Latest developments in tree species composition mapping ... ZSL 2019_Fabia… · Tree species...

Preview:

Citation preview

Latest developments in tree species composition

mapping from remote sensing

Dr. Fabian E. Fassnacht – Karlsruhe Institute of Technology

Warsaw, 13.03.2019 Fabian E. Fassnacht

IntroductionSupervised classification

2F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Supervised classification

Remote sensing data

Training data

Classification algorithm

Categorical map

3

Overview

Introduction What makes the difference?

Tree species information from airborne data Hyperspectral

LiDAR

Multispectral / Aerial photographs

Tree species information from spaceborne data Sentinel-2

Discussion & Conclusions

Warsaw, 13.03.2019 F. E. Fassnacht: Species Compositoin mapping

IntroductionWhat makes the difference?

Leaves + branching

4F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

IntroductionWhat makes the difference?

Habitus

5F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

IntroductionWhat makes the difference?

Phenology

6F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

2525August

IntroductionWhat makes the difference?

Color

7F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

BroadleavedConiferous

8

Overview

Introduction What makes the difference?

Tree species information from airborne data Hyperspectral

LiDAR

Multispectral / Aerial photographs

Tree species information from spaceborne data Sentinel-2

Discussion & Conclusions

Warsaw, 13.03.2019 F. E. Fassnacht: Species Compositoin mapping

Tree species information from airborne dataHyperspectral

Hyperspectral data

9F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Tree species information from airborne dataHyperspectral

Examples

Combination of 3 SVM

classifications based on

hyperspectral data

Spring, Summer Autumn

Complex forest structure

8 species

Modzelewska et al. (in preparation)

10F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Tree species information from airborne dataHyperspectral

Examples

Combination of 3 SVM

classifications based on

hyperspectral data

Spring, Summer Autumn

Complex forest structure

8 species

Modzelewska et al. (in preparation)

11F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

= overall acc. = kappa

Tree species information from airborne dataHyperspectral

12F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Reference

map

(dominant

species)

Classification

map

(dominant

species)

Tree species information from airborne dataHyperspectral

Trends & Challenges

Larger areas

Multi-temporal data

Airborne surveys (lots of things can go wrong!!)

Comparably complex pre-processing

BRDF effects

Large datasets

13F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Tree species information from airborne dataHyperspectral

Evaluation

14F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Thematic Details

Cost

Operationality

Accuracy

Spatial details

120-180 € / km²

15

Overview

Introduction What makes the difference?

Tree species information from airborne data Hyperspectral

LiDAR

Multispectral / Aerial photographs

Tree species information from spaceborne data Sentinel-2

Discussion & Conclusions

Warsaw, 13.03.2019 F. E. Fassnacht: Species Compositoin mapping

Reflecta

nce

Tree species information from airborne dataLiDAR

LiDAR data

16F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

1064 n

m

1550 n

m

90

5 n

m

432 n

m

Intensity

3D-Structure

Tree species information from airborne dataLiDAR

Two-approaches: area-based / individual tree based

17F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

∑∑∑∑∑

Area-based Individual tree based

Tree species information from airborne dataLiDAR

Winter (leaf-off) + Summer (leaf-on) data

Area-based or individual tree-based classification of evergreen and deciduous species

18F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Wasser et al. 2013

2525August

Tree species information from airborne dataLiDAR

Individual tree-based

19F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Kamińska et al. 2018

Crown Shape

Point distribution

Intensity information

∑ ∑ ∑ ∑ ∑ ∑

Tree species information from airborne dataLiDAR

Single tree structure information

20F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Holmgren & Persson 2004 Ørka et al. 2009

95% accuracy for

Separating Pine and Spruce

88% accuracy for

Separating Spruce and Birch

(large trees)

Tree species information from airborne dataLiDAR

Single tree structure information

21F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Axelsson et al. 2018

9 species

Overall accuracy structural metrics: 43,0%

Overall accuracy structure + intensity: 76.5%

Tree species information from airborne dataLiDAR

Trends & Challenges

Multispectral LiDAR

Continued development of new ways to extract structural and intensity metrics

Most approaches require a single tree delineation with all its challenges (missed

trees, over-segmentation, etc.) WHERE ARE THE MAPS?

Structural features often similar within coniferous / broadleaved tree species

groups solutions for more than 3 species often unsatisfactory

22F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Tree species information from airborne dataLiDAR

Evaluation

23F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Thematic Details

Cost

Operationality

Accuracy

Spatial details

62-240 € / km²

24

Overview

Introduction What makes the difference?

Tree species information from airborne data Hyperspectral

LiDAR

Multispectral / Aerial photographs

Tree species information from spaceborne data Sentinel-2

Discussion & Conclusions

Warsaw, 13.03.2019 F. E. Fassnacht: Species Compositoin mapping

Tree species information from airborne dataMultispectral / aerial photographs

Multispectral / aerial photographs

25F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Tree species information from airborne dataMultispectral / aerial photographs

Multispectral / aerial photographs

Convolutional neural networks

Works on an image / not pixel!

Similar detection capabilities as a

trained human interpreter

Renessaince of RGB-information /

orthophotographs?

26F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Graphs from: Chollet & Allaire 2017

Tree species information from airborne dataMultispectral / aerial photographs

Trends & Challenges

Steadily increasing number of examples

Adaption of the „image-based“ approach to deliver pixel-based results

Collection of sufficient training data

(BUT: there are large archives of orthophotos)

High-performance computer and GPU required

Algorithms become increasingly user-friendly but may still be challenging for the

applied sector

27F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Thematic Details

Accuracy

Tree species information from airborne dataMultispectral / aerial photographs

Evaluation

28F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Cost

Operationality Spatial details

35-62 € / km²

29

Overview

Introduction What makes the difference?

Tree species information from airborne data Hyperspectral

LiDAR

Multispectral / Aerial photographs

Tree species information from spaceborne data Sentinel-2

Discussion & Conclusions

Warsaw, 13.03.2019 F. E. Fassnacht: Species Compositoin mapping

Tree species information from spaceborne dataSentinel-2

Sentinel-2

2 operating satellites

5-day repeat cycle

10-20 m pixel size

Free data

30F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Tree species information from spaceborne dataSentinel-2

Examples

Tree species map for Baden-

Württemberg

Reference data from forestry

administration

Sentinel-2 mosaics for spring,

winter and summer from Google

Earth Engine

31F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Forest area

Reference data avail.

2525August

Fabian Ewald Faßnacht 32

Tree species information from spaceborne dataSentinel-2

Reference data on

forest stand level with

species composition

(10%-steps)

Subset of all stands

with one species

holding at least 90%

cover

Extract reflectance

data of three Sentinel-

2 mosaics (10 random

pixels per polygon)

Spring

Summer

Winter

K-means clustering ot

the reflectance data

Select clusters that

are likely to represent

the target species

Size of the cluster (how many pixels)

Ecological knowledge

(coniferous have lower reflectance than broadleaved,

broadleaved have low reflectance in winter)

Use selected cluster

to train SVM

classification model

and map the species

Tree species information from spaceborne dataSentinel-2

Examples

33F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Kappa = 0.75

Kappa = 0.64

2525August

Tree species information from spaceborne dataSentinel-2

Examples

34F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Black Forest

(spruce dominated)Swabian Alp

(higher fractions of

broadleaved)

Tree species information from spaceborne dataSentinel-2

Trends & Challenges

Developments of new approaches to create homogeneous Sentinel-2

mosaics over large areas (Level 3-data may even be provided by ESA)

E.g., artificial images from time-series might be a solution

Terrain shadows

Large datasets cloud computing approaches

Reliable reference data over large areas

35F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Cost

Thematic Details

Accuracy

Tree species information from airborne dataSpaceborne Sentinel-2 data

Evaluation

36F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Operationality Spatial details

free

37

Overview

Introduction What makes the difference?

Tree species information from airborne data Hyperspectral

LiDAR

Multispectral / Aerial photographs

Tree species information from spaceborne data Sentinel-2

Discussion & Conclusions

Warsaw, 13.03.2019 F. E. Fassnacht: Species Compositoin mapping

Discussion and Conclusions-

Lots of examples based on lots of different

dataset

No clear winner / Hyperspectral with highest

accuracies and number of species

Sentinel-2 has the tremendous advantage of

global cover and no cost

LiDAR (and probably VHR stereo-imagery):

Potential for „one-in-all solutions“

Deep-learning as a game-changer for VHR data

(incl. aerial photographs/orthophotos)?

38F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Nr

ofsp

ecie

s

Discussion and Conclusions-

We are heading towards actually useful product that

could support forest management!

39F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

References-

40F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Pictures:

https://greatbarrierphotography.com/wp-content/uploads/2018/02/DJI_0051cg1920b.jpg

https://www.focus.it/site_stored/imgs/0004/008/foresta-conifere.630x360.jpg

https://mongabay-images.s3.amazonaws.com/14/0120Aerial_1026_3240_dark.jpg

Paper & books:

Chollet & Allaire 2017 - Deep learning with R, book, Manning publications.

Fassnacht et al. 2016 - Review of studies on tree species classification from remotely sensed data, RSE, 186, 64-87.

Holmgren & Persson 2014 - Identifying species of individual trees using airborne laser scanner, RSE, 90, 415-423.

Kamińska et al. 2018 - Species-related single dead tree detection using multi-temporal ALS data and CIR imagery, RSE,

219, 31-43.

Klaus 2018 - Sentinel 2-basierte Baumartenklassifikation für Baden-Württemberg und anschließender Vergleich der

erstellten Baumartenkarte mit Prognosen zur zukünftigen Standortseignung, Bachelor thesis, KIT, IfGG.

Modzelewska et al. (in preparation)

Ørka et al. 2009 - Classifying species of individual trees by intensity and structure features derived from airborne laser

scanner data, RSE, 113, 1163-1174.

Wasser et al. 2013 - Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested

Riparian Buffers During Leaf-Off and Leaf-On Conditions. Pols One, 8(1).

Thank your for your attention-

41F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Fabian Ewald Faßnacht 42

Fabian Ewald Faßnacht 43

Fabian Ewald Faßnacht 44

Tree species information from spaceborne dataVHR data

Spaceborne VHR data

WorldView 2 and 3

0.3 – 2 m pixel size

8 – 16 bands

45F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Tree species information from spaceborne dataVHR data

Examples

Object-based classification

Random Forest

46F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Immitzer et al. 2012

Tree species information from spaceborne dataVHR data

Examples

47F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Immitzer et al. 2012

Tree species information from spaceborne dataVHR data

Examples

48F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Fassnacht et al. 2017

Tree species information from spaceborne dataVHR data

Challenges

Automated single tree delineations

Quality of individual WorldView-scenes differs a lot

Weather dependency

49F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Cost

OperationalityThematic Details

Accuracy

Tree species information from airborne dataSpaceborne VHR data

Evaluation

50F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Spatial details

19 $ / km²

Tree species information from airborne dataHyperspectral

Examples

SVM classification based

on Sentinel-2 /

hyperspectral data

Up to 96% accuracy for

five tree species

Comparably simple

forest structure

Ghosh et al. 2014 / S2: unpublished

51F. E. Fassnacht: Species Compositoin mappingWarsaw, 13.03.2019

Undetected (small) Red Oak standMixed Oak-Pine stand classified as

mixed Beech-Pine / BeechHS: Pine classified as Douglas Fir

Recommended