NOEMA tutorials: II. HLS 091828gildas/demos/mapping/2018-imiss-demo-hls...NOEMA tutorials: II. HLS...

Preview:

Citation preview

  • NOEMA tutorials: II. HLS 091828by

    Cinthya Herrera & Jérôme PETYIRAM

    The datasets are not public as of Oct. 2018⇒ We tampered with the datasets so that it’s impossible to do quantitative science

    from them.Scripts for this tutorixal are available in the following files

    pro/hls091828-beginner.map, pro/hls091828-beginner.class,pro/hls091828-beginner.clic, and pro/hls091828-selfcal.map

    The scripts assume that you use oct18 or a more recent version of GILDAS

    IRAM Millimeter Interferometry Summer SchoolOct. 1 - 5 2018, St Martin d’Hères

  • Size of the problem: I. UV plane

    From this slide on, please look into file pro/hls091828-beginner.map

    [imiss@reducv2 hls091828]$ ls -lh usb.uvt-rw-r----- 1 imiss project 701M Sep 21 15:28 usb.uvtMAPPING> header usb.uvtFile : usb.uvt REAL*4Size Reference Pixel Value Increment

    12196 2003.18396625438 90200.0000000000 1.9999999988631314540 0.00000000000000 0.00000000000000 1.00000000000000

    Blanking value and tolerance 1.23455997E+34 0.0000000Source name HLS091828Map unit JyAxis type UV-DATA RANDOMCoordinate system EQUATORIAL Velocity LSRRight Ascension 09:18:28.60000 Declination 51:42:23.3000Lii 0.000000000000000 Bii 0.000000000000000Equinox 2000.0000Projection type AZIMUTHAL Angle 0.000000000000000Axis 0 A0 09:18:28.60000 Axis 0 D0 51:42:23.3000Baselines 0.0 0.0Axis 1 Line Name usb Rest Frequency 90200.00000000000Resolution in Velocity -6.6471243 in Frequency 1.9999523Offset in Velocity 0.0000000 Doppler Velocity 7.1420060Beam 55.9 0.00 0.00NO Noise levelNO Proper motionTel: NOEMA 05:54:28.5 44:38:02.0 Alt. 2560.0 Diam 15.0UV Data Channels: 4063, Stokes: 1 None Visibilities: 14540

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Size of the problem: II. Image plane

    MAPPING> let name usbMAPPING> go setupMAPPING> go setupInput file: Interferometer (15m) usb.uvt

    Single field observation (14540 visibilities)

    Observed rest frequency 90.2 GHzHalf power primary beam 55.9 arcsecPhase center RA and Dec 09:18:28.600 51:42:23.300Field of view / Largest Scale 55.9 x 55.9 arcsec

    Recommended UsedMap size 256 x 256 256 x 256 pixelsMap cell 0.78 x 0.78 0.78 x 0.78 arcsecImage Size 199.4 x 199.4 199.4 x 199.4 arcsec

    Still to be imagedStill to be cleaned

    ⇒ One data cube will weight ∼ 1 GB!

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Size of the problem: III. Making a continuum image to check

    the actual source size. 1. Original uv coverage

    MAPPING> let name usbMAPPING> go uvcov

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Size of the problem: III. Making a continuum image to checkthe source size. 2. New uv coverage

    MAPPING> read uv usbMAPPING> uv_contMAPPING> write uv usb-contMAPPING> let name usb-contMAPPING> go uvcov

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Size of the problem: III. Making a continuum image to check

    the source size. 3. Creating the image

    MAPPING> let name usb-contMAPPING> go uvmapI-CLEAN, Beam is 5.00" by 3.81" at PA -6.97 deg.I-CLEAN, Errors ( 0.01) ( 0.01) ( 0.41)MAPPING> go cleanMAPPING> go plot

    ⇒ Pixel size too small. Field of view too large.

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Size of the problem: IV. Adapting

    MAPPING> let map_size 64 ! [pixels]MAPPING> let map_cell 1.0 ! [arcsec]MAPPING> go uvmapMAPPING> go cleanMAPPING> go plot

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • The source seems shifted ⇒ Fitting in the uv plane.I. One point source

    MAPPING> let name usb-cont ! Start fitting the visibilitiesMAPPING> let uvfit%subsf01 yes ! => Subtracting the fitted functionMAPPING> let uvfit%funct01 "point"MAPPING> go uvfitr.m.s.= 0.3482 Jy.POINT R.A. = 0.19067 ( .01156) 09:18:28.62051POINT DEC. = 1.04334 ( .01618) 51:42:24.3433POINT FLUX = 20.44669 ( .14281) milliJyMAPPING> pauseMAPPING> let name usb-cont-res ! Start imaging and deconvolving the residualsMAPPING> let map_size 64MAPPING> let map_cell 1.0MAPPING> go uvmapMAPPING> go cleanMAPPING> go plot clean

    ⇒ The source is indeed shifted, but residuals donot look like noise!

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Is it a point source? ⇒ Fitting in the uv plane.II. Circular Gaussian

    MAPPING> let name usb-contMAPPING> let uvfit%subsf01 yesMAPPING> let uvfit%funct01 "c_gauss"MAPPING> let uvfit%range01 0 0 0 1 0 0 0MAPPING> let uvfit%start01 0 0 0 2 0 0 0MAPPING> go uvfitr.m.s.= 0.3482 Jy.C_GAUSS R.A. = 0.19259 ( .01286) 09:18:28.62072C_GAUSS Dec. = 1.03904 ( .01689) 51:42:24.3390C_GAUSS Flux = 22.93308 ( .23938) milliJyC_GAUSS F.W.H.P. = 1.55518 ( .05997)Imaging and deconvolving the residuals...

    ⇒ Larger flux. Residual improved but not yetcompletely noise-like.

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Is it a point source? ⇒ Fitting in the uv plane.III. Elliptical Gaussian

    MAPPING> let name usb-contMAPPING> let uvfit%subsf01 yesMAPPING> let uvfit%funct01 "e_gauss"MAPPING> let uvfit%range01 0 0 0 1 1 0 0MAPPING> let uvfit%start01 0 0 0 2 2 0 0MAPPING> go uvfitr.m.s.= 0.3482 Jy.E_GAUSS R.A. = 0.19137 ( .01260) 09:18:28.62059E_GAUSS Dec. = 1.03947 ( .01732) 51:42:24.3395E_GAUSS Flux = 23.25760 ( .24733) milliJyE_GAUSS Major = 2.12268 ( .08142)E_GAUSS Minor = 1.13933 ( .10087)E_GAUSS Pos.Ang. = 32.17092 ( 3.67679)Imaging and deconvolving the residuals...

    ⇒Still larger flux and residual completelynoise-like.

    ⇒ Source slightly resolved.

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Size of the problem: V. Getting back to the original uv table

    MAPPING> let name usbMAPPING> let map_size 64 ! [pixels]MAPPING> let map_cell 1.0 ! [arcsec]MAPPING> go uvmapMAPPING> let fres 0MAPPING> let niter 100MAPPING> go cleanMAPPING> go plot res

    ⇒ One data cube will weight ∼ 64 MB!

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Size of the problem: V. Getting back to the original uv table

    MAPPING> let name usbMAPPING> let map_size 64 ! [pixels]MAPPING> let map_cell 1.0 ! [arcsec]MAPPING> go uvmapMAPPING> let fres 0MAPPING> let niter 100MAPPING> go cleanMAPPING> go plot clean

    ⇒ Spectral resolution is too narrow to get good signal-to-noise ratio.

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Size of the problem: VI. Compressing the spectral axis

    MAPPING> read uv usbMAPPING> uv_compress 15 ! To get 100 km/s-wide channelsMAPPING> write uv usb-compMAPPING> let name usb-compMAPPING> let map_size 64 ! [pixels]MAPPING> let map_cell 1.0 ! [arcsec]MAPPING> go uvmapMAPPING> let fres 0MAPPING> let niter 100MAPPING> go cleanMAPPING> go plot clean

    ⇒ Spectral resolution is now OK.

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Let’s center the source

    MAPPING> read uv usb-compMAPPING> uv_shift 0.19 1.04 ! [arcsec]MAPPING> write uv usb-comp-shiftMAPPING> let name usb-comp-shiftImaging and deconvolution...

    ⇒ Now it’s centered.

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Let’s check the convergence of the deconvolution

    MAPPING> let name usb-compMAPPING> go cct

    ⇒ Convergence is OK on channels where the line are.

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Imaging the continuum: I. Before setting a 100 km/s velocityrange around each line to zero

    MAPPING> read uv usb-comp-shiftMAPPING> uv_filter /zero /frequency 89217.523 92356.280 /width 1500 veloMAPPING> write uv usb-comp-shift-filtImaging and deconvolution...

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Imaging the continuum: I. After setting a 100 km/s velocityrange around each line to zero

    MAPPING> read uv usb-comp-shiftMAPPING> uv_filter /zero /frequency 89217.523 92356.280 /width 1500 veloMAPPING> write uv usb-comp-shift-filtImaging and deconvolution...

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Imaging the continuum:

    II. From a line uv table to a continuum uv table

    MAPPING> read uv usb-comp-shift-filtMAPPING> uv_contMAPPING> write uv usb-comp-shift-filt-contImaging and deconvolution...

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Imaging the continuum:

    III. Fitting again in the uv plane as a check

    MAPPING> let name usb-comp-shift-filtMAPPING> let uvfit%subsf01 yesMAPPING> let uvfit%funct01 "e_gauss"MAPPING> let uvfit%range01 0 0 0 1 1 0 0MAPPING> let uvfit%start01 0 0 0 2 2 0 0MAPPING> go uvfitr.m.s.= 0.2442 Jy.E_GAUSS R.A. = 0.00989 ( .01546) 09:18:28.62150E_GAUSS Dec. = 0.01090 ( .02123) 51:42:24.3509E_GAUSS Flux = 19.89969 ( .25953) milliJyE_GAUSS Major = 2.10059 ( .10067)E_GAUSS Minor = 1.14766 ( .12325)E_GAUSS Pos.Ang. = 32.18221 ( 4.67377)

    ⇒ It’s well centered.

    ⇒ The lines represented 17% of the actual flux (= 100× (23.26− 19.90)/19.90).

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Getting the lines in the LSB band

    MAPPING> read uv lsbMAPPING> uv_comp 15MAPPING> uv_shift 0.19 1.04MAPPING> uv_base 1 /frequency 72697 73889 78776 /width 1500 veloMAPPING> write uv lsb-comp-shift-baseMAPPING> let name lsb-comp-shift-baseImaging and deconvolution ...

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Getting the continuum in the LSB bandMAPPING> read uv lsbMAPPING> uv_shift 0.19 1.04MAPPING> uv_filter /frequency 72697 73889 78776 /width 1500 veloMAPPING> uv_cont 15MAPPING> write uv lsb-shift-filt-contMAPPING> let name lsb-shift-filt-contImaging and deconvolution ...MAPPING> let name lsb-shift-filt-contMAPPING> let uvfit%subsf01 yesMAPPING> let uvfit%funct01 "e_gauss"MAPPING> let uvfit%range01 0 0 0 1 1 0 0MAPPING> let uvfit%start01 0 0 0 2 2 0 0MAPPING> go uvfitr.m.s.= 0.8856 Jy.E_GAUSS R.A. = 0.02668 ( .03837) 09:18:28.62331E_GAUSS Dec. = -0.04986 ( .05593) 51:42:24.2901E_GAUSS Flux = 11.27741 ( .31510) milliJyE_GAUSS Major = 2.56787 ( .27767)E_GAUSS Minor = 1.55842 ( .23012)E_GAUSS Pos.Ang. = -164.18299 ( 10.00366)

    ⇒ The source size appears bigger at lowerfrequency, but this is within the 3σ confidence

    interval.

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Going to CLASS: I. Importing and plotting the central

    spectrum

    From this slide on, please look into file pro/hls091828-beginner.class

    LAS> transpose lsb-comp-shift-base.lmv-clean lsb-comp-shift-base.vlm-clean 312LAS> file in lsb-comp-shift-base.vlm-cleanLAS> set match 0.5 ! [arcsec] position toleranceLAS> find /offset 0 0LAS> listLAS> get firstLAS> plot

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Going to CLASS: II. Zooming in and baselining

    LAS> set mode x 73200 74600 ! [MHz]LAS> plotLAS> set window -1300 -450 ! [MHz] relative to the rest frequencyLAS> draw windowLAS> base 0 /plot

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Going to CLASS: III. Gaussian fitting. 1. One line

    LAS> method gaussLAS> lines 1 "0 0.1 0 -800 0 200"LAS> minimizeLAS> iterateObservation 2081 RMS of Residuals : Base = 4.38E-03 Line = 1.69E-02

    Bad fitLine Area Position Width Tpeak1 22.178 ( 0.498) -921.789 ( 2.267) 195.808 ( 5.123) 0.10641LAS> visualize

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Going to CLASS: III. Gaussian fitting. 1. One line

    LAS> residualLAS> plot

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Going to CLASS: III. Gaussian fitting. 2. Two lines

    LAS> method gaussLAS> lines 2 "0 0.1 0 -950 0 120" "0 0.1 0 -800 0 70"LAS> minimizeLAS> iterateObservation 2081 RMS of Residuals : Base = 4.60E-03 Line = 6.89E-03

    Fit resultsLine Area Position Width Tpeak1 15.923 ( 0.506) -946.268 ( 1.784) 119.170 ( 4.530) 0.125522 5.4585 ( 0.448) -815.051 ( 2.486) 72.866 ( 6.825) 7.03756E-02LAS> visualize

    ⇒ Frequency in LSR frame of line #1:73854 MHz (= 74800− 946)

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Going to CLASS: III. Gaussian fitting. 2. Two lines

    LAS> residualLAS> plot

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Going to CLASS: IV. Same steps for the USB bandLAS> transpose usb-comp-shift-base.lmv-clean usb-comp-shift-base.vlm-clean 312LAS> file in usb-comp-shift-base.vlm-cleanLAS> set match 0.5LAS> find /offset 0 0LAS> listLAS> get firstLAS> set mode x 91400 93300LAS> set window 1700 2600LAS> plotLAS> draw windowLAS> base 0 /plotLAS> plotLAS> method gaussLAS> lines 2 "0 0.1 0 2100 0 150" "0 0.1 0 2300 0 70"LAS> minimizeLAS> iterateObservation 2081 RMS of Residuals : Base = 3.63E-03 Line = 7.81E-03

    Fit resultsLine Area Position Width Tpeak1 23.387 ( 0.421) 2111.136 ( 1.305) 153.958 ( 3.410) 0.142712 6.1800 ( 0.328) 2270.643 ( 1.555) 69.653 ( 4.245) 8.33521E-02LAS> visualize

    ⇒ Frequency in LSR frame of line #1:92311 MHz (= 90200 + 2111)

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Science results: I. Redshift

    Redshift radio νLSR =νrest1+z⇒ z = ν

    2rest−ν1

    rest

    ν2LSR−ν1

    LSR

    − 1.

    Measures

    • CO line #1 is observed at frequency 73854± 2 MHz.• CO line #2 is observed at frequency 92311± 1 MHz.• ν2LSR − ν

    1LSR = 18457±??? MHz.

    Line catalogs

    • CO(1-0): 115271.2018 MHz.• CO(2-1): 230538.0000 MHz.• CO(3-2): 345795.9899 MHz.• CO(4-3): 461040.7682 MHz.• CO(5-4): 576267.9305 MHz.• CO(6-5): 691473.0763 MHz.

    Results

    • If CO(2-1) and CO(1-0), ν2rest − ν1rest = 115266.7982 MHz and z = 5.245153.

    • If CO(3-2) and CO(2-1), ν2rest − ν1rest = 115257.9899 MHz and z = 5.244676.

    • If CO(4-3) and CO(3-2), ν2rest − ν1rest = 115244.7783 MHz and z = 5.243960.

    • If CO(5-4) and CO(4-3), ν2rest − ν1rest = 115227.1623 MHz and z = 5.243006.

    • If CO(6-5) and CO(5-4), ν2rest − ν1rest = 115205.1458 MHz and z = 5.241813.

    ⇒ z = 5.2431 and the lines are CO(4-3) and CO(5-4).

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Science results: II. Continuum power spectrum index

    Power spectrum F (ν) = F (νref)(

    ννref

    )α⇒ α = ln(F2)−ln(F1)

    ln(ν2)−ln(ν1) .

    Measures

    • Continuum flux at (74 800× z =) 466 984 MHz: 11.27± 0.31 mJy.• Continuum flux at (90 200× z =) 563 128 MHz: 19.90± 0.26 mJy.

    Result α = 3.04.

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Producing the UV tables in CLIC: I. Tuning CLIC defaults

    From this slide on, please look into file pro/hls091828-beginner.clic

    CLIC> set default ! Reset all global settings to their natural defaultCLIC> set rf_passband on frequency antenna fileCLIC> show rf_passband

    RF Passband Calibration is appliedRF Passband Calibration is frequency dependentRF Passband Calibration is antenna-basedRF Passband Calibration from input file

    CLIC> set phase relative antenna internal atmosphereCLIC> show phase

    Phases are relative to calibrator phasePhase Calibration is antenna-basedPhase reference is internal (same receiver)Using real-time atmospheric phase correction, antennas 1 2 3 4 5 6 7 8 9 :(according to validation by STORE CORRECTION)Using no off-line atmospheric phase correction, antennas 1 2 3 4 5 6 7 8 9 :

    CLIC> set amplitude relative antenna janskyCLIC> show amplitude

    Amplitudes are relative to calibrator amplitudeAmplitude Calibration is antenna-basedAmplitudes are expressed in janskys

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Producing the UV tables in CLIC: II. Looking at the frequencysetup

    CLIC> sic log ipb_data: "./" ! Tell CLIC the directory where IPB files are.CLIC> file in 10-jan-2018-d17sa001.hpbCLIC> show file

    Input file 10-jan-2018-d17sa001.hpb [Native]No output file openedRaw data files are searched in:

    ./CLIC> find /proc corr /source hls091828 /offset 0 0CLIC> if (found.ne.0) thenCLIC> listCLIC> get firstCLIC> header /plotCLIC> endif

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Producing the UV tables in CLIC: III. Doing itCLIC> if (found.ne.0) thenCLIC> set selection line LSB L1 and L2 and L5 and L6CLIC> set drop 0.002 0 ! Drop channels at edges of the basebands (low resolution spectral windows)CLIC> sic delete lsb.uvtCLIC> table lsb.uvt new /freq lsb 74800CLIC> endifCLIC> $ls -ltrh-rw-r----- 1 imiss project 268M Sep 11 18:45 10-jan-2018-d17sa001.hpb-rw-r----- 1 imiss project 6.5G Sep 11 18:48 180110D17SA001.IPB-rw-r----- 1 imiss project 700M Sep 27 13:35 lsb.uvtCLIC> v\header lsb.uvtFile : lsb.uvt REAL*4Size Reference Pixel Value Increment

    12193 2047.00031853482 74801.7816622237 1.9999999988631314540 0.00000000000000 0.00000000000000 1.00000000000000

    Blanking value and tolerance 1.23455997E34 0.0000000Source name HLS091828Map unit JyAxis type UV-DATA RANDOMCoordinate system EQUATORIAL Velocity LSRRight Ascension 09:18:28.60000 Declination 51:42:23.3000Lii 0.000000000000000 Bii 0.000000000000000Equinox 2000.0000Projection type AZIMUTHAL Angle 0.000000000000000Axis 0 A0 09:18:28.60000 Axis 0 D0 51:42:23.3000Baselines 0.0 0.0Axis 1 Line Name lsb Rest Frequency 74800.00000000000Resolution in Velocity -8.0156507 in Frequency 1.9999523Offset in Velocity 0.0000000 Doppler Velocity 0.0000000Beam 67.4 0.00 0.00NO Noise levelNO Proper motionUV Data Channels: 4062, Stokes: 1 None Visibilities: 14540

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Phase self-calibration of the continuum:I. Get a correctly imaged, deconvolved, and analyzed data

    From this slide on, please look into file pro/hls091828-selfcal.map

    MAPPING> read uv lsbMAPPING> uv_shift 0.19 1.04MAPPING> uv_filter /frequency 73889 78776 /width 1500 veloMAPPING> uv_contMAPPING> write uv lsb-shift-filt-contMAPPING> let name lsb-shift-filt-contMAPPING> let map_size 256MAPPING> let map_cell 0.89MAPPING> go uvmapMAPPING> let ares 0MAPPING> let fres 0MAPPING> let niter 30MAPPING> go cleanMAPPING> go noise

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Phase self-calibration of the continuum:

    I. Get a correctly imaged, deconvolved, and analyzed data

    MAPPING> @ deconvolution-toolsMAPPING> @ deconv-plot 0 0

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Phase self-calibration of the continuum:

    II. A bit of preparation

    begin procedure my-selfcal!---------------------------------------------------------------------------! This procedure sets reasonable defaults for the self-calibration tool.! It then executes the self-calibration and plot the result.! &1: uv table name without extension! &2: number of selfcal iteration! &3: number of clean components during each selfcal step in double quote! for instance, "10 15" 10 and then 15 clean components.! &4: Integration time used during each selfcal step in double quote! for instance, "180 45" means 180 and then 45 seconds.!---------------------------------------------------------------------------let self%iname &1 ! input uv tablelet self%oname &1-selfcal ! output uv tablelet self%loop &2 ! number of self cal loopslet self%niter &3 /resize ! number of selected componentslet self%times &4 /resize ! integration time for solutionlet self%channel 0 0 ! channel rangelet self%refant 0 ! reference antennalet self%sname &1-sol ! solution tablelet self%flux 0 ! maximum flux for displaylet self%restore no ! use uv_restore at endlet self%display yes ! display clean image at each loopgo selfcal@ deconv-plot 0 0ha ha/lsb-after-selfcal-plot-’niter’ /dev epdf /overpause

    end procedure my-selfcal

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Phase self-calibration of the continuum:

    III. Before self-calibration

    MAPPING> let name lsb-shift-filt-contMAPPING> let niter 30MAPPING> go cleanMAPPING> @ deconv-plot 0 0

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Phase self-calibration of the continuum:

    III. During self-calibration

    MAPPING> let name lsb-shift-filt-contMAPPING> @ my-selfcal lsb-shift-filt-cont 2 "10 15" "180 45"MAPPING>MAPPING>

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018

  • Phase self-calibration of the continuum:

    III. After self-calibration

    MAPPING> let name lsb-shift-filt-cont-selfcalMAPPING> let niter 30MAPPING> go cleanMAPPING> @ deconv-plot 0 0

    NOEMA tutorials: II. HLS 091828 C. Herrera & J. Pety 2018