z , Z ∼ N (0, 1)

Simple algebra: V = log2 e2

(1− 1

(1+P)2

)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

. . . cont’d . . .I Under P: distribution of LLR (CLT approx.)

≈ nC +√

nV Z , Z ∼ N (0, 1)

I Take γ = nC −√

nV Q−1(ε) =⇒

P[

logdPdQ≥ γ

]≈ 1− ε .

I Under Q: standard change-of-measure shows

Q[

logdPdQ≥ γ

]≈ exp{−γ} .

I By Neyman-Pearson

log β1−ε(PY n|X n=c ,QY n) ≈ −nC +√

nV Q−1(ε)

I Punchline: ∀(n,M, ε)-code

log M . nC −√

nV Q−1(ε)

N.B.! RHS can be exactly expressed via non-central χ2 dist.. . . and computed in MATLAB (w/o any CLT approx).

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

. . . cont’d . . .I Under P: distribution of LLR (CLT approx.)

≈ nC +√

nV Z , Z ∼ N (0, 1)

I Take γ = nC −√

nV Q−1(ε) =⇒

P[

logdPdQ≥ γ

]≈ 1− ε .

I Under Q: standard change-of-measure shows

Q[

logdPdQ≥ γ

]≈ exp{−γ} .

I By Neyman-Pearson

log β1−ε(PY n|X n=c ,QY n) ≈ −nC +√

nV Q−1(ε)

I Punchline: ∀(n,M, ε)-code

log M . nC −√

nV Q−1(ε)

N.B.! RHS can be exactly expressed via non-central χ2 dist.. . . and computed in MATLAB (w/o any CLT approx).

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

AWGN: Converse from βα(P ,Q) with QY = N (0, 1)n

0 200 400 600 800 1000 1200 1400 1600 1800 20000

0.1

0.2

0.3

0.4

0.5

Blocklength, n

Rat

e R

, bi

ts/c

h.us

e

Capacity

Converse

Best achievability

Normal approximation

Channel parameters:

SNR = 0 dB , ε = 10−3

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

From one QY to many

Symmetric channel

“distance” = −βα(·, ·)inputs equidistant to P ∗

Y

caod P ∗Y

a1

aj a2

Space of distributions on Y

pointsm

ch. inputs(aj , bj , cj)

Symmetric channel: choice of QY is clear

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

From one QY to many

c1

cj c2

a1

aj a2

Space of distributions on Y

b1

bj b2pointsm

ch. inputs(aj , bj , cj)

General channels: Inputs cluster (by composition, power-allocation, . . .)(Clusters ⇐⇒ orbits of channel symmetry gp.)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

From one QY to many

c1

cj c2

a1

aj a2caod P ∗

Y

Space of distributions on Y

b1

bj b2pointsm

ch. inputs(aj , bj , cj)

General channels: Caod is no longer equidistant to all inputs(read: analysis horrible!)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

From one QY to many

c1

cj c2

a1

aj a2caod P ∗

Y

Natural choicesfor QY

Space of distributions on Y

b1

bj b2pointsm

ch. inputs(aj , bj , cj)

Solution: Take QY different for each cluster!I.e. think of QY |X

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

General meta-converse principle

Steps:

I Select auxiliary channel QY |X (art)E.g.: QY |X=x = center of a cluster of x

I Prove converse bound for channel QY |XE.g.: Q[W = W ] . # of clusters

M

I Find βα(P,Q), i.e. compare:

P : PWXYW = PW × PX |W × PY |X × PW |Y

vs.

Q : PWXYW = PW × PX |W × QY |X × PW |Y

I Amplify converse for QY |X to a converse for PY |X :

β1−Pe(PY |X ) ≤ 1− Pe(QY |X ) ∀code

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Meta-converse theorem: point-to-point channels

Theorem

For any code ε4= P[error] and ε′

4= Q[error] satisfy

β1−ε(PXPY |X ,PXQY |X ) ≤ 1− ε′

Advanced examples of QY |X :

I General DMC: QY |X=x = PY |X ◦ Px

Why? To reduce DMC to symmetric DMC

I Parallel AWGN: QY |X=x = f (power-allocation)Why? Since water-filling is not FBL-optimal

I Feedback: Q[Y ∈ ·|W = w ] = P[Y ∈ ·|W 6= w ]Why? To get bounds in terms of Burnashev’s C1

I PAPR of codes: QY n|X n=xn = f (peak power of x)Why? To show peaky codewords waste power

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Meta-converse generalizes many classical methods

Theorem

For any code ε4= P[error] and ε′

4= Q[error] satisfy

β1−ε(PXPY |X ,PXQY |X ) ≤ 1− ε′

Corollaries:I Fano’s inequalityI Wolfowitz strong converseI Shannon-Gallager-Berlekamp’s sphere-packing

+ improvements: [Valembois-Fossorier’04], [Wiechman-Sason’08]I Haroutounian’s sphere-packingI list-decoding conversesI Berlekamp’s low-rate converseI Verdu-Han and Poor-Verdu information spectrum conversesI Arimoto’s converse (+ extension to feedback)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Meta-converse generalizes many classical methods

Theorem

For any code ε4= P[error] and ε′

4= Q[error] satisfy

β1−ε(PXPY |X ,PXQY |X ) ≤ 1− ε′

Corollaries:I Fano’s inequalityI Wolfowitz strong converseI Shannon-Gallager-Berlekamp’s sphere-packing

+ improvements: [Valembois-Fossorier’04], [Wiechman-Sason’08]I Haroutounian’s sphere-packing

I list-decoding converses E.g.: Q[W ∈ {list}] = |{list}|M

I Berlekamp’s low-rate converseI Verdu-Han and Poor-Verdu information spectrum conversesI Arimoto’s converse (+ extension to feedback)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Meta-converse in networks

W1

W2

W1

W2

YXPY |X

A

A1

B

B1

C

C1

{error} = {W1 6= W1} ∪ {W2 6= W2}

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Meta-converse in networks

W1

W2

W1

W2

YXPY |X

QY |X

A

A1

B

B1

C

C1

{error} = {W1 6= W1} ∪ {W2 6= W2}I Probability of error depends on channel:

P[error] = ε ,

Q[error] = ε′ .

I Same idea: use code as a suboptimal binary HT: PY |X vs. QY |XI . . . and compare to the best possible test:

D(PXY ‖QXY ) ≥ d(1− ε‖1− ε′)β1−ε(PXPY |X ,PXQY |X ) ≤ 1− ε′

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Example: MAC (weak-converse)

P :

W1

W2

W1

W2

Y

X1

X2

Q :

W1

W2

W1

W2

Y

X1

X2

P[W1,2 = W1,2] = 1− ε Q[W1,2 = W1,2] = 1M1

. . . apply data processing of D(·||·) . . .⇓

d(1− ε‖ 1M1

) ≤ D(PY |X1X2‖QY |X1

|PX1PX2)

Optimizing QY |X1:

log M1 ≤I (X1; Y |X2) + h(ε)

1− εAlso with X1 ↔ X2 =⇒ weak converse (usual pentagon)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Example: MAC (FBL?)

P :

W1

W2

W1

W2

Y

X1

X2

Q :

W1

W2

W1

W2

Y

X1

X2

P[W1,2 = W1,2] = 1− ε Q[W1,2 = W1,2] = 1M1

. . . use βα(·, ·) . . .⇓

β1−ε(PX1X2Y ,PX1QX2Y ) ≤ 1M1

On-going work: This βα is highly non-trivial to compute.[Huang-Moulin, MolavianJazi-Laneman, Yagi-Oohama]

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Achievability Bounds

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Notation

I A random transformation APY |X−→ B

I (M, ε) codes:

W → A→ B→ W W ∼ Unif {1, . . . ,M}P[W 6= W ] ≤ ε

I For every PXY = PXPY |X define information density:

ıX ;Y (x ; y)4= log

dPY |X=x

dPY(y)

I E [ıX ;Y (X ; Y )] = I (X ; Y )I Var[ıX ;Y (X ; Y )|X ] = VI Memoryless channels: ıAn;Bn(An; Bn) = sum of iid.

ıAn;Bn(An; Bn)d≈ nI (A; B) +

√nV Z , Z ∼ N (0, 1)

I Goal: Prove FBL bounds.

As by-product: R∗(n, ε) & C −√

Vn Q−1(ε)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Achievability bounds: classical ideas

Goal: select codewords C1, . . . ,CM in the input space A.

Two principal approaches:

I Random coding: generate C1, . . . ,CM – iid with PX andcompute average probability of error [Shannon’48, Erdos’47].

I Maximal coding: choose Cj one by one until the output spaceis exhausted [Gilbert’52, Feinstein’54, Varshamov’57].

Complication: Many inequivalent ways to apply these ideas!Which ones are the best for FBL?

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Classical bounds

I Feinstein’55 bound: ∃(M, ε)-code:

M ≥ supγ≥0

{γ(ε− P[ıX ;Y (X ; Y ) ≤ log γ])

}

I Shannon’57 bound: ∃(M, ε)-code:

ε ≤ infγ≥0

{P[ıX ;Y (X ; Y ) ≤ log γ] +

M − 1

γ

}.

I Gallager’65 bound: ∃(n,M, ε)-code over memoryless channel:

ε ≤ exp

{−nEr

(log M

n

)}.

I Up to M ↔ (M − 1) Feinstein and Shannon are equivalent.

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

New bounds: RCU

Theorem (Random Coding Union Bound)

For any PX there exists a code with M codewords and

ε ≤ E [min {1, (M − 1)π(X ,Y )}]π(a, b) = P[ıX ;Y (X ; Y ) ≥ ıX ;Y (X ; Y ) |X = a,Y = b]

where PXY X (a, b, c) = PX (a)PY |X (b|a)PX (c)

Proof:

I Reason as in RCU for BSC with dHam(·, ·)↔ −ıX ;Y (·, ·)I For example ML decoder: W = argmaxj ıX ;Y (Cj ; Y )

I Conditional prob. of error:

P[error |X ,Y ] ≤ (M − 1)P[ıX ;Y (X ; Y ) ≥ ıX ;Y (X ; Y ) |X ,Y ]

I Same idea: take min{·, 1} before averaging over (X ,Y ).

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

New bounds: RCU

Theorem (Random Coding Union Bound)

For any PX there exists a code with M codewords and

ε ≤ E [min {1, (M − 1)π(X ,Y )}]π(a, b) = P[ıX ;Y (X ; Y ) ≥ ıX ;Y (X ; Y ) |X = a,Y = b]

where PXY X (a, b, c) = PX (a)PY |X (b|a)PX (c)

Highlights:

I Strictly stronger than Feinstein-Shannon and Gallager

I Not easy to analyze asymptotics

I Computational complexity O(n2(|X |−1)|Y |)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

New bounds: DT

Theorem (Dependence Testing Bound)

For any PX there exists a code with M codewords and

ε ≤ E[exp

{−∣∣∣ıX ;Y (X ; Y )− log

M−1

2

∣∣∣+}]

.

Highlights:

I Strictly stronger than Feinstein-Shannon

I . . . and no optimization over γ!

I Easier to compute than RCU

I Easier asymptotics: ε ≤ E[e−n|

1nı(X n;Y n)−R|+

]

≈ Q(√

nV {I (X ; Y )− R}

)

I Has a form of f -divergence: 1− ε ≥ Df (PXY ‖PXPY )

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

DT bound: Proof

I Codebook: random C1, . . .CM ∼ PX iid

I Feinstein decoder:

W = smallest j s.t. ıX ;Y (Cj ; Y ) > γ

I j-th codeword’s probability of error:

P[error |W = j ] ≤ P[ıX ;Y (X ; Y ) ≤ γ]︸ ︷︷ ︸©a

+(j − 1)P[ıX ;Y (X ; Y ) > γ]︸ ︷︷ ︸©b

In ©a : Cj too far from YIn ©b : Ck with k < j is too close to Y

I Average over W :

P[error] ≤ P [ıX ;Y (X ; Y ) ≤ γ] +M−1

2P[ıX ;Y (X ; Y ) > γ

]

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

DT bound: Proof

I Recap: for every γ there exists a code with

ε ≤ P [ıX ;Y (X ; Y ) ≤ γ] +M−1

2P[ıX ;Y (X ; Y ) > γ

].

I Key step: closed-form optimization of γ.Note: ıX ;Y = log dPXY

dPXY

M+1

2

(2

M+1PXY

[dPXY

dPXY

≤ eγ]

+M−1

M+1PXY

[dPXY

dPXY

> eγ])

Bayesian dependence testing!

Optimum threshold: Ratio of priors =⇒ γ∗ = log M−1

2

I Change of measure argument:

P

[dP

dQ≤ τ

]+τQ

[dP

dQ> τ

]= EP

[exp

{−∣∣∣∣log

dP

dQ− log τ

∣∣∣∣+}]

.

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Example: Binary Erasure Channel BEC (0.5), ε = 10−3

0 500 1000 1500 20000.3

0.35

0.4

0.45

0.5

Blocklength, n

Rat

e, b

it/ch

.use

Converse

Achievability

Normal approximation

Capacity

At n = 1000 best k → n code:

(DT) 450 ≤ k ≤ 452 (meta-c.)

Converse: QY n = truncated caod

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Example: Binary Erasure Channel BEC (0.5), ε = 10−3

0 500 1000 1500 20000.3

0.35

0.4

0.45

0.5

Blocklength, n

Rat

e, b

it/ch

.use

Converse

Achievability

Normal approximation

Capacity

At n = 1000 best k → n code:

(DT) 450 ≤ k ≤ 452 (meta-c.)

Converse: QY n = truncated caod

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Input constraints: κβ bound

Theorem

For all QY and τ there exists an (M, ε)-code inside F ⊂ A

M ≥ κτsupx β1−ε+τ (PY |X=x ,QY )

where

κτ = inf{E : PY |X [E |x]≥τ ∀x∈F}

QY [E ]

Highlights:

I Key for channels with cost constraints (e.g. AWGN).

I Bound parameterized by the output distribution.

I Reduces coding to binary HT.

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

κβ bound: idea

Decoder:

• Take received y.

• Test y against each codeword ci , i = 1, . . .M:

Run optimal binary HT for :

H0 : PY |X=ci

H1 : QY

P[detectH0] = 1− ε+ τQ[detectH0] = β1−ε+τ (PY |X=x ,QY )

• First test that returns H0 becomes the decoded codeword.

• If all H1 – declare error.

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

κβ bound: idea

Decoder:

• Take received y.

• Test y against each codeword ci , i = 1, . . .M:

Run optimal binary HT for :

H0 : PY |X=ci

H1 : QY

P[detectH0] = 1− ε+ τQ[detectH0] = β1−ε+τ (PY |X=x ,QY )

• First test that returns H0 becomes the decoded codeword.

• If all H1 – declare error.

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

κβ bound: idea

Codebook:

• Pick codewords s.t. “balls” are τ -disjoint: P[Y ∈ Bx∩others|x ] ≤ τ• Key step: Cannot pick more codewords =⇒

M⋃j=1{j-th decoding region} is a composite HT:

H0 : PY |X=x x ∈ FH1 : QY

• Performance of the best test:

κτ = inf{E : PY |X [E |x]≥τ ∀x∈F}

QY [E ] .

• Thus:

κτ ≤ Q[all M “balls”]

≤ M supxβ1−ε+τ (PY |X=x ,QY )

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Hierarchy of achievability bounds (no cost constr.)

Gallager

Feinstein

DT

RCU

I Arrows show logical implication

I Performance ↔ computation rule of thumb.I ISIT’2013: Haim-Kochman-Erez [WeB4]

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Hierarchy of achievability bounds (no cost constr.)

Tighter

Looser

Computation & Analysis

EA

SY

HA

RD

Gallager

Feinstein

DT

RCU

Typic

al perf

orm

ance

I Arrows show logical implicationI Performance ↔ computation rule of thumb.

I ISIT’2013: Haim-Kochman-Erez [WeB4]

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Hierarchy of achievability bounds (no cost constr.)

Tighter

Looser

Computation & Analysis

EA

SY

HA

RD

Gallager

Feinstein

DT

RCU RCU*

Typic

al perf

orm

ance

I Arrows show logical implicationI Performance ↔ computation rule of thumb.I ISIT’2013: Haim-Kochman-Erez [WeB4]

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Channel Dispersion

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Connection to CLT

Recap:I Let PY n|X n = Pn

Y |X be memoryless. FBL fundamental limit:

R∗(n, ε) = max

{1

nlog M : ∃(n,M, ε)-code

}

I Converse bounds (roughly):

R∗(n, ε) . ε-th quantile of1

nlog

dPY n|X n

dQY n

I Achievability bounds (roughly):

R∗(n, ε) & ε-th quantile of1

nıX n;Y n(X n; Y n)

I Both random variables have form: 1n · (sum of iid) =⇒ by CLT

R∗(n, ε) = C + θ

(1√n

)

This section: Study√

n-term.

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

General definition of channel dispersion

Definition

For any channel we define channel dispersion as

V = limε→0

lim supn→∞

n (C − R∗(n, ε))2

2 ln 1ε

Rationale is the expansion (see below)

R∗(n, ε) = C −√

V

nQ−1(ε) + o

(1√n

)(∗)

and the fact Q−1(ε) ∼ 2 ln 1ε for ε→ 0

Recall: Approximation via (∗) is remarkably tight

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

General definition of channel dispersion

Definition

For any channel we define channel dispersion as

V = limε→0

lim supn→∞

n (C − R∗(n, ε))2

2 ln 1ε

Heuristic connection to error exponents E (R):

E (R) =(R − C )2

2· ∂

2E (R)

∂R2+ o((R − C )2)

and thus

V =

(∂2E (R)

∂R2

)−1

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Dispersion of memoryless channels

I DMC [Dobrushin’61,Strassen’62]:

V = Var[ıX ;Y (X ; Y )] X ∼ capacity-achieving

I AWGN channel [PPV’08]:

V = log2 e2

[1−

(1

1+SNR

)2]

I Parallel AWGN [PPV’09]:

V =L∑

j=1VAWGN

(Wj

σ2j

){Wj}–waterfilling powers

I DMC with input constraints [Hayashi’09,P’10]:

V = Var[ıX ;Y (X ; Y )|X ] X ∼ capacity-achieving

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Dispersion of channels with memory

From [PPV’09, PPV’10, PV’11]:

I Non-white Gaussian noise with PSD N(f ):

V =log2 e

2

1/2∫

−1/2

[1− |N(f )|4

P2ξ2

]+

df ,

1/2∫

−1/2

[ξ − |N(f )|2

P

]+

df = 1

I AWGN subject to stationary fading process Hi (CSI at receiver):

V = PSD 12

log(1+PH2i )(0) +

log2 e

2

(1− E 2

[1

1 + PH20

])

I State-dependent discrete additive noise (CSI at receiver):

V = PSDC(Si )(0) + E [V (S)]

I ISIT’13: Quasi-static fading channels: V = 0 (!)Yang-Durisi-Koch-P. in [WeA4]

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Dispersion: product vs generic channels

I Relation to alphabet size:

V ≤ 2 log2 min(|A|, |B|)− C 2 .

I Dispersion is additive:

{A1 → DMC1 → B1

A2 → DMC2 → B2

}= A1×A2 → DMC → B1×B2

C = C1 + C2 , Vε = V1,ε + V2,ε

I =⇒ product DMCs have atypically low dispersion.

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Dispersion and normal approximation

Let PY |X be DMC and

Vε4=

{maxPX

Var[i(X ,Y )|X ] , ε < 1/2 ,

minPXVar[i(X ,Y )|X ] , ε > 1/2

where optimization is over all PX s.t. I (X ; Y ) = C .

Theorem (Strassen’62)

R∗(n, ε) = C −√

Vεn

Q−1(ε) + O

(log n

n

)

But [PPV’10]: a counter-example with

R∗(n, ε) = C + Θ(

n−23

)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Dispersion and normal approximation

Let PY |X be DMC and

Vε4=

{maxPX

Var[i(X ,Y )|X ] , ε < 1/2 ,

minPXVar[i(X ,Y )|X ] , ε > 1/2

where optimization is over all PX s.t. I (X ; Y ) = C .

Theorem (Strassen’62, PPV’10)

R∗(n, ε) = C −√

Vεn

Q−1(ε) + O

(log n

n

)

unless DMC is exotic in which case O(

log nn

)becomes O(n−

23 ).

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Further results on O(

log nn

)

I For BEC we have:

R∗(n, ε) = C −√

V

nQ−1(ε) + 0 · log n

n+ O

(1

n

)

I For most other symmetric channels (incl. BSC and AWGN∗):

R∗(n, ε) = C −√

V

nQ−1(ε) +

1

2

log n

n+ O

(1

n

)

I For most DMC (under mild conditions):

R∗(n, ε) ≥ C −√

Vεn

Q−1(ε) +1

2

log n

n+ O

(1

n

)

I ISIT’13: For all DMC

R∗(n, ε) ≤ C −√

Vεn

Q−1(ε) +1

2

log n

n+ O

(1

n

)

Tomamichel-Tan, Moulin in [WeA4]

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Applications

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Evaluating performance of real-world codes

I Comparing codes: usual method – waterfall plots Pe vs. SNR

I Problem: Not fair for different rates.

=⇒ define rate-invariant metric:

Definition (Normalized rate)

Given rate R code find SNR at which Pe = ε.

Rnorm =R

R∗(n, ε,SNR)

I Agreement: ε = 10−3 or 10−4

I Take R∗(n, ε,SNR) ≈ C −√

Vn Q−1(ε)

I A family of channels needed (e.g. AWGN or BSC)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Evaluating performance of real-world codes

I Comparing codes: usual method – waterfall plots Pe vs. SNR

I Problem: Not fair for different rates.

=⇒ define rate-invariant metric:

Definition (Normalized rate)

Given rate R code find SNR at which Pe = ε.

Rnorm =R

R∗(n, ε,SNR)

I Agreement: ε = 10−3 or 10−4

I Take R∗(n, ε,SNR) ≈ C −√

Vn Q−1(ε)

I A family of channels needed (e.g. AWGN or BSC)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Codes vs. fundamental limits (from 1970’s to 2012)

102

103

104

105

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1Normalized rates of code families over BIAWGN, Pe=0.0001

Blocklength, n

Nor

mal

ized

rat

e

Turbo R=1/3Turbo R=1/6Turbo R=1/4VoyagerGalileo HGATurbo R=1/2Cassini/PathfinderGalileo LGAHermitian curve [64,32] (SDD)BCH (Koetter−Vardy)Polar+CRC R=1/2 (List dec.)ME LDPC R=1/2 (BP)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Performance of short algebraic codes (BSC, ε = 10−3)

101

102

103

0.75

0.8

0.85

0.9

0.95

1

1.05

Blocklength, n

Nor

mal

ized

rat

e

HammingGolayBCHExtended BCHReed−Muller: 1 ord.Reed−Muller: 2 ord.Reed−Muller: 3 ord.Reed−Muller: 4+ ord.

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Optimizing ARQ systems

I End-user wants Pe = 0

I Usual method: automatic repeat request (ARQ)

average throughput = Rate× (1− P[error])

I Question: Given k bits what rate (equiv. ε) maximizesthroughput?

I Assume (C ,V ) is known. Then approximately

T ∗(k) ≈ maxR

R·(

1− Q

(√kR

V

{C

R− 1

}))

0 0.5 1 1.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

I Solution: ε∗(k) ∼ 1√kt log kt

, t = CV

I Punchline: For k ∼ 1000 bit and reasonable channels

ε ≈ 10−3..10−2

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Optimizing ARQ systems

I End-user wants Pe = 0

I Usual method: automatic repeat request (ARQ)

average throughput = Rate× (1− P[error])

I Question: Given k bits what rate (equiv. ε) maximizesthroughput?

I Assume (C ,V ) is known. Then approximately

T ∗(k) ≈ maxR

R·(

1− Q

(√kR

V

{C

R− 1

}))

0 0.5 1 1.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

I Solution: ε∗(k) ∼ 1√kt log kt

, t = CV

I Punchline: For k ∼ 1000 bit and reasonable channels

ε ≈ 10−3..10−2

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Benefits of feedback: From ARQ to Hybrid ARQ

Encoder Channel DecoderW

z−1Y t−1

Xt Yt W

I Memoryless channels: feedback does not improve C[Shannon’56]

I Question: What about higher order terms?

Theorem

For any DMC with capacity C and 0 < ε < 1 we have for codeswith feedback and variable length:

R∗f (n, ε) =C

1− ε + O

(log n

n

).

Note: dispersion is zero!

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Benefits of feedback: From ARQ to Hybrid ARQ

Encoder Channel DecoderW

z−1Y t−1

Xt Yt W

I Memoryless channels: feedback does not improve C[Shannon’56]

I Question: What about higher order terms?

Theorem

For any DMC with capacity C and 0 < ε < 1 we have for codeswith feedback and variable length:

R∗f (n, ε) =C

1− ε + O

(log n

n

).

Note: dispersion is zero!

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Stop feedback bound (BSC version)

Theorem

For any γ > 0 there exists a stop feedback code of rate R, averagelength ` = E [τ ] and probability of error over BSC (δ)

ε ≤ E [f (τ)] ,

where

f (n)4= E

[1{τ ≤ n}2`R−Sτ

]

τ4= inf{n ≥ 0 : Sn ≥ γ}

Sn4= n log(2− 2δ) + log

δ

1− δ ·n∑

k=1

Zk

Zk ∼ i.i.d. Bernoulli(δ) .

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Feedback codes for BSC(0.11), ε = 10−3

0 100 200 300 400 500 600 700 800 900 10000

0.1

0.2

0.3

0.4

0.5

Avg. blocklength

Rat

e, b

its/c

h.us

e

ConverseAchievabilityNo feedback

No feedback

Stop feedback

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Effects of flow control

Encoder Channel Decoder

STOP

W

z−1Y t−1

Xt Yt W

I Modeling of packet termination

I Often: reliability of start/end � reliability of payload

Theorem

If reliable termination is available, then there exist codes withvariable length and feedback achieving

R∗t (n, 0) ≥ C + O

(1

n

).

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Effects of flow control

Encoder Channel Decoder

STOP

W

z−1Y t−1

Xt Yt W

I Modeling of packet termination

I Often: reliability of start/end � reliability of payload

Theorem

If reliable termination is available, then there exist codes withvariable length and feedback achieving

R∗t (n, 0) ≥ C + O

(1

n

).

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Codes employing feedback + termination (BSC version)

Theorem

Consider a BSC (δ) with feedback and reliable termination. Thereexists a code sending k bits with zero error and average length

` ≤∞∑

n=0

n∑

t=0

(n

t

)δt(1− δ)n−t min

{1,

t∑

k=0

(n

k

)2k−n

}.

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Feedback + termination for the BSC(0.11)

0 100 200 300 400 500 600 700 800 900 10000

0.1

0.2

0.3

0.4

0.5

0.6

Avg. blocklength

Rat

e, b

its/c

h.us

e

VLFTVLFNo feedback

No feedback

Feedback + Termination

Stop feedback

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Benefit of feedback

Delay to achieve 90% of the capacity of the BSC(0.11):

I No feedback:n ≈ 3100

I Stop feedback + variable-length:

n . 200

I Feedback + variable-length + termination:

n . 20

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Benefit of feedback

Delay to achieve 90% of the capacity of the BSC(0.11):

I No feedback:n ≈ 3100 penalty term: O

(1√n

)

I Stop feedback + variable-length:

n . 200 penalty term: O(

log nn

)

I Feedback + variable-length + termination:

n . 20 penalty term: O(

1n

)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Gaussian channel: Energy per bit

Zi∼ N(

0, N02

)

↓Xi −→

⊕ −→ Yi

Problem: minimal energy-per-bit Eb vs. payload size k:

E

[n∑

i=1

|Xi |2]≤ kEb .

Asymptotically: [Shannon’49]

min

(Eb

N0

)→ log 2 = −1.6 dB , k →∞ .

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Energy per bit vs. # of information bits (ε = 10−3)

100

101

102

103

104

105

106

−2

−1

0

1

2

3

4

5

6

7

8

Information bits, k

Eb/

No,

dB

Achievability (non−feedback)Converse (non−feedback)Full feedback (optimal)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Energy per bit vs. # of information bits (ε = 10−3)

100

101

102

103

104

105

106

−2

−1

0

1

2

3

4

5

6

7

8

Information bits, k

Eb/

No,

dB

Achievability (non−feedback)Converse (non−feedback)Stop feedbackFull feedback (optimal)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Summary

Classical: (n→∞)

Noisy channelOptimal coding

==============⇒ C

Finite blocklength: (n – finite)

Noisy channelOptimal coding

==============⇒ N(C , Vn

)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

What we had to skip

I Hypothesis testing methods in Quantum IT:[Wang-Colbeck-Renner’09], [Matthews-Wehner’12],[Tomamichel’12],[Kumagai-Hayashi’13]

I Channels with state:[Ingber-Feder’10], [Tomamichel-Tan’13],[Yang-Durisi-Koch-P.’12]

I FBL theory of lattice codes: [Ingber-Zamir-Feder’12]

I Feedback codes: [Naghshvar-Javidi’12],[Williamson-Chen-Wesel’12]

I Random coding bounds and approximations:[Martinez-Guillen i Fabregas’11], [Kosut-Tan’12]

I Other FBL questions: [Riedl-Coleman-Singer’11],[Varshney-Mitter-Goyal’12], [Asoodeh-Lapidoth-Wang’12],[P.-Wu’13]

. . . and many more (apologies!) . . . (cf: References)

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

New results at ISIT’2013: two terminals

I Universal lossless compression: Kosut-Sankar [MoD5]

I Random number generation: Kumagai-Hayashi [WeA3]

I Quasi-static SIMO: Yang-Durisi-Koch-P. [WeA4]

I O(log n) = 12 log n : Tomamichel-Tan, Moulin [WeA4]

I Meta-converse is tight: Vazquez-Vilar et al [WeB4]

I Meta-converse for unequal error protection:Shkel-Tan-Draper [WeB4]

I RCU* bound: Haim-Kochman-Erez [WeB4]

I Cost constraints: Kostina-Verdu [WeB4]

I Lossless compression: Kontoyiannis-Verdu [WeB5]

I Feedback: Chen-Williamson-Wesel [ThD6]

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

New results at ISIT’2013: multi-terminal

I achievability bounds: Yassae-Aref-Gohari [TuD1]

I random binning: Yassae-Aref-Gohari [ThA1]

I interference channel: Le-Tan-Motani [ThA1]

I Gaussian line network: Subramanian-Vellambi-Land [ThA1]

I Slepian-Wolf for mixed sources: Nomura-Han [ThA7]

I one-help-one and Wyner-Ziv: Watanabe-Kuzuoka-Tan [FrC5]

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

References: Lossless compression

A. A. Yushkevich, “On limit theorems connected with the concept of entropy of Markov chains”, UspekhiMatematicheskikh Nauk, 8:5(57), pp. 177-180, 1953

V. Strassen, “Asymptotische Abschatzungen in Shannon’s Informationstheorie,” Trans. Third Prague Conf.Information Theory, 1962, Czechoslovak Academy of Sciences, Prague, pp. 689-723. Translation:http://www.math.cornell.edu/~pmlut/strassen.pdf

I. Kontoyiannis, “Second-order noiseless source coding theorems,” IEEE Trans. Inform. Theory, vol. 43, no. 3, pp.1339-1341, July 1997

M. Hayashi, “Second-order asymptotics in fixed-length source coding and intrinsic randomness,” IEEE Trans.Inform. Theory, vol. 54, no. 10, pp. 4619-4637, October 2008.

W. Szpankowski and S. Verdu, “Minimum expected length of fixed-to-variable lossless compression without prefixconstraints,” IEEE Trans. on Information Theory, vol. 57, no. 7, pp. 4017-4025, July 2011.

S. Verdu and I. Kontoyiannis, “Lossless Data Compression Rate: Asymptotics and Non-Asymptotics,” 46th AnnualConference on Information Sciences and Systems, Princeton, New Jersey, March 21-23, 2012

R. Nomura and T. S. Han, “Second-Order Resolvability, Intrinsic Randomness, and Fixed-Length Source Codingfor Mixed Sources: Information Spectrum Approach,” IEEE Trans. Inform. Theory, vol.59, no.1, pp.1,16, Jan.2013

I. Kontoyiannis and S. Verdu, “Optimal lossless compression: Source varentropy and dispersion,” Proc. 2013 IEEEInt. Symposium on Information Theory, Istanbul, Turkey, July 7-12, 2013

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

References: multi-terminal compression

S. Sarvotham, D. Baron, and R. G. Baraniuk, “Non-asymptotic performance of symmetric Slepian-Wolf coding,” inConference on Information Sciences and Systems, 2005.

D.-K. He, L. A. Lastras-Montano, E.-H. Yang, A. Jagmohan, and J. Chen, “On the redundancy of Slepian-Wolfcoding,” IEEE Trans. Inform. Theory, vol. 55, no. 12, pp. 5607-27, Dec 2009.

V. Y. F. Tan and O. Kosut, “The dispersion of Slepian-Wolf coding,” in Proc. 2012 IEEE Intl. Symp. Inform.Theory (ISIT), Jul. 2012, pp. 915-919.

S. Kuzuoka, “On the redundancy of variable-rate Slepian-Wolf coding,” Inform. Theory and its Applications(ISITA), 2012 International Symposium on (pp. 155-159), Oct. 2012.

S. Verdu, “Non-asymptotic achievability bounds in multiuser information theory,” in Allerton Conference, 2012.

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

References: Channel coding (1948-2008)

A. Feinstein, “A new basic theorem of information theory,” IRE Trans. Inform. Theory, vol. 4, no. 4, pp. 2-22,1954.

P. Elias, “Coding for two noisy channels,” Proc. Third London Symposium on Information Theory, pp. 61-76,Buttersworths, Washington, DC, Sept. 1955

C. E. Shannon, “Certain results in coding theory for noisy channels,” Inform. Control, vol. 1, pp. 6-25, 1957.

J. Wolfowitz, “The coding of messages subject to chance errors,” Illinois J. Math., vol. 1, pp. 591-606, 1957.

C. E. Shannon, “Probability of error for optimal codes in a Gaussian channel,” Bell System Tech. Journal, vol. 38,pp. 611-656, 1959.

R. L. Dobrushin, “Mathematical problems in the Shannon theory of optimal coding of information,” Proc. 4thBerkeley Symp. Mathematics, Statistics, and Probability, 1961, vol. 1, pp. 211-252.

V. Strassen, “Asymptotische Abschatzungen in Shannon’s Informationstheorie,” Trans. Third Prague Conf.Information Theory, 1962, Czechoslovak Academy of Sciences, Prague, pp. 689-723. Translation:http://www.math.cornell.edu/~pmlut/strassen.pdf

R. G. Gallager, “A simple derivation of the coding theorem and some applications,” IEEE Trans. Inform. Theory,vol. 11, no. 1, pp. 3-18, 1965.

C. E. Shannon, R. G. Gallager, and E. R. Berlekamp, “Lower bounds to error probability for coding on discretememoryless channels I”, Inform. Contr., vol. 10, pp. 65-103, 1967

J. Wolfowitz, “Notes on a general strong converse,” Inform. Contr., vol. 12, pp. 1-4, 1968.

H. V. Poor and S. Verdu, “A lower bound on the error probability in multihypothesis testing,” IEEE Trans. Inform.Theory, vol. 41, no. 6, pp. 1992-1993, 1995.

A. Valembois and M. P. C. Fossorier, “Sphere-packing bounds revisited for moderate block lengths,” IEEE Trans.Inform. Theory, vol. 50, no. 12, pp. 2998-3014, 2004.

G. Wiechman and I. Sason, “An improved sphere-packing bound for finite-length codes over symmetric memorylesschannels,” IEEE Trans. Inform. Theory, vol. 54, no. 5, pp. 1962-1990, 2008.

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

References: Channel coding (2008-)

Y. Polyanskiy, H. V. Poor and S. Verdu, “New channel coding achievability bounds,” Proc. 2008 IEEE Int. Symp.Information Theory (ISIT), Toronto, Canada, 2008.

L. Wang, R. Colbeck and R. Renner, “Simple channel coding bounds,” Proc. 2009 IEEE Int. Symp. InformationTheory (ISIT), Seoul, Korea, July 2009.

M. Hayashi, “Information spectrum approach to second-order coding rate in channel coding,” IEEE Trans. Inform.Theory, vol. 55, no. 11, pp. 4947-4966, Nov 2009.

Y. Polyanskiy, H. V. Poor and S. Verdu, “Dispersion of Gaussian channels,” 2009 IEEE Int. Symp. Inf. Theory(ISIT), Seoul, Korea, Jul. 2009.

L. Varshney, S. K. Mitter and V. Goyal, “Channels that die,” Communication, Control, and Computing, Allerton,2009.

Y. Polyanskiy, H. V. Poor and S. Verdu, “Channel coding rate in the finite blocklength regime,” IEEE Trans. Inf.Theory, vol. 56, no. 5, pp. 2307-2359, May 2010.

Y. Polyanskiy, H. V. Poor and S. Verdu, “Dispersion of the Gilbert-Elliot channel,” IEEE Trans. Inf. Theory, vol.57, no. 4, pp. 1829-1848, Apr. 2011.

Y. Polyanskiy and S. Verdu, “Channel dispersion and moderate deviations limits for memoryless channels,” 48thAllerton Conference 2010, Allerton Retreat Center, Monticello, IL, USA, Sep. 2010.

Y. Polyanskiy and S. Verdu, “Arimoto channel coding converse and Renyi divergence,” 48th Allerton Conference2010, Allerton Retreat Center, Monticello, IL, USA, Sep. 2010.

A. Ingber and M. Feder, “Finite blocklength coding for channels with side information at the receiver.” Electricaland Electronics Engineers in Israel (IEEEI), 2010 IEEE 26th Convention of. IEEE, 2010.

S. Asoodeh, A. Lapidoth and L. Wang, “It takes half the energy of a photon to send one bit reliably on thePoisson channel with feedback.” arXiv:1010.5382, 2010

T. J. Riedl, T. Coleman and A. Singer, “Finite block-length achievable rates for queuing timing channels.”Information Theory Workshop (ITW), 2011.

A. Martinez and A. Guillen i Fabregas, “Random-coding bounds for threshold decoders: Error exponent andsaddlepoint approximation,” in Proc. Int. Symp. Info. Theory, Aug. 2011.

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

References: Channel coding (2008-)

Y. Polyanskiy, H. V. Poor and S. Verdu, “Minimum energy to send k bits through the Gaussian channel with andwithout feedback,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 4880 - 4902, Aug. 2011.

P.-N. Chen, H.-Y. Lin, and S. Moser, “Ultra-small block-codes for binary discrete memoryless channels,” in Proc.IEEE Inf. Theory Works., Paraty, Brazil, Oct. 2011.

Y. Polyanskiy and S. Verdu, “Scalar coherent fading channel: dispersion analysis,” 2011 IEEE Int. Symp. Inf.Theory (ISIT), St. Petersburg, Russia, Aug. 2011.

Y. Polyanskiy, H. V. Poor and S. Verdu, “Feedback in the non-asymptotic regime,” IEEE Trans. Inf. Theory, vol.57, no. 8, pp. 4903 - 4925, Aug. 2011.

W. Yang, G. Durisi, T. Koch, Y. Polyanskiy, “Diversity versus channel knowledge at finite block-length,” 2012 Inf.Theory Workshop (ITW), Lausanne, Switzerland, Sep 2012.

Y. Polyanskiy and S. Verdu, “Empirical distribution of good channel codes with non-vanishing error probability,”IEEE Trans. Inf. Theory, submitted Dec. 2012.http://people.lids.mit.edu/yp/homepage/data/optcodes_journal.pdf

Y. Altug and A.Wagner., “Moderate deviations in channel coding.” arXiv:1208.1924, 2012

J. Hoydis, R. Couillet, P. Piantanida and M. Debbah, “A random matrix approach to the finite blocklength regimeof MIMO fading channels.” Proc 2012 IEEE ISIT, 2012.

P. Moulin, “The log-volume of optimal constant-composition codes for memoryless channels, within O(1) bits.”Information Theory Proceedings (ISIT), 2012 IEEE International Symposium on. IEEE, 2012.

J. Scarlett and A. Martinez, “Mismatched Decoding: Finite-Length Bounds, Error Exponents andApproximations.” arXiv preprint arXiv:1303.6166 (2013).

W. Matthews and S. Wehner, “Finite blocklength converse bounds for quantum channels” arXiv:1210.4722, 2012

M. Tomamichel, “A framework for non-asymptotic quantum information theory.” arXiv:1203.2142, 2012

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

References: Channel coding (2008-)

A. Ingber, R. Zamir, M. Feder, “Finite-Dimensional Infinite Constellations,” IEEE Trans. Inform. Theory, vol.59,no.3, pp.1630,1656, March 2013

M. Tomamichel and V. Tan, “ε-Capacities and Second-Order Coding Rates for Channels with General State.”arXiv:1305.6789, 2013

M. Naghshvar and T. Javidi, “Active sequential hypothesis testing.” arXiv:1203.4626, 2012

A. Williamson, T.-Y. Chen and R. D. Wesel, “A rate-compatible sphere-packing analysis of feedback coding withlimited retransmissions.” Information Theory Proceedings (ISIT), 2012 IEEE International Symposium on, 2012.

Y. Polyanskiy, “Saddle point in the minimax converse for channel coding,” IEEE Trans. Inf. Theory, vol. 59, no.5, pp. 2576-2595, May 2013.

Y. Polyanskiy and Y. Wu, “Peak-to-average power ratio of good codes for Gaussian channel”, arXiv:1302.0084,Jan 2013.

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

References: Channel coding (multi-terminal)

T. S. Han, Information-Spectrum Methods in Information Theory. Springer Berlin Heidelberg, Feb 2003.

Y. Huang and P. Moulin, “Finite blocklength coding for multiple access channels,” in Proc. IEEE Intl. Symp.Inform. Theory (ISIT), Jul 2012, pp. 831-835.

E. MolavianJazi and J. N. Laneman, “Simpler achievable rate regions for multiaccess with finite blocklength,”Proc. 2012 IEEE Int. Symp. Information Theory, July 2012.

V. Tan and O. Kosut, “On the dispersions of three network information theory problems.” Information Sciencesand Systems (CISS), 2012 46th Annual Conference on. IEEE, 2012.

P. Moulin, “A new metaconverse and outer region for finite-blocklength MACs.” Information Theory andApplications Workshop (ITA), 2013. IEEE, 2013.

S. Verdu, “Non-asymptotic achievability bounds in multiuser information theory,” in Allerton Conference, 2012.

V. Tan, “On Dispersions of Discrete Memoryless Channels with Noncausal State Information at the Encoder.”arXiv:1204.0431(2012).

V. Tan, “The Capacity of the General Gelfand-Pinsker Channel and Achievable Second-Order Coding Rates.”arXiv:1210.1091(2012).

M. H. Yassaee, M. R. Aref, and A. Gohari, “A Technique for Deriving One-Shot Achievability Results in NetworkInformation Theory.” arXiv preprint arXiv:1303.0696 (2013).

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

References: Lossy compression, joint source-channel coding

I. Kontoyiannis, “Pointwise redundancy in lossy data compression and universal lossy data compression,” IEEETrans. Inform. Theory, vol. 46, no. 1, pp. 136-152, Jan. 2000

A. Ingber and Y. Kochman, “The dispersion of lossy source coding,” in Data Compression Conference (DCC),Snowbird, UT, Mar. 2011, pp. 53-62.

D. Wang, A. Ingber, and Y. Kochman, “The dispersion of joint source-channel coding,” in Communication,Control, and Computing (Allerton), 2011 49th Annual Allerton Conference on, pp. 180-187.

A. Ingber, D Wang and Y. Kochman, “Dispersion theorems via second order analysis of functions of distributions.”Information Sciences and Systems (CISS), 2012 46th Annual Conference on. IEEE, 2012.

V. Kostina and S. Verdu, “Fixed-length lossy compression in the finite blocklength regime,” IEEE Trans. Inform.Theory, vol. 58, no. 6, Jun. 2012.

A. Tauste Campo, G. Vazquez-Vilar, A. Guillen i Fabregas and A. Martinez, “Converse bounds for finite-lengthjoint source-channel coding,” in Proc. 50th Allerton Conf. on Comm., Cont. and Comp., Monticello, IL, USA,Oct. 2012.

D. Wang, A. Ingber and Y. Kochman, “A strong converse for joint source-channel coding.” Information TheoryProceedings (ISIT), 2012 IEEE International Symposium on. IEEE, 2012.

V. Kostina and S. Verdu, “To code or not to code: Revisited.” Information Theory Workshop (ITW), 2012 IEEE.IEEE, 2012.

V. Kostina and S. Verdu, “Lossy Joint Source-Channel Coding in the Finite Blocklength Regime”, IEEE Trans. onInfor. Theory, vol. 59, no. 5, pp. 2545-2575, May 2013

N. Datta, J. M. Renes, R. Renner and M. M. Wilde, “One-shot lossy quantum data compression.”arXiv:1304.2336, 2013

Introduction Bounds: Converse Bounds: Achievability Channel dispersion Applications & Extensions Conclusion

Thank you!

Do not hesitate to ask questions!

Yury Polyanskiy <yp@mit.edu>

Sergio Verdu <verdu@princeton.edu>

Recommended