Macro for Concrete Plate Element Design

Preview:

DESCRIPTION

Macro for Concrete Plate Element Design Singapore Code.

Citation preview

Sheet1ShearMembraneBending MomentPlateL/CSQX (local) N/mm2SQY (local) N/mm2SX (local) N/mm2SY (local) N/mm2SXY (local) N/mm2Mx kNm/mMy kNm/mMxy kNm/mMax Qx5116219 DL+ASP1+ASWP+BP+LL+SP10.1620.1120.0000.0000.000-19.42810.2481.808Min Qx5780219 DL+ASP1+ASWP+BP+LL+SP1-0.1620.1160.0000.0000.000-19.34010.502-1.955Max Qy5656219 DL+ASP1+ASWP+BP+LL+SP1-0.0030.138-0.026-0.1350.0361.30318.4731.206Min Qy5787219 DL+ASP1+ASWP+BP+LL+SP10.004-0.1630.011-0.156-0.179-0.851-5.008-0.516Max Sx5372207 DL+ASP2+TFW+LL0.0000.0030.075-0.0110.014-1.109-0.413-0.344Min Sx5481219 DL+ASP1+ASWP+BP+LL+SP1-0.002-0.001-0.336-0.334-0.211-0.135-0.1990.030Max Sy5667206 DL+ASP2+TFW0.0000.0680.0020.027-0.092-0.206-1.214-0.072Min Sy5482217 DL+ASP1+ASWP+BP+LL+TFW0.000-0.001-0.043-0.416-0.013-0.078-0.1370.022Max Sxy5153207 DL+ASP2+TFW+LL0.0030.0040.0000.0090.353-0.540-3.1740.687Min Sxy5757207 DL+ASP2+TFW+LL-0.0030.0020.0000.009-0.376-0.574-3.377-0.714Max Mx5502219 DL+ASP1+ASWP+BP+LL+SP1-0.1150.000-0.085-0.0420.01423.7572.6980.127Min Mx5116219 DL+ASP1+ASWP+BP+LL+SP10.1620.1120.0000.0000.000-19.42810.2481.808Max My5626219 DL+ASP1+ASWP+BP+LL+SP10.0010.138-0.026-0.1360.0231.38718.662-1.088Min My5635219 DL+ASP1+ASWP+BP+LL+SP1-0.0030.1380.0000.0000.000-0.958-20.952-0.266Max Mxy5745219 DL+ASP1+ASWP+BP+LL+SP10.0360.017-0.060-0.0560.0530.9390.8076.621Min Mxy5141219 DL+ASP1+ASWP+BP+LL+SP1-0.0360.017-0.060-0.057-0.0530.9460.763-6.636

DesignSUBJECT :SHEET NO. OFPROJECT :REVDATEORIGINATORCHECKERCONTRACT No. :SAFETY CALC. Y/N :CALC. No. :0000CONCRETE DESIGN - Design for Maximum Shear (Local Y-Direction)Note: Concrete design is done for a 1-m tributary width. Please note that Staad reports shear stressesand moments as per Unit Width. To design for a 1-m width, multiply SQx and SQy by the plate'sthickness and by 1 meter to obtain the ultimate shear forces Vx and Vy. Similarly, multiply Mx,My and Mxy by 1 meter to obtain the respective ultimate moments Mux, Muy and Muxy.ElementLoad CaseSQxSQyMxMyMxykN/m2kN/m2kN-m/mkN-m/mkN-m/m50022326.735119263519.729251667636.467041867726.96521479458.8520029153Staad filename:Concrete cover, c =50mmfcu =40MpaSlab thickness, h =1000mmfy =460Mpa(1-meter strip) b =1000mmPile embedment, e =0mmSteel cover =87.5mmEffective depth, d =912.5mmUltimate shear, Vx =SQx h (1)=6.7351192635kNUltimate shear, Vy =SQy h (1)=19.7292516676kNUltimate moment, Mux =(Mx + Mxy) (1)=45.319044783kN-mUltimate moment, Muy =(My + Mxy) (1)=35.8172177098kN-mDesign Ultimate Bending StressX-Direction (Local)Y-Direction (Local)K0.00140.0011K =M / bd2 fcuCP65 : Part 1 : 1999, cl.3.4.4.4z866mm866mmz =d [0.5 + (0.25 - K/0.9)1/2]Asreq'd131mm2104mm2As =M / (0.87 fy z)Asmin1300mm21300mm2Asmin =0.0013 (1000) hCP65 : Part 1 : 1999, cl. 3.12.5.3Asprov3272mm23272mm2Provide:T25 at150 mmT25 at150 mmP A S S0.040.03Design Ultimate Shear StressEnhanced shear (As per CP65. : Part 1 : 1999, cl. 3.4.5.8 / cl. 3.11.4.4),vc =[0.84(100As/(bd))1/3 (400/d)1/4 (fcu/30)1/3] / gmCP65 : Part 1 : 1999, Table 3.9h =1000mmX-Direction (Local)Y-Direction (Local)0.0e =0mmUse enhanced shear?100As/bd0.360.360d =912.5mmNOYESNO400/d1.001.000av =1 elementY-dirY-dirX-dirBOTHvc0.525Mpa0.525Mpa0=275mmv0.007Mpa0.022Mpa000vc' =vc (1.5d/av)LinkN O N EN O N E00=2.62MpaReq'ts.00000.010.04

Varies. Adjustaccordingly.GO TOMACRO PAGE

Plate_Results230PLATE NO101TO350230AND630130100057500ShearMembraneBending MomentPlateL/CSQX (local)N/mm2SQY (local)N/mm2SX (local)N/mm2SY (local)N/mm2SXY (local)N/mm2MxkNm/mMykNm/mMxykNm/m

fw16056:Critical Row NumberAJ:KEY IN PREVIOUS LOAD CASE No.AJ:KEY IN No. OF LOAD COMBINATIONS. (SHALL BE CONTINUOUS IN STAAD FILE)AJ:KEY IN VALID PLATE No. IN STAAD FILEAJ:KEY IN VALID PLATE No. IN STAAD FILEAJ:KEY IN PREVIOUS LOAD CASE No. (IF LOAD COMBINATIONS ARE NOT CONTINUOUS)fw16056:KEY IN No. OF LOAD COMBINATIONS. (SHALL BE CONTINUOUS IN STAAD FILE)STARTGET PLATERESULTSGET DESIGN RESULTSCLEARDESIGNRESULTSGET CRITICALDESIGNCLEARPLATERESULTSMAX_BENDING-XMAX_BENDING-YMAX_SHEAR-XMAX_SHEAR-Y

Max-BendingXCONCRETE DESIGN - Design for Maximum Moment (Local X-Direction)Note: Concrete design is done for a 1-m tributary width. Please note that Staad reports shear stressesand moments as per Unit Width. To design for a 1-m width, multiply SQx and SQy by the plate'sthickness and by 1 meter to obtain the ultimate shear forces Vx and Vy. Similarly, multiply Mx,My and Mxy by 1 meter to obtain the respective ultimate moments Mux, Muy and Muxy.ElementLoad CaseSQxSQyMxMyMxykN/m2kN/m2kN-m/mkN-m/mkN-m/m0000000Staad filename:Concrete cover, c =50mmfcu =40MpaSlab thickness, h =1000mmfy =460Mpa(1-meter strip) b =1000mmPile embedment, e =0mmSteel cover =87.5mmEffective depth, d =912.5mmUltimate shear, Vx =SQx h (1)=0kNUltimate shear, Vy =SQy h (1)=0kNUltimate moment, Mux =(Mx + Mxy) (1)=0kN-mUltimate moment, Muy =(My + Mxy) (1)=0kN-mDesign Ultimate Bending StressX-Direction (Local)Y-Direction (Local)K0.00000.0000K =M / bd2 fcuCP65 : Part 1 : 1999, cl.3.4.4.4z0mm0mmz =d [0.5 + (0.25 - K/0.9)1/2]Asreq'd0mm20mm2As =M / (0.87 fy z)Asmin1300mm21300mm2Asmin =0.0013 (1000) hCP65 : Part 1 : 1999, cl. 3.12.5.3Asprov3272mm23272mm2Provide:T25 at150 mmT25 at150 mmP A S S0.000.00Design Ultimate Shear StressEnhanced shear (As per CP65. : Part 1 : 1999, cl. 3.4.5.8 / cl. 3.11.4.4),vc =[0.84(100As/(bd))1/3 (400/d)1/4 (fcu/30)1/3] / gmCP65 : Part 1 : 1999, Table 3.9h =1000mmX-Direction (Local)Y-Direction (Local)0.0e =0mmUse enhanced shear?100As/bd0.360.360d =912.5mmNOYESNO400/d1.001.000av =1 elementX-dirY-dirX-dirBOTHvc0.525Mpa0.525Mpa0=1300mmv0.000Mpa0.000Mpa000vc' =vc (1.5d/av)LinkN O N EN O N E00=0.55MpaReq'ts.00000.000.00

Varies. Adjustaccordingly.TO MACRO PAGE

Max-BendingYCONCRETE DESIGN - Design for Maximum Moment (Local Y-Direction)Note: Concrete design is done for a 1-m tributary width. Please note that Staad reports shear stressesand moments as per Unit Width. To design for a 1-m width, multiply SQx and SQy by the plate'sthickness and by 1 meter to obtain the ultimate shear forces Vx and Vy. Similarly, multiply Mx,My and Mxy by 1 meter to obtain the respective ultimate moments Mux, Muy and Muxy.ElementLoad CaseSQxSQyMxMyMxykN/m2kN/m2kN-m/mkN-m/mkN-m/m0000000Staad filename:Concrete cover, c =50mmfcu =40MpaSlab thickness, h =1000mmfy =460Mpa(1-meter strip) b =1000mmPile embedment, e =0mmSteel cover =87.5mmEffective depth, d =912.5mmUltimate shear, Vx =SQx h (1)=0kNUltimate shear, Vy =SQy h (1)=0kNUltimate moment, Mux =(Mx + Mxy) (1)=0kN-mUltimate moment, Muy =(My + Mxy) (1)=0kN-mDesign Ultimate Bending StressX-Direction (Local)Y-Direction (Local)K0.00000.0000K =M / bd2 fcuCP65 : Part 1 : 1999, cl.3.4.4.4z0mm0mmz =d [0.5 + (0.25 - K/0.9)1/2]Asreq'd0mm20mm2As =M / (0.87 fy z)Asmin1300mm21300mm2Asmin =0.0013 (1000) hCP65 : Part 1 : 1999, cl. 3.12.5.3Asprov3272mm23272mm2Provide:T25 at150 mmT25 at150 mmP A S S0.000.00Design Ultimate Shear StressEnhanced shear (As per CP65. : Part 1 : 1999, cl. 3.4.5.8 / cl. 3.11.4.4),vc =[0.84(100As/(bd))1/3 (400/d)1/4 (fcu/30)1/3] / gmCP65 : Part 1 : 1999, Table 3.9h =1000mmX-Direction (Local)Y-Direction (Local)0.0e =0mmUse enhanced shear?100As/bd0.360.360d =912.5mmNOYESNO400/d1.001.000av =1 elementX-dirY-dirX-dirBOTHvc0.525Mpa0.525Mpa0=1300mmv0.000Mpa0.000Mpa000vc' =vc (1.5d/av)LinkN O N EN O N E00=0.55MpaReq'ts.00000.000.00

Varies. Adjustaccordingly.TO MACRO PAGE

Max-ShearXCONCRETE DESIGN - Design for Maximum Shear (Local X-Direction)Note: Concrete design is done for a 1-m tributary width. Please note that Staad reports shear stressesand moments as per Unit Width. To design for a 1-m width, multiply SQx and SQy by the plate'sthickness and by 1 meter to obtain the ultimate shear forces Vx and Vy. Similarly, multiply Mx,My and Mxy by 1 meter to obtain the respective ultimate moments Mux, Muy and Muxy.ElementLoad CaseSQxSQyMxMyMxykN/m2kN/m2kN-m/mkN-m/mkN-m/m0000000Staad filename:Concrete cover, c =50mmfcu =40MpaSlab thickness, h =1000mmfy =460Mpa(1-meter strip) b =1000mmPile embedment, e =0mmSteel cover =87.5mmEffective depth, d =912.5mmUltimate shear, Vx =SQx h (1)=0kNUltimate shear, Vy =SQy h (1)=0kNUltimate moment, Mux =(Mx + Mxy) (1)=0kN-mUltimate moment, Muy =(My + Mxy) (1)=0kN-mDesign Ultimate Bending StressX-Direction (Local)Y-Direction (Local)K0.00000.0000K =M / bd2 fcuCP65 : Part 1 : 1999, cl.3.4.4.4z0mm0mmz =d [0.5 + (0.25 - K/0.9)1/2]Asreq'd0mm20mm2As =M / (0.87 fy z)Asmin1300mm21300mm2Asmin =0.0013 (1000) hCP65 : Part 1 : 1999, cl. 3.12.5.3Asprov3272mm23272mm2Provide:T25 at150 mmT25 at150 mmP A S S0.000.00Design Ultimate Shear StressEnhanced shear (As per CP65. : Part 1 : 1999, cl. 3.4.5.8 / cl. 3.11.4.4),vc =[0.84(100As/(bd))1/3 (400/d)1/4 (fcu/30)1/3] / gmCP65 : Part 1 : 1999, Table 3.9h =1000mmX-Direction (Local)Y-Direction (Local)0.0e =0mmUse enhanced shear?100As/bd0.360.360d =912.5mmNOYESNO400/d1.001.000av =1 elementX-dirY-dirX-dirBOTHvc0.525Mpa0.525Mpa0=1300mmv0.000Mpa0.000Mpa000vc' =vc (1.5d/av)LinkN O N EN O N E00=0.55MpaReq'ts.00000.000.00

Varies. Adjustaccordingly.TO MACRO PAGE

Max-ShearYCONCRETE DESIGN - Design for Maximum Shear (Local Y-Direction)Note: Concrete design is done for a 1-m tributary width. Please note that Staad reports shear stressesand moments as per Unit Width. To design for a 1-m width, multiply SQx and SQy by the plate'sthickness and by 1 meter to obtain the ultimate shear forces Vx and Vy. Similarly, multiply Mx,My and Mxy by 1 meter to obtain the respective ultimate moments Mux, Muy and Muxy.ElementLoad CaseSQxSQyMxMyMxykN/m2kN/m2kN-m/mkN-m/mkN-m/m0000000Staad filename:Concrete cover, c =50mmfcu =40MpaSlab thickness, h =1000mmfy =460Mpa(1-meter strip) b =1000mmPile embedment, e =0mmSteel cover =87.5mmEffective depth, d =912.5mmUltimate shear, Vx =SQx h (1)=0kNUltimate shear, Vy =SQy h (1)=0kNUltimate moment, Mux =(Mx + Mxy) (1)=0kN-mUltimate moment, Muy =(My + Mxy) (1)=0kN-mDesign Ultimate Bending StressX-Direction (Local)Y-Direction (Local)K0.00000.0000K =M / bd2 fcuCP65 : Part 1 : 1999, cl.3.4.4.4z0mm0mmz =d [0.5 + (0.25 - K/0.9)1/2]Asreq'd0mm20mm2As =M / (0.87 fy z)Asmin1300mm21300mm2Asmin =0.0013 (1000) hCP65 : Part 1 : 1999, cl. 3.12.5.3Asprov3272mm23272mm2Provide:T25 at150 mmT25 at150 mmP A S S0.000.00Design Ultimate Shear StressEnhanced shear (As per CP65. : Part 1 : 1999, cl. 3.4.5.8 / cl. 3.11.4.4),vc =[0.84(100As/(bd))1/3 (400/d)1/4 (fcu/30)1/3] / gmCP65 : Part 1 : 1999, Table 3.9h =1000mmX-Direction (Local)Y-Direction (Local)0.0e =0mmUse enhanced shear?100As/bd0.360.360d =912.5mmNOYESNO400/d1.001.000av =1 elementX-dirY-dirX-dirBOTHvc0.525Mpa0.525Mpa0=1300mmv0.000Mpa0.000Mpa000vc' =vc (1.5d/av)LinkN O N EN O N E00=0.55MpaReq'ts.00000.000.00

Varies. Adjustaccordingly.TO MACRO PAGE

Recommended