Physics with n’s: first evidence of an NN resonant...

Preview:

Citation preview

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

1

Physics with n’s:first evidence of

an NN resonant state

Hadron Physics induced with Hadron BeamsGeorge Washington University

July 23 - 25, 2001, Washington DC

Alessandro FelicielloI.N.F.N. - Sezione di Torino

n

N

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

2

Outlook NN system np vs. pp interactions np vs. pd interactions n’s beams the OBELIX n’s “factory” n’s physics

– meson spectroscopy np cross section– n-nucleus cross section

Nppn

n

n

nn

n

n

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

3

NN interaction: why?historical

60’s: description of ordinary meson spectrum(π, ρ, …)

QCD 80’s - 90’s: search for exotic configurations

• multiquark (q2q2)• glueball (gg or ggg)• hybrids (qqg)• other non qq mesons

N

qq

unsuccessful

q

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

4

NN interaction: why?nuclear physics

understanding of nuclear forces:• clearing up the rôle of the G-parity rule

(pp ↔ pp and np ↔ np)• search for NN bound states or resonances

(NN potential deeper than the NN one)• study of the isospin dependence of the NN

interaction (comparison of pp with pn or np data)• determination of the annihilation strength

dependence on some channels (fit to the scatteringand annihilation data)

N

p n

NNnpp

N

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

5

nn’s interaction: why? scarce data on low energy np interaction complementary/alternative to pp interaction

technically difficult low n production rate

but

n

pn

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

6

The pp systemp

0

250

500

750

1000

1250

1500

1750

0 100 200 300 400

0

250

500

750

1000

1250

1500

1750

0 100 200 300 400

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

7

The np systemn

0

250

500

750

1000

1250

1500

1750

0 100 200 300 400

0

250

500

750

1000

1250

1500

1750

0 100 200 300 400

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

8

np vs. pp (advantages) pure I = 1 state:

– reduced number of initial statesinvolved

the percentages of s- and p-waves can be selected bychoosing the n momentum

absence of Coulomb interaction:– no distortion of the σ trend in

the low momentum region(σ ∝ 1/v)

mixture of the I = 0 and I = 1amplitudes

σ ∝ 1/v2

n p

βσ ann(pp)

n

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

9

np vs. pp (advantages) no energy loss in the target:

– possibility of preciselyreconstructing the energy atwhich the interaction occurs

– only one target– the target thickness can be

increased to obtain highercounting rates

target thickness is a “function”of p momentum

n p

p

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

10

np vs. pp (advantages) at least one prong in the final

state:– good opportunity for trigger– easier detection– selection of

exclusive final states(e.g. np → π+π+π-

np → π+π+π+π-π-)

all neutral annihilations(see Crystal Barrel)

n p

nn

after a 4C kinematical fitafter a 4C kinematical fit

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

11

better energy and momentumresolution:– no kinematical corrections due to

the presence of the spectatorproton

pd → 2π-π+(p)p

np → 3π+2π-n

np vs. pd (advantages)n pnp → 2π+π-n

pd → 3π-2π+(p)p

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

12

np vs. pp (drawbacks) low intensity:

– 30 ÷ 50 × 10-6 n/p

poor energy definition

in flight annihilations:– beam divergence– annihilation vertex

delocalization

e.g. LEAR p beam:– ∆p/p ~ 10-4

– I ~ 107 p/s

n pp

np

p

1983 - 1996

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

13

n’s productionbeam dumping

AGS/BNL (1981):– 10 < pp < 30 GeV/c– I ~ 10-8 n/p GeV/c sr– 0.3 < p < 1 GeV/c– no physics output:

• poor beam quality• n high contamination level

pp → nn charge exchange

AGS/BNL (1987):– target: CH2– 2% of p → n– 100 < p < 500 MeV/c– physics output:

• σtot(np) and σann(np)

LEAR/CERN (1988):– target: LH2 (2-body kinematics!)– I ~ 10-4 n/p– 50 < p < 300 MeV/c– physics output:

• σtot(np) and σann(nFe)

np n

n npnp

np

np

pn

n

n n

n

first n tagged beam

first n tagged beamn

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

14

The n tagging techniquen

En = En(ϑn)ϑn = ϑn(z) En = En(z) tmeas = tmeas(z)

=

−++=Q)(P,

)EP,(Qt(z)ttt 0meas

nn

nnp

ϑϑ

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

15

The OBELIX n “factory“ On

1990 - 1996

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

16

n’s momentum evaluationn

algorithm based on t.o.f. measurement:

STOPsignal

STOPsignalSTART

signalSTARTsignal

π

ππ ϑ v

sv

z-dl)z(v

z(0)vs

ttt(0)tt cz

0measc +++

′′

+=+++= cosd

npp

pnpp

fixedfixed

knownknown measuredmeasured

measuredmeasured

iterative procedureto determine = p

p ddβdp

(0)pc zEpz by guessing ppp

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

17

n’s momentum spectrumncapability of reconstructingthe momentum of each interacting nn

systematic

errors

greatly

reduced

systematic

errors

greatly

reduced

data corresponding todifferent n momenta are collected:• at the same time• with the same experimental and beam setup

n

wide and continue

wide and continue

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

18

n‘s beam spot on the targetn

*untagged n beam no direct flux measurement!!!

target target

flux*: (13 ± 0.5) x 10-6 n/p (56 ± 1.5) x 10-6 n/p

n

n p pn

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

19

The OBELIX n physics output

50 ÷ 200 MeV/c 200 ÷ 300 MeV/c

50 ÷ 405 MeV/c300 ÷ 405 MeV/c

π+π- system invariant mass

meson spectroscopymeson spectroscopy

n

~ 35000 events

np → 2π+π-np → 2π+π-n

contributionto the discussion

about the Ax/f0 case

contributionto the discussion

about the Ax/f0 case

(1522 ± 25) MeV/c2

(108 ± 33) MeV/c2

(1575 ± 18) MeV/c2

(119 ± 24) MeV/c2

Phys. Rev. D 57 (1998) 55Phys. Rev. D 57 (1998) 55

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

20

The OBELIX n physics outputmeson spectroscopymeson spectroscopy

n

pure phase spacepure phase space

(1359 ± 17) MeV/c2

(425 ± 30) MeV/c2

np → 3π+2π-np → 3π+2π-n

difference spectrum

LEAP ‘94LEAP ‘94

(1664 ± 1) MeV/c2

(53 ± 2) MeV/c2

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

21

The OBELIX n physics outputannihilation dynamicsannihilation dynamics

n

nucleon ss content?s

np → φπ+

np → ωπ+np → φπ+

np → ωπ+nn str

ong devia

tion

(of a f

actor

~ 30!)

from OZI ru

lestr

ong devia

tion

(of a f

actor

~ 30!)

from OZI ru

le

Rs = 0.112 ± 0.007Rs = 0.112 ± 0.007

Nucl. Phys. A 655 (1999) 453Nucl. Phys. A 655 (1999) 453

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

22

The OBELIX n physics outputnuclear physicsnuclear physics

n

np annihilation cross section np total cross section

anomaly in the elastic np cross section n-nucleus annihilation cross sectionn

nn

n

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

23

0

5000

10000

15000

20000

25000

30000

-30 -20 -10 0 10 20 30 40 50

n-nucleus annihilation cross section

0

2000

4000

6000

8000

10000

12000

14000

0 50 100 150 200 250 300 350 400 450

nνA)(pσA)(pσ 0

annann ×= nn ,

bn

n pa)(pσ 0ann +=

a = (66.5 ± 3.0) mbb = (19.87 ± 0.86) mb × GeV/cν = (0.6526 ± 0.0060)

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

24

0

2000

4000

6000

8000

10000

12000

14000

0 50 100 150 200 250 300 350

A and p dependencies

0

2000

4000

6000

8000

10000

12000

14000

0 50 100 150 200 250 300 350 400 450

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

25

Comparisons

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700 800 9000

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200 1400 1600

n-nucleus data N-nucleus dataNn

! !

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

26

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 50 100 150 200 250 300 350 400

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300 350 400

Annihilation products

0

0.0025

0.005

0.0075

0.01

0.0125

0.015

0.0175

0.02

0 50 100 150 200 250 300 350 400

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 50 100 150 200 250 300 350 400

• both p and d production increases with A (and saturate)• d/p ~ 3-4% (average values in literature ~ 10-15%: different reconstruction efficiency?)

• K/π ~ 3%: about the same than np• no enhancement of strangeness production with A• very slight decreasing with A (energy loss?)

n

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

27

0

50

100

150

200

250

300

350

400

450

500

100 200 300 400

np annihilation cross sectionn

σanni =

1ρNA∆z

1εε trig

Nanni (1− γ i)

Nni

[Nucl. Phys. B

56A (1997) 227]

[Nucl. Phys. B

56A (1997) 227]

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

28

Comparison

0

50

100

150

200

250

300

350

400

450

500

100 200 300 400

sensible reduction

of the statistical errors!

sensible reduction

of the statistical errors!

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

29

0

50

100

150

200

250

300

350

400

450

500

100 200 300 400

S wave

P wave

Effective range expansion

σann =4πk2 (2l +1)(Imfll − fl

2) fl =

1cotδ l − i

k cotδ0 =1a1

+12

r1k2

k 3 cotδ1 =1b1

−32

1R1

k 2

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

30

0

50

100

150

200

250

300

350

400

450

500

100 200 300 400

S wave

P wave

D wave

Effective range expansion

k 5 cotδ2 =1c1

+52

1ρ1

3 k 2

fl =1

cotδ l − i

k cotδ0 =1a1

+12

r1k2

k 3 cotδ1 =1b1

−32

1R1

k 2

σann =4πk2 (2l +1)(Imfll − fl

2)

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

31

The transmission technique

zN)z,p(I)p()z,p(N Annnannnann ∆=∆ ρσ

zNnnnn

Atote),p(I)z,p(I ρσ−= 0

zNAnannnnz

)z,p(N Atotnann eN)p(),p(I ρσρσ −∆

∆ = 0

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

32

The transmission technique

0

2000

4000

6000

8000

10000

0 100 200 300 400

-35% off

not to scale

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

33

The transmission technique

60708090

100

200

300 49.27 / 38P1 75.11 1.380P2 0.2659E-01 0.2928E-02

49 < p < 59 MeV/c

50.25 / 38P1 83.30 1.447P2 0.1599E-01 0.2831E-02

59 < p < 70 MeV/c

49.68 / 38P1 130.6 1.812P2 0.1438E-01 0.2302E-02

70 < p < 90 MeV/c

60708090

100

200

300

-10 0 10

34.60 / 38P1 129.7 1.806P2 0.1774E-01 0.2257E-02

90 < p < 110 MeV/c

Cou

nts

-10 0 10

39.17 / 38P1 150.7 1.946P2 0.1511E-01 0.2079E-02

110 < p < 130 MeV/c

vertex z [cm]-10 0 10

46.53 / 38P1 197.0 2.223P2 0.1218E-01 0.1805E-02

130 < p < 150 MeV/c

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

34

np total cross section On

[Phys. Lett. B 475 (2000) 378][Phys. Lett. B 475 (2000) 378]

0

100

200

300

400

500

600

700

0 100 200 300 400

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

35

0

100

200

300

400

500

600

700

800

900

1000

100 200 300 400

Slopes

70 < p < 90 MeV/cnp

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

36

Comparisons

0

100

200

300

400

500

600

700

0 100 200 300 400

0

100

200

300

400

500

600

700

0 100 200 300 400

no systematic errors (practically)

statistical errors significantly reduced

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

37

Effective range expansion

0

100

200

300

400

500

600

700

0 100 200 300 400

OBELIXMahalanabisPirnerITEP

σ tot =4πk2 (2l +1)Imfll

totaltotal annihilationannihilation

σann =4πk2 (2l +1)(Imfll − fl

2)

0

100

200

300

400

500

600

700

0 100 200 300 400

OBELIXMahalanabisPirnerITEP

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

38

0

100

200

300

400

500

600

700

800

900

1000

100 200 300 400

S wave

P wave

Effective range expansion

fl =1

cotδ l − i

k cotδ0 =1a1

+12

r1k2

k 3 cotδ1 =1b1

−32

1R1

k 2

σ tot =4πk2 (2l +1)Imfll

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

39

0

100

200

300

400

500

600

700

800

900

1000

100 200 300 400

S wave

P wave D wave

Effective range expansion

k 5 cotδ2 =1c1

+52

1ρ1

3 k 2

fl =1

cotδ l − i

k cotδ0 =1a1

+12

r1k2

k 3 cotδ1 =1b1

−32

1R1

k 2

σ tot =4πk2 (2l +1)Imfll

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

40

Anomalous p-wave contributiontotaltotal annihilationannihilation

0

100

200

300

400

500

600

700

800

900

1000

100 200 300 400

S wave

P wave D wave0

100

200

300

400

500

600

700

800

900

1000

100 200 300 400

S waveP wave

D wave

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

41

Different binning

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

42

np elastic cross section O

[Phys. Lett. B 475 (2000) 378][Phys. Lett. B 475 (2000) 378]

n

0

100

200

300

400

500

600

700

0 100 200 300 400

22

4 totelk σπ

σ ≥

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

43

Isospin dependence

0

100

200

300

400

500

600

700

0 100 200 300 400

0

1

2

3

4

5

0 100 200 300 400Rtot = =

(σ totnp)

σ tot(pp)

2σ tot

1

σ tot

0+σ tot

1

121

0

−= tottot

tot Rσσ

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

44

The ρρρρ parameter

[W. Brückner et al., Phys. Lett. B

158 (1985) 180]

[W. Brückner et al., Phys. Lett. B

158 (1985) 180]

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

45

Which origin for such anomalies? threshold of the pp → nn channel

(plab = 98 MeV/c) s-wave dominance, in the frame of the coupled

channel approach quasi-nuclear bound states near threshold

measurement of σela(pp)at low momentum

measurement of dσ/dΩ(relative importance of s- and p-wave contributions)

essential to discriminate among different hypotheses

nppp

p

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

46

FENICE experiment F(a)

σ(e+ e- →

mh

) (n

b)

s (GeV2)

(b)

|GM(p

) |

0

10

20

30

40

50

60

70

80

90

100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

3 3.25 3.5 3.75 4 4.25 4.5 4.75 5

[Nuc

l. Ph

ys. B

517

(199

8) 3

][N

ucl.

Phys

. B 5

17 (1

998)

3]

Mx = (1.87 ± 0.01) GeV Γx = (10 ± 5) MeV

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

47

The threshold region

0

10

20

30

40

50

60

70

80

90

100

1.84 1.85 1.86 1.87 1.88 1.89 1.9 1.91 1.920

100

200

300

400

500

600

700

800

900

10001000

900

800

700

600

500

400

300

200

100

0

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

48

Photoproduction experiments

FNAL E687FNAL E687

e+e- → 3π+3π-e+e- → 3π+3π-

Mx = (1.911 ± 0.004) GeV Γx = (29 ± 11) MeV

DM2DM2

!

A. F

elic

iello

- H

PHB

01 W

ashi

ngto

n Ju

ly 2

3 - 2

5, 2

001

49

Summaryn’s validated as projectile for meson spectroscopyσann(np) and σtot(np) measured for the first time:

❶ down to 50 MeV/c❷ with high statistics

evident anomalous behaviourof σtot(np) (→ σel(np) ) near threshold

indication for a structure below 100 MeV/c

in the elastic channel???

indication for a structure below 100 MeV/c

in the elastic channel???

n

nn

nn

Recommended