Ozone inactivation microorganisims

Preview:

DESCRIPTION

Ahmed Yousef Professor of Food Microbiology Ohio State University Ozone-V Conference April 2, 2007 Fresno California • Tri-atomic oxygen (O 3 ) • Molecular weight of 48 • Bluish gas (at high concentrations) • Pungent characteristic odor • Low solubility in water • Half-life: •Gas: ~12 hr (at ambient) •Aqueous: Short, varies by medium What’s Ozone? U V 2 4 0 -3 2 0 n m U V < 2 4 0 n m Atmospheric oxygen molecules v v

Citation preview

Ozone Inactivation of Microorganisms:Kinetics and Mechanisms

Ahmed Yousef

Professor of Food MicrobiologyOhio State University

Ozone-V ConferenceApril 2, 2007

Fresno California

What’s Ozone?

• Tri-atomic oxygen (O3)• Molecular weight of 48• Bluish gas (at high concentrations)• Pungent characteristic odor• Low solubility in water• Half-life:

• Gas: ~12 hr (at ambient)• Aqueous: Short, varies by medium

Ozone Formation and Decomposition in the Stratosphere(Chapman Mechanism)

vUV

<24

0 nm

v

UV 2

40-3

20 n

m

Atmospheric oxygenmolecules

Atomic oxygenOzone

Generation of Ozonefor Food Applications

Method• Corona discharge• Electrochemical• Ultraviolet radiation

Consumables• Air• Oxygen gas• Water

Heat Removal

Heat Removal

AC PowerSupply

Oxygen Ozone

ElectrodeDielectric

High Voltage

Discharge Gap

Ozone Generation by Corona Discharge

Electrode

H2O

O2/O3

H2

H2O

Anode Cathode

Proton exchange membrane

H+

http://www.lynntech.com/pdf/1lbgenerator.pdf

Ozone Generation by Electrochemical Process

Ozone Decomposition and Disposal

- Heat

• Destruction of excess ozone in work environment

• Destruct units:

- Catalysts

• Small amounts

- May dispose of in the atmosphere

For ozone factsheet, visit {http://ohioline.osu.edu/fse-fact/0005.html}

Inactivation Kinetics

Inactivation of food-transmitted microorganisms (vegetative cell in pure suspensions) by aqueous ozone

(Kim & Yousef, 2000)

Ozone kills diverse bacteria

Spoilage and pathogenic bacteria are inactivated

Rapid inactivation

Ozone kills bacteria in less than 30s

Effective at low concentrations

~1ppm ozone kills up to 6 logs 0 200 400Exposure time (sec)

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

Frac

tion

of S

urvi

vors

(N/N

o)

1.44 ppm

0.96 ppm

1.52 ppm

1.12 ppm

Escherichia coli O157:H7

Pseudomonas fluorescens

Leuconostoc mesenteroides

Listeria monocytogenes

0.00 0.01 0.02 0.03Ozone dose (mg/ml)

1.0E-7

1.0E-6

1.0E-5

1.0E-4

1.0E-3

1.0E-2

1.0E-1

1.0E+0A. acidocaldarius (cell)

A. acidocaldarius (spore)

N. fischeri (spore)

Z. bailli (spore)

Inactivation of bacterial and fungal spores suspended in water by ozoneInitial count: 6.4x106 -1.5x107 cfu/ml (Khadre et al., 2001)

Surv

ivor

frac

tion

(N/N

0)

An ozone dose (mg gas ozone/mL sample) =Ozone concentration in gas (mg/L) × flow rate (mL/min) ×treatment time (min)/volume of spore suspension (mL).

(We apologize for the inconvenience)

Treatment of Clostridium botulinum spores with aqueous ozone for 1 min

Treatment Viable spores/ mL

Control (0 ppm) 3.6 x 107

12 ppm < 1 (estimated)

26 ppm < 1 (estimated)

Decrease in spore count (log10/ml) with exposure to ozone (0.22 mg ozone/20 ml mixture) or hydrogen peroxide (2000 mg H2O2/20 ml mixture) for 1 min at 22°C(Khadre & Yousef, 2001)

1.35.7B. subtilis vary Niger ATCC 9372

0.646.1B. subtilis ATCC 19659

1.24.8B. subtilis OSU848

0.322.7B. subtilis OSU494

0.641.3B. stearothermophilus OSU24

0.581.9B. polymyxa OSU443

0.932.1B. megaterium OSU125

1.66.1B. cereus OSU11H2O2O3Spore

Scanning electron micrograph of rotavirus particlesafter release from MA 104 cell culture

Khadre and Yousef, 2002

0 5 10 15 20 25 30Ozone Concentration (ppm)

2

4

6

8

10

12

Log 1

0 TC

ID50

/mL

Changes in infectivity of rotavirus Wa Wooster, measured as TCID50/mLat different concentrations of ozone in aqueous solution at 25°C.

Trial 1

Trial 2

Khadre and Yousef, 2002

What do these kinetic data mean?

- Cell suspension (planktonic) vs. biofilm- Equipment vs. package surface- Medium more complicated than pure water

• Lab research vs. Real World• Testing different scenarios

Efficacy Against Biofilm-Repeated Exposure

Count of Pseudomonas fluorescens as a biofilm or a dry film on chips (12.9 cm2) of a multilaminated packaging material after repeated exposureto1-min treatments with ~0.1 mg ozone/chip using 3.6 ppm aqueous ozone (Khadre & Yousef, 2000).___________________________________________________________No. of Exposures Biofilm Dry film______________________________________________________0 3.5x108 7.2x108

1 3.2x106 6.4x103

2 2.7x105 <1(est)3 2.2x105

4 1.2x105

5 6.0x102

______________________________________________________

0 4 8 12 16Ozone Concentration (PPM)

2.0

4.0

6.0

8.0

Log

CFU

/Chi

p

0.00 0.08 0.16 0.24 0.32

mg Ozone/Chip

24

StainlessSteel

Packaging Material

Inactivation of 24-hr biofilm of Pseudomonas fluorescence on chips (12.9-cm2) of packaging material and stainless steel when exposed to

different doses of ozone (Khadre & Yousef, 2000)

Ozone lethality against Escherichia coli O157:H7 in the presence of organic load (BSA). Restaino et al., 1995; Achen, 2000

2

3

4

5

6

7

8

9Lo

g cf

u/m

l

0 0.5 1.2 1.8 3.5Ozone (ppm)

Control

0.01% BSA

0.1% BSA

1% BSA

Inactivation Mechanism

Oxidation Potential of Selected Oxidizing Agents

0.700.95Chlorine dioxide

0.981.33Hypobromite

1.001.36Free chlorine

1.091.48Hypochlorite

1.311.78Hydrogen peroxide

1.532.08Ozone

Relative Oxidative

Powera

Oxidation Potential

(Volts)Species

a relevant to chlorine

Water Quality Association Ozone Task Force. 1997. Ozone for Point-of-Use, Point-of-Entry, and Small System Water Treatment Applications: A Reference Manual.Water Quality Association.Lisle, IL, 2-4.

.OH

O3Initiators

OH-, Fe2+, UV, H2O2(Radicals formed)

HO2. .O2

-

O3

O2

PromotorsO3, -SH, R-CH2OH, Aryl

(.O2- regenerated, O3 consumed)

InhibitorsAlkyl, t-BuOH, CO3

2+/HCO3+

Radicals Consumed(Ozone decomposition terminated)

Ozone decomposition, free radical formationand advanced oxidation processes

(Khadre et al, 2001)

Oxidative powerMolecular ozone (Hunt & Marinas, 1997)Singlet, free radicals (Kanofsky & Sima, 1991)

Inactivation Mechanism

Reaction with:Cell membranes (Giese & Christenser, 1954)Dehydrogenases (Ingram & Haines, 1955)DNA (Scott, 1975)RNA (Kin et al., 1980)

Inactivation Mechanism (Cont’d)

Ozone action on bacterial spores

Ozone at 5 ppm

Damages spores coats (see the electron microscopic pictures).

Ozone at >5ppm

Total inactivation of spores (data not shown)

Before After

Khadre, M. A. and Yousef, A.E. 2001. Sporicidal action of ozone and hydrogen peroxide, a comparative study. Int. J. Food Microbiol. 71:131-138.

• Inner membrane damage is the probable killing mechanism for ozone(Young, 2004)

• Oxidizing agents may have targeted proteins, not lipids, in the spore’s inner membrane(Cortezzo et al., 2004).

Target in sporeInner membrane!

Future Directions

Combination Treatments(if justifiable)

D-values* (min) of spores treated with ozoneTemperature (°C) Treatment

85 90 95 Control (no ozone)

294.1 74.6 27.0

Ozone-treated (before heating)

26.3 9.3 4.0

Kim et al., 2002* The smaller the D-value, the greater the sensitivity to heat

• Ozone inactivates microbial cells rapidly and effectively.

• Spores of Bacillus and Clostridium species, compared to vegetative cells, require higher ozone concentrations to be killed.

• Ozone damages spore outer coats but membrane damage is probably the cause ozone sporicidal action.

• Bacterial spores become sensitive to heat when pre-treated with sublethal levels of ozone.

• Direct use of ozone in liquid foods and on food surfaces with large ozone demand may not be recommended.

Conclusions

Recommended