Lecture 22 Optical MEMS (4) · Optical MEMS (4) Agenda: ÊRefractive Optical Elements –...

Preview:

Citation preview

EEL6935 Advanced MEMS 2005 H. Xie 1

Lecture 22Optical MEMS (4)

Agenda:

Refractive Optical Elements– Microlenses– GRIN Lenses– Microprisms

4/4/2005

EEL6935 Advanced MEMS (Spring 2005) Instructor: Dr. Huikai Xie

Reference: S. Sinzinger and J. Jahns, Chapter 5 in Microoptics, Wiley-VCH, 2003

EEL6935 Advanced MEMS 2005 H. Xie 2

Optical Functions and Their Implementation

EEL6935 Advanced MEMS 2005 H. Xie 3

Classification of Refractive Optical Elements

EEL6935 Advanced MEMS 2005 H. Xie 4

Surface Profile MicrolensesMelted photoresist lenses – reflow lensesMass transportVolume changeLithographically initiated volume growthDispensed or droplet microlensesDirect writing Grey-scale lithography

Gradient-index (GRIN) OpticsGRIN rod lensesPlanar GRIN lenses

Microprisms

Refractive Micro-Optics

EEL6935 Advanced MEMS 2005 H. Xie 5

1.1 Melted Photoresist Lenses – Reflow Lenses

1. Surface Profile Microlenses

Fig 5.1

EEL6935 Advanced MEMS 2005 H. Xie 6

1.1 Photoresist Reflow Microlenses

Focal length

1crf

n=

rc: radius of curvature of the spherical lensn: refractive index of the lens material. n~1.4-1.6 for most polymers.

2

2cylDV tπ =

( )2 / 3sph cV h r hπ= −

Photoresist volumes before and after photoresist reflow:

EEL6935 Advanced MEMS 2005 H. Xie 7

( )2

2 2

2c cDr h r − + =

We assume that the photoresist volume does not change during fabrication, i.e., Vcyl = Vsph.. Thus, the thickness is given by

2412 3h ht

D

= +

h

rc

D

rc-h 2 2 / 42c

h Drh

+=

1.1 Photoresist Reflow Microlenses

EEL6935 Advanced MEMS 2005 H. Xie 8

Figure 5.2

1.1 Photoresist Reflow Microlenses

EEL6935 Advanced MEMS 2005 H. Xie 9

• Surface tension Surface energy: photoresist-air interface; photoresist-substrate interface

• Gravitational energy• Energy balance before and after reflow

Figure 5.3

• Substrate material• Surface treatment• Surface roughness• Facing up or down• Processing temperature• Issue: outer and inner parts

reaches to melting temperature at different times.

1.1 Photoresist Reflow Microlenses

Surface Profile

EEL6935 Advanced MEMS 2005 H. Xie 10

•Preshaping

• Long focal length• Aspheric profile

• Melting temperature, processing time• Local heating of just the surface

1.1 Photoresist Reflow Microlenses

EEL6935 Advanced MEMS 2005 H. Xie 11

• Pattern Transfer

• Lenses made of substrate such as silicon, fused silica, GaAs, InP

• Anisotropic RIE etching needed

• Equal etching rate for photoresist and substrate

Photoresist

Si

Photoresist

Si

Si

1.1 Photoresist Reflow Microlenses

EEL6935 Advanced MEMS 2005 H. Xie 12

1.2 Microlens Formed by Volume Change

• Photosensitive glass (e.g., Fotoform by Corning)• Photocolouration: color change under intense UV illumination• After UV exposure, heated to near melting temperature• Regional crystallization shrinkage local swelling spherical lenses• Typical lens diameters: 400-800µm• Typical numerical aperture: 0.11-0.19

EEL6935 Advanced MEMS 2005 H. Xie 13

1.3 Microlens Formed by Volume Growth

• PMMA (polymethyl methacrylate)

• High energy radiation (e.g., UV laser, x-ray, electron or proton beams) breaks polymer chains reduce molecular weight reduced stability

• Exposed to monomer vapor, monomer molecules diffuse into PMMA. The smaller the molecular weight, the more the monomer diffusion

• Different swellings at different regions microlenses

• UV curing

EEL6935 Advanced MEMS 2005 H. Xie 14

1.4 Dispensed or Droplet Microlenses

EEL6935 Advanced MEMS 2005 H. Xie 15

• AZ4620 photoresist (n=1.62)

• 200ºC for 20 min

• Diameter 300µm

• Focal length: 670 µm

1.5 Microlens Examples -1

C. King, L. Lin and M. Wu, IEEE Photonics Technology Letters, 1996

EEL6935 Advanced MEMS 2005 H. Xie 16

• Ring-shape holder

• UV curable polymer droplet

• Manually dispense droplets using micromanipulator

• Surface tension

• Biconvex lens

• Diameter 400µm

• Height: 84 µm

• NA: 0.39

1.5 Microlens Examples -2

Kwon and Lee, MEMS 2002

EEL6935 Advanced MEMS 2005 H. Xie 17

• Scratch-drive actuators (SDAs)• 2-D scanning• For 1.55µm wavelength• AZ4620: 11 µm thick• Hotplate: 150ºC for 1min• Diameter 270µm• Focal length: 670 µm

1.5 Microlens Examples -3

Toshiyoshi et al, J. Lightwave Technology, 2003

EEL6935 Advanced MEMS 2005 H. Xie 18

1.5 Microlens Examples -4

T.K. Shin et al, IEEE Photonics Technology Letters, 2004

EEL6935 Advanced MEMS 2005 H. Xie 19

1.5 Microlens Examples -5

Choo and Muller (UC-Berkeley), Hilton Head Workshop 2004

• 2µm-thick transparent nitride lens holder with 20µm-deep circular well

• Polymer jet printing• Lens diameter: 800µm• Focal length: 2-7mm

EEL6935 Advanced MEMS 2005 H. Xie 20

1.5 Microlens Examples -5

Choo and Muller (UC-Berkeley), Hilton Head Workshop 2004

EEL6935 Advanced MEMS 2005 H. Xie 21

A. Jain and H. Xie, MEMS 2005

• Maximum displacement of 280 µm achieved

• Actuation Voltage: <10V

1.5 Microlens Examples -6

EEL6935 Advanced MEMS 2005 H. Xie 22

• Graded-Index (GRIN) Fiber

2. GRIN Microlenses

EEL6935 Advanced MEMS 2005 H. Xie 23

2. GRIN Microlenses

•GRIN Rod Lenses or GRIN Fiber Lenses• SelfocTM

• Input angle may not equal to output angle which depends on the length.

• At half or full cycle, the input and output angles are the same, or focused

• At ¼ or ¾ cycle, the output light rays are parallel, or collimated

• Pitch: The fraction of a full sinusoidal cycle that light goes through before leaving the fiber. For example, a 0.25-pitch lens collimates the input light.

One cycle

EEL6935 Advanced MEMS 2005 H. Xie 24

•Planar GRIN Microlenses• PMLTM

2. GRIN Microlenses

• Ion-exchange process: Thermal or field-assisted (electromigration)

• Index change is proportional to the percentage of exchanged ions

• The concentration of exchanged ions changes gradually according to the diffusion process

• Thermal Ion-exchange process• Index change is proportional to the percentage of exchanged ions• The concentration of exchanged ions changes gradually according

to the diffusion process

EEL6935 Advanced MEMS 2005 H. Xie 25

3. Microprisms

Challenge:Linear slope with sharp edge

Fabrication Techniques:Deep synchrotron or proton lithographyAnalog lithographyReflow and Mass-transport techniques

Fabricated using analog lithography by E.B. Kley and F. Thoma

Recommended