Low scale gravity black holes at LHC Enikő Regős ( CERN )

Preview:

Citation preview

LowLow scale gravity black scale gravity black holes at LHCholes at LHC

Enikő RegősEnikő Regős( CERN )( CERN )

Search for Extra DimensionsSearch for Extra Dimensions

LHC : Quantum Gravity & Extra LHC : Quantum Gravity & Extra DimensionsDimensions

Stringy Quantum Black HolesStringy Quantum Black Holes Low-scale Gravity Black Holes at Low-scale Gravity Black Holes at

CMSCMS

Quantum gravity and accelerator Quantum gravity and accelerator physicsphysics

Obtain limits from collider Obtain limits from collider experimentsexperiments

Graviton interference effects Graviton interference effects at Large Hadron Collider, at Large Hadron Collider, CERNCERN

Decay modes of particles Decay modes of particles with mass in TeV rangewith mass in TeV range

Hadron/lepton scatterings Hadron/lepton scatterings andand

decays in extra-dimensional decays in extra-dimensional modelsmodels

Black holes at LHC, CMSBlack holes at LHC, CMS

Limits from Limits from cosmology and cosmology and astrophysics: cosmic astrophysics: cosmic rays and supernovaerays and supernovae

Particle astrophysics Particle astrophysics Dark matterDark matter mass of particles, mass of particles, Ex:Ex: Axions Axions Evidence fromEvidence from observations for extra observations for extra

DD Quantum black holes: Quantum black holes:

energy spectrum, energy spectrum, depend on depend on parameters of space parameters of space times, stringstimes, strings

Collider Physics : QG & EDCollider Physics : QG & ED

QG & ED, the hierarchy problemQG & ED, the hierarchy problem Experimental signatures at colliders : Kaluza – Experimental signatures at colliders : Kaluza –

Klein graviton productionKlein graviton production Gravitational decay of heavy particles in Gravitational decay of heavy particles in

extra dimensionsextra dimensions Virtual KK graviton exchange at Z poleVirtual KK graviton exchange at Z pole Bounds from astrophysics, cosmologyBounds from astrophysics, cosmology

Hierarchy problem & EDHierarchy problem & ED

Fundamental scales in nature :Fundamental scales in nature :

Planck mass : E19 GeVPlanck mass : E19 GeV

Electroweak scale : 240 GeVElectroweak scale : 240 GeV

Supersymmetry : fundamental theory at Supersymmetry : fundamental theory at M_Pl ,M_Pl ,

EW derived ( small #) from dynamicsEW derived ( small #) from dynamics

BrokenBroken ( particle mass ) : gravity mediated ( particle mass ) : gravity mediated

gravitino mass determines partner massesgravitino mass determines partner masses

EW breaking induced by radiative correctionsEW breaking induced by radiative corrections

Extra dimensionsExtra dimensions

EW scale fundamental, M_Pl derivedEW scale fundamental, M_Pl derived Compact ED ( radius R )Compact ED ( radius R ) Matter confined in 4DMatter confined in 4D Gravity : propagates in all D , Gravity : propagates in all D ,

weakweak : compact space dimensions : compact space dimensions large compared to electroweak large compared to electroweak scalescale

G = G_D / (2 G = G_D / (2 ππ R)^ (D-4) R)^ (D-4)

TeV scale M_PlTeV scale M_Pl

Planck mass of order 1 TeV :Planck mass of order 1 TeV : 1 ED : R 1 ED : R ~ ~ E8 km E8 km 2 : 0.4 mm2 : 0.4 mm 4 : E-5 4 : E-5 μμmm 6 : 30 fm6 : 30 fm NewtonNewton law modified at small scale law modified at small scale

( exponent )( exponent )

LHC and extra-dimensional LHC and extra-dimensional modelsmodels

Planck scale at TeVPlanck scale at TeV

Strong gravity at TeV: black hole formationStrong gravity at TeV: black hole formation New particlesNew particles Gravity is weak as diluted in extra-D’s , Gravity is weak as diluted in extra-D’s ,

matter confined in 4Dmatter confined in 4D Polarization asymmetries, forward-Polarization asymmetries, forward-

backwardbackward Shift of Z peakShift of Z peak

LHC and Kaluza-Klein LHC and Kaluza-Klein gravitonsgravitons

Graviton production Graviton production Gravitational decay of heavy particlesGravitational decay of heavy particles Top decay , Higgs, ZTop decay , Higgs, Z pp -> jet + missing transverse energypp -> jet + missing transverse energy g-2 of muong-2 of muon Rare decays : K, qq_ , Y, Z, J/Rare decays : K, qq_ , Y, Z, J/ψψ, , μμ Higher-dimensional seesaw mechanism to Higher-dimensional seesaw mechanism to

give mass to light neutrinosgive mass to light neutrinos

Rare decaysRare decays

μμ -> -> νν__μμ e e νν__e + G , K -> __e + G , K -> ππ + + G , G ,

J / J / ψψ -> -> γγ + G , Y -> + G , Y -> γγ + G , + G ,

Z -> f f_ + G , t -> b W + G ,Z -> f f_ + G , t -> b W + G ,

H -> f f_ + G , H -> W + W_ + G H -> f f_ + G , H -> W + W_ + G

Rare decays to KKRare decays to KK

Quarkonium q q_ -> Quarkonium q q_ -> γγ + G + G Y decay prefered to J / Y decay prefered to J / ψψ

experimental BR < E-5 ->experimental BR < E-5 ->

M_D > 50 (9) GeV ( 2, 6 ED )M_D > 50 (9) GeV ( 2, 6 ED )

DiscussionDiscussion Strong gravity at TeV scale : Black Hole Strong gravity at TeV scale : Black Hole

production production If new TeV particles - KK excitations of If new TeV particles - KK excitations of

SM fields at LHC : quantum gravity SM fields at LHC : quantum gravity significantly affects their decay modessignificantly affects their decay modes

Emission of KK gravitons : main decay Emission of KK gravitons : main decay modes of heavy particles , SM ones too modes of heavy particles , SM ones too

Z -> ff_ + E_miss : experimental Z -> ff_ + E_miss : experimental resolution on BR constrains M_Dresolution on BR constrains M_D

Higgs decay : for lower bound on M_D :Higgs decay : for lower bound on M_D :

M_H = 120 GeV M_H = 120 GeV E-7E-7

500 GeV 500 GeV E-5E-5

resolution on gravitational BRresolution on gravitational BR Virtual KK graviton exchange not Virtual KK graviton exchange not

affects affects

Z- resonance observables for current Z- resonance observables for current experimental sensitivityexperimental sensitivity

Stringy Black Holes : D Stringy Black Holes : D branesbranes

D branesD branes D = 5 type – IIB black hole :D = 5 type – IIB black hole : Q1 D1 and Q5 D5 branes intersectionsQ1 D1 and Q5 D5 branes intersections in dsin ds²² : : f = ∏ [ 1 + ( r0 sh f = ∏ [ 1 + ( r0 sh δδ / r) / r)²² ] ( 1, 5, p ) ] ( 1, 5, p ) 1, 5 – brane charges : electric, magnetic, KK charge1, 5 – brane charges : electric, magnetic, KK charge T = 1 / 2 T = 1 / 2 ΠΠ r0 r0 ∏∏ ch ch δδ S ~ ∏ ch S ~ ∏ ch δδ S = 2 S = 2 ΠΠ ∏∏ ( ( √√N + N + √√N )N ) Q = N - N (1, 5, R - L)Q = N - N (1, 5, R - L) (anti) 1, 5 – branes, right/left moving momentum #(anti) 1, 5 – branes, right/left moving momentum #

D = 4 string : Entropy and D = 4 string : Entropy and quasi-normal modes knownquasi-normal modes known

dsds²² = -g / √f dt = -g / √f dt²² + √f ( dr + √f ( dr²² /g + r /g + r²² d dΩΩ ) ) δδ-s : higher dimensions’ compactification-s : higher dimensions’ compactification f = ∏ ( 1 + r0 shf = ∏ ( 1 + r0 sh²² δδ / r ) ( 2, 5, 6, p ) / r ) ( 2, 5, 6, p ) Entropy S similar to previous, 4 factors :Entropy S similar to previous, 4 factors : S_stat = S_BH = A / 4S_stat = S_BH = A / 4 String QNM – s known :String QNM – s known : Theory’sTheory’s parameters can be determined from parameters can be determined from

resonantresonant oscillations’ normal modes ( observable )oscillations’ normal modes ( observable )

Further examples:Further examples:

D = 5 Type – IIB with electric chargesD = 5 Type – IIB with electric charges BPS black hole : Reissner – Nordstrom BPS black hole : Reissner – Nordstrom

spacetimespacetime D = 5 : Rotating, spinD = 5 : Rotating, spin

equal charges : D = 5 Kerr - Newman equal charges : D = 5 Kerr - Newman D = 4 rotating :D = 4 rotating : D1, D5 branes’ intersectionD1, D5 branes’ intersection Type –II : heterotic string on T^6 torusType –II : heterotic string on T^6 torus Levels’ correspondance, BPS state, rotatingLevels’ correspondance, BPS state, rotating In all cases :In all cases : S = 2 S = 2 ΠΠ √√ ( ( ∏∏ charges – J charges – J²² ) ) S_stat = S_BH = A / 4S_stat = S_BH = A / 4

Low-scale Gravity Black Low-scale Gravity Black Holes at CMSHoles at CMS

withwith

Z. TrócsányiZ. Trócsányi

A. de Roeck A. de Roeck

Black holes at LHCBlack holes at LHC

Event generator for ED BHs : BlackMax I-IIEvent generator for ED BHs : BlackMax I-II Rotation, fermion splitting, brane tensionRotation, fermion splitting, brane tension Experimental signatures, particle decayExperimental signatures, particle decay CMSSW analysisCMSSW analysis Further models of Dvali suggest Black Further models of Dvali suggest Black

Hole detection even more likelyHole detection even more likely

Distribution of black hole massDistribution of black hole mass

Rotating and non-rotating , 2 ED , 1-5 Rotating and non-rotating , 2 ED , 1-5 TeVTeV

Distribution of BH color (red – blue - Distribution of BH color (red – blue - green) green)

Rotating and non-rotating , 2 ED , 1-5 Rotating and non-rotating , 2 ED , 1-5 TeV TeV

Distribution of BH charge / 3q /Distribution of BH charge / 3q /

Rotating and non-rotating, 2 ED, 1-5 Rotating and non-rotating, 2 ED, 1-5 TeVTeV

< Energy > of emitted particles vs. BH < Energy > of emitted particles vs. BH massmass

Rotating and non-rotating, 2 ED, 5-14 Rotating and non-rotating, 2 ED, 5-14 TeVTeV

Energy spectrum of emitted Energy spectrum of emitted particlesparticles

Rotating and non-rotating , 2 ED, 1-5 Rotating and non-rotating , 2 ED, 1-5 TeV TeV

Number of emitted particles vs. BH Number of emitted particles vs. BH mass during Hawking phasemass during Hawking phase

Rotating and non-rotating, 2 ED, 5-14 Rotating and non-rotating, 2 ED, 5-14 TeVTeV

Multiplicity of various speciesMultiplicity of various species (Hawking)(Hawking)

Rotating and non-rotating, 2 ED, 5-14 Rotating and non-rotating, 2 ED, 5-14 TeV , quarks, anti-quarks, leptons, anti-TeV , quarks, anti-quarks, leptons, anti-leptonsleptons

Number of emitted particles vs. # extra Number of emitted particles vs. # extra dimensions and # fermion splitting dimensions and # fermion splitting

dimensionsdimensions

rotating and non-rotatingrotating and non-rotating ED ED = 7= 7

Number of emitted particles / BH Number of emitted particles / BH vs. brane tension B vs. brane tension B

non-rotatingnon-rotating

ED = 2ED = 2

5-14 TeV5-14 TeV

Hawking phaseHawking phase

M_Pl = 1 TeVM_Pl = 1 TeV

ll

Pseudorapidity with final burstPseudorapidity with final burst

Non-rotating and rotating , 2 ED , 1-5 Non-rotating and rotating , 2 ED , 1-5 TeV , quarks, anti-quarks, leptons, anti-TeV , quarks, anti-quarks, leptons, anti-leptonsleptons

Pseudorapidity without final burstPseudorapidity without final burst

Non-rotating and rotating , 2 ED , 1-5 Non-rotating and rotating , 2 ED , 1-5 TeV , quarks, anti-quarks, leptons-, TeV , quarks, anti-quarks, leptons-, anti-leptons+anti-leptons+

Distribution of lepton transverse Distribution of lepton transverse

momentummomentum

Leptons & anti-leptons, rotating, 2 ED, 1-5 TeVLeptons & anti-leptons, rotating, 2 ED, 1-5 TeV

Lepton transverse momentum : Lepton transverse momentum : models models

Planck massPlanck mass : 2 TeV : 2 TeV EDED = 3 = 3 5 – 14 TeV5 – 14 TeV Minimum black holeMinimum black hole mass (non-rot)mass (non-rot) Multiplicity decreases Multiplicity decreases

w Planck massw Planck mass Energy Energy & & momentum momentum

increaseincrease

Electrons/positrons, (anti)muons, Electrons/positrons, (anti)muons, photons : Transverse momentum photons : Transverse momentum &&

energy spectrumenergy spectrum

Pseudorapidity : e - Pseudorapidity : e - μμ - - γγ

Ratio of 0 < Ratio of 0 < ήή < 0.5 < 0.5 & 0.5 < & 0.5 < ήή < 1 < 1 distinguishes among distinguishes among

beyond standard beyond standard modelsmodels

All models and All models and

speciesspecies have values very have values very

different from QCDdifferent from QCD

Model comparisonsModel comparisons

Further models :Further models :

Planck mass : Planck mass :

2, 5 TeV2, 5 TeV

ED ED = 5, 3= 5, 3

Minimum mass :Minimum mass :

4, 7 TeV4, 7 TeV

Vs. Vs.

Standard ModelStandard Model

top quark top quark transv.transv.

momentum /GeVmomentum /GeV

Analysis at CMSAnalysis at CMS

Rate : ợ * L_t * event : (same for rot & non-rot)Rate : ợ * L_t * event : (same for rot & non-rot) Total ET, missing ET Total ET, missing ET Missing: G + Missing: G + νν : model dependent : model dependent Peak (most likely) or mean for lepton & jet Peak (most likely) or mean for lepton & jet

distributions : ratio different from Standard distributions : ratio different from Standard ModelModel

Jet finder for CMSJet finder for CMS Hardest lepton transverse momentum : leptonHardest lepton transverse momentum : lepton

easy to identify, cuts off for SMeasy to identify, cuts off for SM

Combined cuts : Combined cuts : ήή , p_T distribution , p_T distribution

Model settings for detector which Model settings for detector which have different signaturehave different signature

Angular acceptance cut for detector Angular acceptance cut for detector acceptanceacceptance

ήή_lepton < 2.5 Jets, q, W, Z < 5_lepton < 2.5 Jets, q, W, Z < 5 t, bt, b Implementation of generators in CMSSWImplementation of generators in CMSSW Interface BlackMax IIInterface BlackMax II CMSSW : signal and SM backgroundCMSSW : signal and SM background Fast simulation, TriggeringFast simulation, Triggering Comparison w Charybdis : BlackMax has Comparison w Charybdis : BlackMax has

higher multiplicities and lower momenta higher multiplicities and lower momenta missing ET : gravitons only in BlackMaxmissing ET : gravitons only in BlackMax

Further models to test at LHC :Further models to test at LHC :

BHs in Dvali model for SM copies :BHs in Dvali model for SM copies :

BH -> SM particle rates different,BH -> SM particle rates different,

difference in particle decaydifference in particle decay

distribution of p_T, METdistribution of p_T, MET

Even more likely for BHs w ADD & Even more likely for BHs w ADD & finding themfinding them

Thank you for your Thank you for your attention !attention !