Physiology of Cell, Body Fluids, Excitable tissue & Muscle

Preview:

DESCRIPTION

Physiology of Cell, Body Fluids, Excitable tissue & Muscle. Choesnan Effendi Physiology Dep. Airlangga University 2012. Episode Kedua. Cair Tubuh & Transport bahan melewati membran Body Fluids & Transport of substances through the cell membrane. Cair Tubuh. Extracellular. Intracellular. - PowerPoint PPT Presentation

Citation preview

Physiology of Cell, Body Fluids, Excitable

tissue & Muscle

Choesnan EffendiPhysiology Dep. Airlangga University

2012

Episode Kedua

Cair Tubuh & Transport bahan melewati membran

Body Fluids &

Transport of substances through the cell membrane

Cair Tubuh

Extracellular Intracellular

Plasma darah

Interstitial

Transcellular

VolumeVolume % BB % BB ( Berat ( Berat Badan )Badan )

Indikator Indikator

Total body water Total body water (cair tubuh total)(cair tubuh total)

6060 Deutrium ( D2O / Deutrium ( D2O / 22HH22O ), Tritium O ), Tritium

( ( 33HH22O ), AntipyrineO ), Antipyrine

Cair Cair EkstrasellularEkstrasellular

2020 Inulin *C Inulin *C 1414 , Thiosulfate , Thiosulfate

Cair IntrasellularCair Intrasellular 4040 Total body water − Cair Total body water − Cair EkstrasellularEkstrasellular

Plasma darahPlasma darah 55 Evans blue ( T- 1824 ) , Evans blue ( T- 1824 ) , 125125I-I-Albumin Albumin

DarahDarah 7 – 8 7 – 8 5151Cr-labeled red blood cellsCr-labeled red blood cells{ Volume plasma darah : ( 100 % { Volume plasma darah : ( 100 %

− Hct )}− Hct )}

Cair InterstisialCair Interstisial 1515 Volume ekstrasellular − Volume Volume ekstrasellular − Volume plasmaplasma

Hematocrit

Plasma darah

Whole

blood

X100 % = 36 – 45 %Volume Eritrosit

Volume Darah

= Hct

HCT = Hematocrit

= PCV ( Packed Red Cell Volume )

Adalah volume kumpulan erithrocytes yang dinyatakan

dengan % terhadap volume darah keseluruhan

Interstitiel / Plasma darah

Cytoplasma

1. Osmosa

2. Diffusi sederhana

3. Diffusi fasilitasi

4. Transport aktif

5. Exocytosis / endocytosis

Beberapa cara masuk / keluarnya bahan melewati membran sel

Pertukaran cairan didaerah kapiller

Ruang interstitiel

Plasma darah

Sitoplasma / sitosol

Arteriole

Venule

Capillary

Fluid exchange : Arteriole capillary venule

Filtrasi / pertukaran cairan

daerah kapiller

Dipengaruhi oleh beberapa faktor :

•Tekanan onkotik plasma

•Tekanan onkotik interstisial

•Tekanan hidrostatik plasma

•Tekanan hidrostatik interstisial

Tekanan hidrostatik plasma = tekanan darah

Tekanan kolloid osmotik = Tekanan onkotik

Tekanan onkotik plasma darah

Oleh karena adanya Protein plasma ( p )

Protein Protein plasmaplasma

Gram %Gram % P mm Hg

AlbuminAlbumin 4,54,5 21,821,8

GlobulinGlobulin 2,52,5 6,06,0

FibrinogenFibrinogen 0,30,3 0,20,2

TotalTotal 7,37,3 28,028,0

Dari ketiganya, jumlah terbanyak adalah ALBUMIN

Sebagai contoh :

Arteriole VenuleKapiller

Interstisial

Pint : 1 mm Hg ( hidrostatik )

Part : 37 mm Hg Pven : 17 mm Hg

Ponkotik - int : 8 mm Hg

Ponkotik - art ( ven ) : 28 mm Hg

Pkap : 25 mm Hg

NFP ( Net Filtration Pressure ) = Pkap – Pint - p kap + p int

25 – 1 – 28 + 8 = + 4

+ ( positip ) : artinya cairan keluar dari kapiller, sisanya ini akan di absorbsi oleh limfe

NFP ( Net Filtration Pressure ) =

Pkap – Pint - p kap + p int

25 – 1 – 28 + 8 = + 4

+ ( positip ) :

artinya cairan keluar dari kapiller,

sisanya ini akan di absorbsi oleh limfe

Mengapa hypoproteinemia

udema

Bagaimana mengenai tekanan oncotic protein

plasma ???

Starving Children in Nigeria

1.Bendungan vena : tumor, dekompensasi jantung kanan,

bendungan aliran limfe

2.Cairan dari intersitial yang menuju plasma < dibanding yang

masuk

Udem akan terjadi apabila

Cairan dari intersitial yang menuju plasma << dibanding yang

masuk

Tekanan osmotik plasma yang rendah

O.K.

O.K.

Kadar protein plasma yang rendah

= HIPOPROTEINEMIA

HIPOPROTEINEMIA

O.K.

1.Under nutrition : kurang gizi /rendah protein.

2.Sintesa protein ( terutama Albumin ) terganggu : a.l pada penyakit hati :

cirrhosis hepatis

3.Sekresi protein : yang seharusnya tidak terjadi , yaitu terjadi proteinuria ( pada

nephrotic syndrome )

Tekanan osmotik plasma

Berperanan untuk reabsorbsi kembali cairan yang dari

interstisial

Beberapa cara masuk / keluarnya bahan melewati membran sel

1.Osmosa

2.Diffusi sederhana

3.Diffusi fasilitasi

4.Transport aktif

H2O yg bergerak dari larutan hipotonis kearah hipertonis

Bahan yang terlarut bergerak dari tekanan

tinggi ketekanan rendah

Seperti No. 2,

menggunakan mediator (carrier system)

Bahan yang terlarut bergerak dari tekanan rendah

ketekanan tinggi, menggunakan mediator,

energi ( ATP )

1.Osmosa

2.Diffusi sederhana

3.Diffusi fasilitasi

4.Transport aktif

Contoh :H2O

CO2 , O2 , Ureum

glukosa, asam amino

Na, K, Ca

Mediator = carrier system

Simple diffusion, facilitated diffusion &

osmosis:

are passive transport, without ATP

Active transport, sodium potassium pump,

calcium pump, exocytosis:

are active, need ATP

Facilitated diffusion (also known as facilitated transport or passive-mediated transport) is a

process of passive transport, facilitated by integral proteins (mediator).

Without energy (ATP)

Osmosis (movement of water across membranes) depends on the relative concentration of solute molecules on either side of the membrane

Osmosis

Water move from low concentration to high concentration

How do about erythrocytes if in:

- hypotonic solution

- isotonic solution

- hypertonic solution

Crenated / wrinkled ery in hypertonic medium

Normal Ery structure in isotonic medium

Swollen ery & rupture in hypotonic medium

Crenated / wrinkled ery in hypertonic medium

Normal Ery structure in isotonic medium

Swollen ery & rupture in hypotonic medium

Simple Diffusion

Diffusion; the flow substances or matter from a higher concentration to a lower

concentration

Alveoli:

O2: Diffusion from alveoli into blood stream capillary

CO2: Diffusion from blood capillary into

alveoli

PO2 alv : 104 mmHG

PO2 cap : 40 mmHg

PcO2 alv : 40 mmHG

PcO2 cap : 46 mmHg

O2 diffusion into blood capillary, then enter to the erythrocyte, bound by

hemoglobin → HbO2

CO2 diffusion into blood capillary, then enter to the erythrocyte, bound with H2O → H2CO3

→dissociation

Becomes: H+ + HCO3- (bicarbonate ion)

at alveoli or at respiratory membrane

at tissue; tissue membrane and endothelium capillary

HCO3- (bicarbonate ion) flow out from erythrocyte into blood stream, to the capillary

beds of respiratory membrane

In blood stream:

at respiratory membrane

HCO3- (bicarbonate ion) flow in from blood stream into erythrocyte, then bind with H+

, become H2CO3, H2CO3 dissociation,

Become H2O + CO2

at respiratory membrane

CO2 flow out to blood (exit from erythrocyte) and then diffusion into alveoli lumen

In blood stream:

O2 bound by hemoglobin → HbO2

→ to tissues and cells all the body

O2 simple diffusion from HbO2 into cytosol, and then into mitochondria. Glucose move into cytosol by glucose transporter

(facilitated diffusion)

at tissue

Facilitated Diffusion

Like simple diffusion, but requires interaction of a carrier protein

that bind the molecules or ions to aids passage through the

membrane

Carrier protein = mediator or transporter

Facilitated diffusion (also known as facilitated transport or passive-mediated transport) is a

process of passive transport, facilitated by integral proteins (mediator).

Without energy (ATP)

Glut = Glucose transporter

Skeletal Muscle requires GLUT – 4 ,

GLUT-4 stand-by in cytosol of muscle fiber, they ‘ll move into the membrane if insulin

receptors are stimulated by insulin

Glut = Glucose transporter is mediator/transporter of glucose enter

into cytosol

InsulinInsulin

Receptor ( IR )

Cell membrane

IRS-1

Glucose – facilitated diffusion

GLUT- 4

vesicle contains GLUT- 4 PI3

kinase translocation

Glucose enter into cytosol of skeletal muscle fiber by;

Signal transduction by insulin

Insulin activate insulin rec → form IRS1

IRS1 activates PI3-Kinase

PI3-Kinase stimulate translocation vesicle, which contains GLUT-4

GLUT- 4 is mediator / transporter of glucose

In skeletal muscle fiber

There are 2 processes:

* Signal transduction by insulin

** Facilitated diffusion by GLUT- 4

Active Transport

Active Transport is

the Pumping of Solutes Against their Gradients

Active Transport is the Pumping of Solutes Against their Gradients

1. Cell must expend ATP/ energy to pump a molecule across a membrane2. Performed by embedded proteins3. Na-K Pump (sodium-potassium)- exchanges Na+ for K+ in animal cells when ATP changes protein conformation by transferring its terminal phosphate group to the transport protein

Active transport is the movement of a substance against its concentration gradient (from low to high concentration).

active transport: energy-requiring, carrier-mediated transport system in which molecules can be moved across cell membrane against electrochemical gradient

Axon

+ + + + + + +

– – – – – – –

K+ 140 mEq/L Na+ 14 mEq/L CL- 5 mEq/L

Na+ 142 mEq/L Cl- 120 mEq/L K+ 4 mE/L

Electrolyte inside & outside the cell membrane

Resting

3 molecules Na+ carried out into extracellular, changed by 2 molecules K+ (carried into cytosol)

Exocytosis

Exocytosis is the cellular process in which intracellular vesicles in

the cytoplasm fuse with the plasma

membrane and release or "secrete" their contents into the

extracellular space

Exocytosis is the process by which cells excrete waste products and other large

molecules from the cytoplasm

Exocytosis is the cellular process in which intracellular vesicles in the cytoplasm fuse with the plasma membrane and release or "secrete" their contents into the extracellular space

Exocytosis is the process secretion substances into the extracellular space or into the blood stream.

Endocytosis is like phagocytosis

Exocytosis is the reverse of endocytosis.

Exocytosis

Exocytosis & Endocytosis Transport Large Molecules

1. Exocytosis- transport vesicles migrate to plasma membrane & fuse & release contents2. Endocytosis- large molecules enter cells

within vesicles pinched inward from the membrane

--> Phagocytosis- cell engulfs particles “cell eating”

--> Pinocytosis- cell engulfs droplets of extracellular fluid “cell drinking”

The other way of transport across membrane

Cotransport:

also known as coupled transport or secondary active transport, refers to the simultaneous or sequential passive transfer of molecules or ions across biological membranes.

- Symport

- Antiport

Several types transport across membrane

(facilitated diffusion)

Symport

Sodium – glucose symport /

Na-Glucose co-transport

Antiport

An antiporter (also called exchanger or counter-transporter) is an integral membrane protein

involved in secondary active transport of two or more different molecules or ions (i.e., solutes) across a phospholipid membrane such as the

plasma membrane in opposite directions.

or called IONS EXCHANGE

Na+ Glucose

Ca++

Na+Amino acid

For example, the Na+/Ca2+ exchanger, used by many cells to

remove cytoplasmic calcium, exchanges one calcium ion for three sodium ions

the Na+ - Ca2+ exchanger (transporter)

The other example

Na+ - H+ antiport

PI-3 kinase :

( Phosphatidyl Inositol 3’ kinase )

Menyebabkan translokasi vesikel yang berisi GLUT – 4 menuju sel membran

Contoh transduksi signal oleh insulin yang diikuti diffusi fasilitasi glukosa

melalui GLUT - 4

GLUT – 4 : Glucose transporter – 4

InsulinInsulin

Receptor ( IR )

Membran sel otot

IRS-1

Diffusi fasilitasi glukosa

GLUT- 4

vesikel yang berisi GLUT- 4

PI3 kinase

Translokasi

Apa beda :

Diffusi fasilitasi

?

Transport aktif

dengan

Acidosis ?

Alkalosis ?

pH darah 7,35 – 7,45

terlalu asam : disebut

ASIDOSISterlalu basa / alkali : disebut

ALKALOSIS

Diare yang berlebihan ( gastro-enteritis ) pada anak dapat menimbulkan dehidrasi

yang disertai asidosis o.k.

Kehilangan cairan ( H2O ) + bikarbonat ( HCO3 )

Sodium – glucose symporter /

Na-Glucose cotranspor

Resume

Cair Tubuh & Transport bahan melewati membran

1.Komposisi cair tubuh

2.Cara pengukuran

3.Pertukaran cairan didaerah kapiller

4.Mekanisme terjadinya udem

5.Pengertian osmosa, diffusi, diff fasilitasi, aktif transport

Modul / P. R. :

Seorang ibu sedang membaca buku ilmiah populer, ada artikel yang menyebutkan bahwa sel pada manusia dapat membelah diri,

juga artikel tersebut tertulis bahwa chromosome pria dan wanita berbeda, selanjutnya artikel itu menyebutkan bahwa tempat produksi energi terjadi didalam sel.

Si ibu tersebut kesulitan memahami isi buku tersebut, kemudian bertanya pada anaknya, yang kebetulan kuliah di Universitas Airlangga.

Pertanyaannya :

Bagaimana cara suatu sel dapat membelah diri ?

Chromosome itu apa ? Dimana tempatnya, tersusun oleh apa, berapa jumlahnya, apakah berbeda antara pria dan wanita ?

Apa yang dimaksud produksi energi didalam sel ?

Seorang anak wanita umur 12 tahun – siswa SD Kelas 6 akan menghadapi Ujian Nasional, belajar mengenai Biologi. Si anak bertanya pada ibunya, orang yang sedang berjalan dan berlari apakah membutuhkan sumber energi, darimana sumber energi tersebut. Kalau dari makanan bagaimana makanan tersebut bisa memberi energi tubuh orang yang sedang berjalan dan berlari tersebut. Ibunya kesulitan untuk menjawab dan menjelaskan, kemudian bertanya pada kakak anak tersebut yang sedang Kuliah di UNAIR

Pertanyaannya :

Organ apa yang aktif sehingga seseorang dapat berjalan dan berlari.

Bagaimana mekanismenya sehingga makanan dapat digunakan sebagai sumber energi sehingga dapat sampai ke sel-sel organ tersebut.

Apakah glukosa dapat digunakan sebagai sumber energi ? Kalau bisa bagaimana caranya masuk kedalam sel ?

Sugar Crystals This electron microscope

image of raw cane sugar reveals the shape of sugar crystals.

Sugar = sucrose

Glucose – fructose

To Be Continued

NEXT EPISODE

- 70 mV

+30 mV

- 55 mV

- 0 mV

Firing level

depolarization

repolarization

Action potential

Overshoot

Local anesthesia

Block konduksipotensial aksi / impuls

Block impuls dengan cara :- menghambat pembukaan saluran ion Natrium ( Na channel penting untuk konduksi potensial aksi )

Recommended