Network Arch Bridgesuk.midasuser.com/web/upload/sample/MiBridge_-_Network... · 2016-06-23 ·...

Preview:

Citation preview

Network Arch Bridges

Presenter:

Robert Salca – technical support engineer, Midas UK

In order to make sure that the sound system is working well a poll will appear

shortly on your screens.Please vote by YES or NO.

Contents

Introduction to Network Arch Bridges

Advantages of Network Arch Bridges

Network Arch vs. Arch with Vertical Hangers

Components - Arch

Components - Hangers

Components - Tie

Erection Process

Static Analysis

Construction Stage Analysis

Time History Analysis

Sutong Bridge

Introduction to Network Arch Bridges

Network arches are arch bridges with inclined hanger where some hangers cross other hangers at least twice;

The structural behaviour is similar to that of a truss. The arch works in compression and the tie in tension;

Most of the shear force is taken by the hangersand little is transmitted to the arch and tie;

There is little bending in the arch and tie;

The network arch idea was developed by the Norwegian engineer Per Tveit at the end of the 1950s.

The first constructed network arch bridge designed by Per Tveit was the bridge at Steinkjer, Norway, built 1963-1964.

Schematic of Steinkjer Bridge

Contents

Introduction to Network Arch Bridges

Advantages of Network Arch Bridges

Network Arch vs. Arch with Vertical Hangers

Components - Arch

Components - Hangers

Components - Tie

Erection Process

Static Analysis

Construction Stage Analysis

Time History Analysis

Basarab Viaduct Bridge

Advantages of Network Arch Bridges

Very attractive slender bridges, blending invery well and not hiding the landscape behind;

Very stiff structures, making them suitable for railway bridges;

When designed properly saves up to 50% on materials can be achieved;

Very suitable for spans between 60 and 300m;

Not sensitive to uneven loading or unevensettlement;

Good resistance to earthquake loads due to high resistance and low weight;

A high percentage of the total cost goes into wages ( increases employment and decreases impact on environment); Steinkjer Bridge, Norway

Contents

Introduction to Network Arch Bridges

Advantages of Network Arch Bridges

Network Arch vs. Arch with Vertical Hangers

Components - Arch

Components - Hangers

Components - Tie

Erection Process

Static Analysis

Construction Stage Analysis

Time History Analysis

Stonecutters Bridge

Network Arch vs. Arch with Vertical Hangers

Network Arch vs. Arch with Vertical Hangers

Deflection under uneven loading:

Network Arch vs. Arch with Vertical Hangers

Bending moment diagram under uneven loading:

Network Arch vs. Arch with Vertical Hangers

Bending moment diagram under uneven loading – Damage to tie:

Network Arch vs. Arch with Vertical Hangers

Bending moment diagram under uneven loading – Damage to tie:

Network Arch vs. Arch with Vertical Hangers

Steel weight comparison:

Contents

Introduction to Network Arch Bridges

Advantages of Network Arch Bridges

Network Arch vs. Arch with Vertical Hangers

Components - Arch

Components - Hangers

Components - Tie

Erection Process

Static Analysis

Construction Stage Analysis

Time History Analysis

Lange Wapper Bridge

Components – Arch

Can be made out of concrete or steel (usually steel);

Can have parabolic or circular shape (usually circular);

The bending moments can be smoothened if the radiusof the arch is decreased near the ends;

Axial force dominates (compression); Forces in the arch increase only a little as we go down from the top of the arch;

Components – Arch

The recommended section is a universal column section with the week axis in the plane of the arch;

Circular sections may be used and for larger spans tube sections may be more suitable (but these increase costs significantly);

The arch works in compression, with little bending => no need for a large moment of inertia;

Universal columns make use of less welding, smaller dimensions and simpler details;

Components – Arch

Connection along the arch:

Connection with tie: Connection with wind braces:

Contents

Introduction to Network Arch Bridges

Advantages of Network Arch Bridges

Network Arch vs. Arch with Vertical Hangers

Components - Arch

Components - Hangers

Components - Tie

Erection Process

Static Analysis

Construction Stage Analysis

Time History Analysis

El Marquez Bridge

Components – Hangers

Can be wires or rods;

High strength steel;

Small diameter – usually between 40 to 60mm;

Do not take up compression, relaxing instead.

The relaxation in the hangers depends of their steepness (steeper => more relaxation);

The hangers should be connected along the arch as equidistantlyas possible;

Crossing cables are connected with plastic tubes (usually), that allow relative rotation but prevent them from banging against each other;

The optimal hanger arrangement should be considered; one of the most efficient is the radial arrangement.

Contents

Introduction to Network Arch Bridges

Advantages of Network Arch Bridges

Network Arch vs. Arch with Vertical Hangers

Components - Arch

Components - Hangers

Components - Tie

Erection Process

Static Analysis

Construction Stage Analysis

Time History Analysis

La Jabalina Bridge

Components – Tie

Can be made out of concrete or steel (for narrow bridges concrete decks are preferred);

Axial force dominates (tension);

In many cases the transverse bending is larger than longitudinal bending;

The weight of concrete decks helps with tensioning the hangers;

Concrete ties are longitudinally prestressed; Transverse prestressing of the deck improves the durability of the concrete;

During construction temporary steel ties can be used;

Contents

Introduction to Network Arch Bridges

Advantages of Network Arch Bridges

Network Arch vs. Arch with Vertical Hangers

Components - Arch

Components - Hangers

Components - Tie

Erection Process

Static Analysis

Construction Stage Analysis

Time History Analysis

Lazarevsky Bridge

Erection Process – On Site Construction

Erection Process – Off Site Construction – Placing in Final Position

Erection Process – Off Site Construction – Incremental Launching

Contents

Introduction to Network Arch Bridges

Advantages of Network Arch Bridges

Network Arch vs. Arch with Vertical Hangers

Components - Arch

Components - Hangers

Components - Tie

Erection Process

Static Analysis

Construction Stage Analysis

Time History Analysis

Ironton-Russell Bridge

Static Analysis

Correct geometry of the bridge;

Linear analysis ( cables considered as truss elements);

Initial prestress in cables (Unknown Load Factor);

Cable Force Tuning;

Static Analysis

Unknown Load Factor Optimizes tension forces in cables at the initial equilibrium position of a cable structure;

Calculate the initial cable force by inputting restrictions (displacement, moment, etc.) and satisfying the constraints;

Does not include the change in stiffness of the cable due to the change in pretension => truss elements;

Static Analysis

Unknown Load Factor

Object Function type: Select the method of forming an object function consisted of unknown load factors: Linear: The sum of the absolute values of Load factor x scale factor;

Square: The linear sum of the squares of Load factor x scale factor;

Max Abs: The maximum of the absolute values of Load factor x scale factor;

Sign of Unknowns: Assign the sign of the unknown load factors to be calculated: Negative: Limit the range of the calculated values to the negative (-) field;

Both: Do not limit the range of the calculated values;

Positive: Limit the range of the calculated values to the positive (+) field;

Simultaneous Equations Method: Using linear algebraic equations, the equality conditions are solved. If the numbers of the unknown loads and equations are

equal, the solution can be readily obtained from the matrix or the linear algebra method;

Static Analysis

Cable Force Tuning Reduce the repetitive computation process to obtain the optimum cable pretension;

Calculates the effects of the cable pretension (or load factor) on the displacements/ member forces/ stresses through influencematrix and updates the results graph in real time;

Contents

Introduction to Network Arch Bridges

Advantages of Network Arch Bridges

Network Arch vs. Arch with Vertical Hangers

Components - Arch

Components - Hangers

Components - Tie

Erection Process

Static Analysis

Construction Stage Analysis

Time History Analysis

Bang Hwa Bridge

Construction Stage Analysis

Nonlinear behaviour of cable elements;

Construction sequence (temporary supports);

Construction Stage Analysis

When is nonlinear analysis required?

Final Stage Analysis -> Initial cable forces. If the cable force is above 70% of the yield force the cables will behave similarly to truss elements => No need for large deformations analysis;

For very large span bridges ( >600m) nonlinear analysis is required;

No clear criteria stating whether nonlinear analysis is required for all cable structure;

The safer approach is running both linear and nonlinear analyses and compare the results;

Contents

Introduction to Network Arch Bridges

Advantages of Network Arch Bridges

Network Arch vs. Arch with Vertical Hangers

Components - Arch

Components - Hangers

Components - Tie

Erection Process

Static Analysis

Construction Stage Analysis

Time History Analysis

Weirton-Steubenville Bridge

Time History Analysis

Simulate snap of hanger;

Check behaviour of structure after snap;

Apply dynamic load as time varying static load case;

Time History Analysis

Q&A

Thank you!

en.midasuser.com

For any questions send an e-mail at:

uksupport@midasuser.com

Recommended